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ABSTRACT
We propose a new formal criterion for evaluating secure compilation
schemes for unsafe languages, expressing end-to-end security guar-
antees for software components that may become compromised
after encountering undefined behavior—for example, by accessing
an array out of bounds.

Our criterion is the first to model dynamic compromise in a
system of mutually distrustful components with clearly specified
privileges. It articulates how each component should be protected
from all the others—in particular, from components that have en-
countered undefined behavior and become compromised. Each com-
ponent receives secure compilation guarantees—in particular, its
internal invariants are protected from compromised components—
up to the point when this component itself becomes compromised,
after which we assume an attacker can take complete control and
use this component’s privileges to attack other components. More
precisely, a secure compilation chain must ensure that a dynami-
cally compromised component cannot break the safety properties
of the system at the target level any more than an arbitrary attacker-
controlled component (with the same interface and privileges, but
without undefined behaviors) already could at the source level.

To illustrate the model, we construct a secure compilation chain
for a small unsafe language with buffers, procedures, and compo-
nents, targeting a simple abstract machine with built-in compart-
mentalization. We give a careful proof (mostly machine-checked
in Coq) that this compiler satisfies our secure compilation crite-
rion. Finally, we show that the protection guarantees offered by
the compartmentalized abstract machine can be achieved at the
machine-code level using either software fault isolation or a tag-
based reference monitor.
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1 INTRODUCTION
Compartmentalization offers a strong, practical defense against a
range of devastating low-level attacks, such as control-flow hijacks
exploiting buffer overflows and other vulnerabilities in C, C++,
and other unsafe languages [18, 33, 81]. Widely deployed compart-
mentalization technologies include process-level privilege separa-
tion [18, 33, 47] (used in OpenSSH [67] and for sandboxing plugins
and tabs in web browsers [69]), software fault isolation [74, 79] (e.g.,
Google Native Client [84]), WebAssembly modules [34] in modern
web browsers, and hardware enclaves (e.g., Intel SGX [38]); many
more are on the drawing boards [14, 20, 71, 81]. These mechanisms
offer an attractive base for building more secure compilation chains
that mitigate low-level attacks [30, 33, 44, 65, 75–77]. In particular,
compartmentalization can be applied in unsafe low-level languages
to structure large, performance-critical applications into mutually
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distrustful components that have clearly specified privileges and
interact via well-defined interfaces.

Intuitively, protecting each component from all the others should
bring strong security benefits, since a vulnerability in one compo-
nent need not compromise the security of the whole application.
Each component will be protected from all other components for
as long as it remains “good.” If, at some point, it encounters an in-
ternal vulnerability such as a buffer overflow, then, from this point
on, it is assumed to be compromised and under the control of the
attacker, potentially causing it to attack the remaining uncompro-
mised components. The main goal of this paper is to formalize this
dynamic-compromise intuition and precisely characterize what it
means for a compilation chain to be secure in this setting.

We want a characterization that supports source-level security
reasoning, allowing programmers to reason about the security prop-
erties of their code without knowing anything about the complex
internals of the compilation chain (compiler, linker, loader, run-
time system, system software, etc). What makes this particularly
challenging for C and C++ programs is that they may encounter
undefined behaviors—situations that have no source-level meaning
whatsoever. Compilers are allowed to assume that undefined be-
haviors never occur in programs, and they aggressively exploit this
assumption to produce the fastest possible code for well-defined
programs, in particular by avoiding the insertion of run-time checks.
For example, memory safety violations [15, 73] (e.g., accessing an
array out of bounds, or using a pointer after its memory region
has been freed) and type safety violations [27, 35] (e.g., invalid
unchecked casts)—cause real C compilers to produce code that be-
haves arbitrarily, often leading to exploitable vulnerabilities [37, 73].

Of course, not every undefined behavior is necessarily exploitable.
However, for the sake of strong security guarantees, we make a
worst-case assumption that any undefined behavior encountered
within a component can lead to its compromise. Indeed, in the
remainder of the paper we equate the notions of “encountering
undefined behavior” and “becoming compromised.”

While the dangers of memory safety and casting violations are
widely understood, the C and C++ standards [39] call out large
numbers of undefined behaviors [36, 49] that are less familiar, even
to experienced C/C++ developers [54, 80]. Tominimize programmer
confusion and lower the risk of introducing security vulnerabilities,
real compilers generally give sane and predictable semantics to
some of these behaviors. For example, signed integer overflow is
officially an undefined behavior in standard C, but many compilers
(at least with certain flags set) guarantee that the result will be calcu-
lated using wraparound arithmetic. Thus, for purposes of defining
secure compilation, the set of undefined behaviors is effectively
defined by the compiler at hand rather than by the standard.

The purpose of a compartmentalizing compilation chain is to
ensure that the arbitrary, potentially malicious, effects of undefined
behavior are limited to the component in which it occurs. For a
start, it should restrict the spatial scope of a compromise to the
component that encounters undefined behavior. Such compromised
components can only influence other components via controlled
interactions respecting their interfaces and the other abstractions of
the source language (e.g., the stack discipline on calls and returns)
Moreover, to model dynamic compromise and give each compo-
nent full guarantees as long as it has not yet encountered undefined

behavior, the temporal scope of compromise must also be restricted.
In particular, compiler optimizations should never cause the effects
of undefined behavior to show up before earlier “observable events”
such as system calls. Unlike the spatial restriction, which requires
some form of run-time enforcement in software or hardware, the
temporal restriction can be enforced just by foregoing certain ag-
gressive optimizations. For example, the temporal restriction (but
not the spatial one) is already enforced by the CompCert C com-
piler [56, 68], providing a significantly cleaner model of undefined
behavior than other C compilers [68].

We want a characterization that is formal—that brings mathe-
matical precision to the security guarantees and attacker model
of compartmentalizing compilation. This can serve both as a clear
specification for verified secure compilation chains and as useful
guidance for unverified ones. Moreover, we want the characteriza-
tion to provide source-level reasoning principles that can be used
to assess the security of compartmentalized applications. To make
this feasible in practice, the amount of source code to be verified
or audited has to be relatively small. So, while we can require de-
velopers to carefully analyze the privileges of each component and
the correctness of some very small pieces of security-critical code,
we cannot expect them to establish the full correctness—or even
absence of undefined behavior—for most of their components.

Our secure compilation criterion improves on the state of the art
in three important respects. First, our criterion applies to compart-
mentalized programs, while most existing formal criteria for secure
compilation are phrased in terms of protecting a single trusted
program from an untrusted context [1, 4–8, 29, 63]. Second, unlike
some recent criteria that do consider modular protection [24, 65],
our criterion applies to unsafe source languages with undefined
behaviors. And third, it considers a dynamic compromise model—
a critical advance over the recent proposal of Juglaret et al. [43],
which does consider components written in unsafe languages, but
which is limited to a static compromise model. This is a serious
limitation: components whose code contains any vulnerability that
might potentially manifest itself as undefined behavior are given no
guarantees whatsoever, irrespective of whether an attacker actually
exploits these vulnerabilities. Moreover, vulnerable components
lose all guarantees from the start of the execution—possibly long
before any actual compromise. Experience shows that large enough
C or C++ codebases essentially always contain vulnerabilities [73].
Thus, although static compromise models may be appropriate for
safe languages, they are not useful for unsafe low-level languages.

As we will see in §5, the limitation to static compromise scenar-
ios seems inescapable for previous techniques, which are all based
on the formal criterion of full abstraction [1]. To support dynamic
compromise scenarios, we take an unconventional approach, drop-
ping full abstraction and instead phrasing our criterion in terms of
preserving safety properties [52] in adversarial contexts [6], where,
formally, safety properties are predicates over execution traces that
are informative enough to detect the compromise of components
and to allow the execution to be “rewound” along the same trace.
Moving away from full abstraction also makes our criterion easier
to achieve efficiently in practice and to prove at scale. Finally, we
expect our criterion to scale naturally from properties to hyper-
properties such as confidentiality [6] (see §5 and §6).
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Contributions. Our first contribution is Robustly Safe Compart-
mentalizing Compilation (RSCC), a new secure compilation criterion
articulating strong end-to-end security guarantees for components
written in unsafe languages with undefined behavior. This criterion
is the first to support dynamic compromise in a system of mutually
distrustful components with clearly specified privileges. We start by
illustrating the intuition, informal attacker model, and source-level
reasoning behind RSCC using a simple example application (§2).

Our second contribution is a formal presentation of RSCC. We
start from Robustly Safe Compilation (RSC, §3.1), a simple security
criterion recently introduced by Abate et al. [6], and extend this first
to dynamic compromise (RSCDC, §3.2), then mutually distrustful
components (RSCDC

MD, §3.3), and finally to the full definition of RSCC
(§3.4). We also give an effective and generic proof technique for
RSCC (§3.5). We start with a target-level execution and explain any
finite sequence of calls and returns in terms of the source language
by constructing a whole source program that produces this prefix.
We then use standard simulation proofs to relate our semantics
for whole programs to semantics that capture the behavior of a
partial program in an arbitrary context. This proof architecture
yields simpler and more scalable proofs than previous work in
this space [43]. One particularly important advantage is that it
allows us to reuse a whole-program compiler correctness result à
la CompCert [56] as a black box, avoiding the need to prove any
other simulations between the source and target languages.

Our third contribution is a proof-of-concept secure compilation
chain (§4) for a simple unsafe sequential language featuring buffers,
procedures, components, and a CompCert-like block-basedmemory
model [57] (§4.1). Our entire compilation chain is implemented in
the Coq proof assistant. The first step compiles our source language
to a simple low-level abstract machine with built-in compartmen-
talization (§4.2). We use the proof technique from §3.5 to construct
careful proofs—many of them machine-checked in Coq—showing
that this compiler satisfies RSCC (§4.3). Finally, we describe two
back ends for our compiler, showing that the protection guaran-
tees of the compartmentalized abstract machine can be achieved
at the lowest level using either software fault isolation (SFI, §4.4)
or a tag-based reference monitor (§4.5). The tag-based back end,
in particular, is novel, using linear return capabilities to enforce a
cross-component call/return discipline. Neither back end has yet
been formally verified, but we have used property-based testing to
gain confidence that the SFI back end satisfies RSCDC

MD.
These contributions lay a solid foundation for future secure com-

pilation chains that could bring sound and practical compartmental-
ization to C, C++, and other unsafe low-level languages. We address
three fundamental questions: (1) What is the desired secure compila-
tion criterion and to what attacker model and source-level security
reasoning principles does it correspond? Answer: We propose the
RSCC criterion from §2-§3. (2) How can we effectively enforce secure
compilation? Answer: Various mechanisms are possible; the simple
compilation chain from §4 illustrates how either software fault
isolation or tagged-based reference monitoring can enforce RSCC.
(3) How can we achieve high assurance that the resulting compilation
chain is indeed secure? Answer: We show that formal verification
(§4.3) and property-based testing (§4.4) can be successfully used
together for this in a proof assistant like Coq.

We close with related (§5) and future (§6) work. The appendix
presents omitted details. Our Coq development is available at https:
//github.com/secure-compilation/when-good-components-go-bad/

2 RSCC BY EXAMPLE
Webegin by an overview of compartmentalizing compilation chains,
our attacker model, and how viewing this model as a dynamic
compromise game leads to intuitive principles for security analysis.

We need not be very precise, here, about the details of the source
language; we just assume that it is equipped with some compart-
mentalization facility [33, 78] that allows programmers to break
up security-critical applications into mutually distrustful compo-
nents that have clearly specified privileges and can only interact
via well-defined interfaces. In fact we assume that the interface of
each component gives a precise description of its privilege. The
notions of component and interface that we use for defining the
secure compilation criteria in §3 are quite generic: interfaces can
include any requirements that can be enforced on components,
including type signatures, lists of allowed system calls, or more
detailed access-control specifications describing legal parameters
to cross-component calls (e.g., ACLs for operations on files). We
assume that the division of an application into components and the
interfaces of those components are statically determined and fixed.
For the illustrative language of §4, we will use a simple setup in
which components don’t directly share state, interfaces just list the
procedures that each component provides and those that it expects
to be present in its context, and the only thing one component can
do to another one is to call procedures allowed by their interfaces.

The goal of a compartmentalizing compilation chain is to ensure
that components interact according to their interfaces even in the
presence of undefined behavior. Our secure compilation criterion-
does not fix a specific mechanism for achieving this: responsibility
can be divided among the different parts of the compilation chain,
such as the compiler, linker, loader, runtime system, system soft-
ware, and hardware. In §4 we study a compilation chain with two
alternative back ends—one using software fault isolation and one
using tag-based reference monitoring for compartmentalization.
What a compromised component can still do in this model is to use
its access to other components, as allowed by its interface, to either
trick them into misusing their own privileges (i.e., confused deputy
attacks) or even compromise them as well (e.g., by sending them
malformed inputs that trigger control-hijacking attacks exploiting
undefined behaviors in their code).

We model input and output as interaction with a designated
environment component E that is given an interface but no imple-
mentation. When invoked, environment functions are assumed to
immediately return a non-deterministically chosen value [56]. In
terms of security, the environment is thus the initial source of arbi-
trary, possibly malformed, inputs that can exploit buffer overflows
and other vulnerabilities to compromise other components.

As we argued in the introduction, it is often unrealistic to assume
that we know in advance which components will be compromised
and which ones will not. This motivates our model of dynamic
compromise, in which each component receives secure compila-
tion guarantees until it becomes compromised by encountering an
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component C0 {
export valid ;
valid ( data ) { . . . }

}
component C1 {

import E . read , C2 . init , C2 . process ;
main ( ) {

C2 . init ( ) ;
x : = E . read ( ) ;
y : = C1 . parse ( x ) ; / / (V1 ) can y i e l d Undef f o r some x
C2 . process ( x , y ) ;

}
parse ( x ) { . . . }

}
component C2 {

import E . write , C0 . valid ;
export init , process ;
init ( ) { . . . }
process ( x , y ) {

C2 . prepare ( ) ; / / (V2 ) can y i e l d Undef i f n o t i n i t i a l i z e d
data : = C2 . handle ( y ) ; / / (V3 ) can y i e l d Undef f o r some y
if C0 . valid ( data ) then E . write ( <data , x>)

}
prepare ( ) { . . . }
handle ( y ) { . . . }

}

Figure 1: Pseudocode of compartmentalized application

undefined behavior, causing it to start attacking the remaining un-
compromised components. In contrast to earlier static-compromise
models [43], a component only loses guarantees in our model after
an attacker discovers and manages to exploit a vulnerability, by
sending it inputs that lead to an undefined behavior. The mere ex-
istence of vulnerabilities—undefined behaviors that can be reached
after some sequence of inputs—is not enough for the component to
be considered compromised.

This model allows developers to reason informally about various
compromise scenarios and their impact on the security of the whole
application [33]. If the consequences of some plausible compromise
seem too serious, developers can further reduce or separate privi-
lege by narrowing interfaces or splitting components, or they can
make components more defensive by validating their inputs.

As a first running example, consider the idealized application in
Figure 1. It defines three components (C0, C1, and C2) that interact
with the environment E via input (E .read) and output (E .write)
operations. Component C1 defines a main() procedure, which first
invokes C2.init() and then reads a request x from the environment
(e.g., coming from some remote client), parses it by calling an inter-
nal procedure to obtain y, and then invokes C2.process(x,y). This,
in turn, calls C2.prepare() and C2.handle(y), obtaining some data
that it validates using C0.valid and, if this succeeds, writes data
together with the original request x to the environment.

Suppose we would like to establish two properties:

(S1) any call E .write(<data,x>) happens as a response to a pre-
vious E .read() call by C1 obtaining the request x; and

(S2) the application only writes valid data (i.e., data for which
C0.valid returns true).

These can be shown to hold of executions that do not encounter
undefined behavior simply by analyzing the control flow. But what
if undefined behavior does occur? Suppose that we can rule out this
possibility—by auditing, testing, or formal verification—for some
parts of the code, but we are unsure about three subroutines:

component C0 {
import E . read , E . write , C2 . init , C1 . parse , C2 . process ;
main ( ) {

C2 . init ( ) ;
x : = E . read ( ) ;
y : = C1 . parse ( x ) ;
data : = C2 . process ( y ) ;
if C0 . valid ( data ) then E . write ( <data , x>)

}
valid ( data ) { . . . }

}
component C1 {

export parse ;
parse ( x ) { . . . } / / (V1 ) can y i e l d Undef f o r some x

}
component C2 {

export init , process ;
init ( ) { . . . }
process ( y ) {

C2 . prepare ( ) ; / / (V2 ) can y i e l d Undef i f n o t i n i t i a l i z e d
return C2 . handle ( y ) ; / / (V3 ) can y i e l d Undef f o r some y

}
prepare ( ) { . . . }
handle ( y ) { . . . }

}

Figure 2: More secure refactoring of the application

(V1) C1.parse(x) performs complex array computations, and we
do not know if it is immune to buffer overflows for all x;

(V2) C2.prepare() is intended to be called only if C2.init() has
been called beforehand to set up a shared data structure;
otherwise, it might dereference an undefined pointer;

(V3) C2.handle(y) might cause integer overflow on some inputs.
If the attacker finds an input that causes the undefined behavior

inV1 to occur, then C1 can get compromised and call C2.process(x,y)
with values of x that it hasn’t received from the environment, thus
invalidating S1. Nevertheless, if no other undefined behavior is en-
countered during the execution, this attack cannot have any effect
on the code run by C2, so S2 remains true.

Now consider the possible undefined behavior from V2. If C1
is not compromised, this undefined behavior cannot occur, since
C2.init() will be called before C2.prepare(). Moreover, this unde-
fined behavior cannot occur even if C1 is compromised by the un-
defined behavior in V1, because that can only occur after C2.init()
has been called. Hence V1 and V2 together are no worse than V1
alone, and property S2 remains true. Inferring this crucially depends
on our model of dynamic compromise, in which C1 can be treated
as honest and gets guarantees until it encounters undefined behav-
ior. If instead we were only allowed to reason about C1’s ability to
do damage based on its interface, as would happen in a model of
static compromise [43], we wouldn’t be able to conclude that C2
cannot be compromised: an arbitrary component with the same
interface as C1 could indeed compromise C2 by calling C2.process
before C2.init. Finally, if execution encounters undefined behavior
in V3, then C2 can get compromised irrespective of whether C1 is
compromised beforehand, invalidating both S1 and S2.

Though we have not yet made it formal, this security analysis
already identifies C2 as a single point of failure for both desired
properties of our system. This suggests several ways the program
could be improved: The code in C2.handle could be hardened to
reduce its chances of encountering undefined behavior, e.g. by doing
better input validation. Or C1 could validate the values it sends to
C2.process, so that an attacker would have to compromise both C1
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and C2 to break the validity of writes. To ensure the correspondence
of reads and writes despite the compromise of C1, we could make
C2 read the request values directly from E, instead of via C1.

To achieve the best security though, we can refactor so that the
read and write privileges are isolated in C0, which performs no com-
plex data processing and thus is a lot less likely to be compromised
by undefined behavior (Figure 2). In this variant, C0 reads a request,
calls C1.parse on this request, passes the result to C2.process, val-
idates the data C2 returns and then writes it out. This way both our
desired properties hold even if both C1 and C2 are compromised,
since now the core application logic and privileges have been com-
pletely separated from the dangerous data processing operations
that could cause vulnerabilities.

Let’s begin making all this a bit more formal. The first step is to
make the security goals of our example applicationmore precise.We
do this in terms of execution traces that are built from events such
as cross-component calls and returns. The two intuitive properties
from our example can be phrased in terms of traces as follows: If
E .write(<data,x>) appears in an execution trace, then
(S1) E .read was called previously and returned x, and
(S2) C0.valid(data) was called previously and returned true.

The refactored application in Figure 2 achieves both properties
despite the compromise of both C1 via V1 and C2 via V3, but, for
the first variant in Figure 1 the properties need to be weakened as
follows: If E .write(<data,x>) appears in an execution trace then
(W1) E .read previously returned x or E .read previously returned

an x ' that can cause undefined behavior in C1.parse(x') or
C2.process(x,y) was called previously with a y that can
cause undefined behavior in C2.handle(y), and

(W2) C0.valid(data) was called previously and returned true
or C2.process(x,y) was called previously with a y that can
cause undefined behavior in C2.handle(y).

While these properties are significantly weaker (and harder to un-
derstand), they are still not trivial; in particular, they still tell us
something useful under the assumption that the attacker has not
actually discovered how to compromise C1 or C2.

Properties S1, S2,W1,W2 are all safety properties [52]—inspired,
in this case, by the sorts of “correspondence assertions” used to
specify authenticity in security protocols [31, 83]. A trace property
is a safety property if, within any (possibly infinite) trace that
violates the property, there exists a finite “bad prefix” that violates
it. For instance here is a bad prefix for S2 that includes a call to
E .write(<data,x>) with no preceding call to C0.valid(data):

[C0 . main ( ) ; C2 . init ( ) ; Ret ; E . read ; Ret ( x ) ; C1 . parse ( x ) ;
Ret ( y ) ; C2 . process ( y ) ; Ret ( data ) ; E . write ( <data , x > ) ]

The program from Figure 2 cannot produce traces with this bad pre-
fix, but it could do so if we removed the validity check in C0.main();
this variant would invalidate safety property S2.

Compiler correctness is often phrased in terms of preserving
trace properties in general [56] (and thus safety properties as a
special case). However, this is often predicated on the assumption
that the source program has no undefined behavior; if it does, all se-
curity guarantees are lost, globally. By contrast, we want our secure
compilation criterion to still apply even when some components
are dynamically compromised by encountering undefined behavior.

I
0

I
1

I
2

C0 C1 C2

∀m finite prefix of t (m ≤ t)∃ a dynamic compromise scenario explaining m in source

for instance ∃[A1,A2] leading to compromise sequence:

↓ ↓ ↓ ⇝ t

I
0

I
1

I
2

C0 C1 C2
⇝* m

1
· Undef(C1)↯(0)

(1)

I
0

I
1

I
2

C0 A1 C2
⇝* m

2
· Undef(C2)↯

(2)
I

0
I

1
I

2

C0 A1 A2
⇝*   m

≤ 
≤ 

Suppose running compiled components C
0
↓, C

1
↓, C

2
↓

with interfaces I
0
, I

1
, I

2
yields trace t:

Then:

The trace prefixesm,m1,m2 might, for instance, be:
m = [C0 . main ( ) ; C2 . init ( ) ; Ret ; E . read ; Ret ( x ) ; C1 . parse ( x ) ;

Ret ( y ) ; C2 . process ( y ) ; Ret ( d ) ;
C0 . valid ( d ) ; Ret ( true ) ; E . write ( <d , x > ) ]

m1 = [C0 . main ( ) ; C2 . init ( ) ; Ret ; E . read ; Ret ( x ) ; C1 . parse ( x ) ]

m2 = [C0 . main ( ) ; C2 . init ( ) ; Ret ; E . read ; Ret ( x ) ; C1 . parse ( x ) ;
Ret ( y ) ; C2 . process ( y ) ]

Figure 3: The RSCC dynamic compromise game for our ex-
ample. We start with all components being uncompromised
(in green) and incrementally replace any component that en-
counters undefined behavior with an arbitrary component
(in red) that has the same interface and will do its part of
the trace prefixm without causing undefined behavior.

In particular, we want to ensure that dynamically compromised
components are not able to break the safety properties of the system
at the target level any more than equally privileged components
without undefined behavior already could in the source.

We call our criterion Robustly Safe Compartmentalizing Compila-
tion (RSCC). It is phrased in terms of a “security game,” illustrated
in Figure 3 for our running example. With an RSCC compilation
chain, given any execution of the compiled and linked components
C0↓, C1↓ and, C2↓ producing trace t in the target language, we can
explain any (intuitively bad) finite prefixm of t (writtenm ≤ t ) in
terms of the source language. As soon as any component of the
program has an undefined behavior though, the semantics of the
source language can no longer directly help us. Similar to Comp-
Cert [56], we model undefined behavior in our source language as
a special event Undef(Ci ) that terminates the trace. For instance, in
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step 0 of Figure 3, component C1 is the first to encounter undefined
behavior after producing a prefixm1 ofm.

Since undefined behavior can manifest as arbitrary target-level
behavior, the further actions of component C1 can no longer be
explained in terms of its source code. So how can we explain the
rest ofm in the source language? Our solution in RSCC is to require
that one can replace C1, the component that encountered undefined
behavior, with some other source component A1 that has the same
interface and can produce its part of the whole m in the source
language without itself encountering undefined behavior. In order
to replace component C1 with A1 we have to go back in time and
re-execute the program from the beginning obtaining a longer trace,
in this casem2·Undef(C2) (where we write “·” for appending the
event Undef(C2) tom2). We iterate this process until all components
that encountered undefined behavior have been replaced with new
source components that do not encounter undefined behavior and
produce the wholem. In the example dynamic compromise scenario
from Figure 3, this means replacing C1 with A1 and C2 with A2, after
which the program can produce the whole prefixm in the source.

Let’s now use this RSCC security game to deduce that in our
example from Figure 2, even compromising both C1 and C2 does
not break property S2 at the target level. Assume, for the sake of a
contradiction, that a trace of our compiled program breaks property
S2. Then there exists a finite prefix “m · E .write(<data,x>)” such
that C0.valid(data) does not appear inm. Using RSCC we obtain
that there exists some dynamic compromise scenario explainingm
in the source. The simplest case is when no components are com-
promised. The most interesting case is when this scenario involves
the compromise of both C1 and C2 as in Figure 3. In this case, re-
placing C1 and C2 with arbitrary A1 and A2 with the same interfaces
allows us to reproduce the whole bad prefixm in the source (step 2
from Figure 3). We can now reason in the source, either informally
or using a program logic for robust safety [72], that this cannot
happen, since the source code of C0 does call C0.valid(data) and
only if it gets true back does it call E .write(<data,x>).

While in this special case we have only used the last step in
the dynamic compromise sequence, where all compromised com-
ponents have already been replaced (step 2 from Figure 3), the
previous steps are also useful in general for reasoning about the
code our original components execute before they get compromised.
For instance, this kind of reasoning is crucial for showing property
W2 for the original example from Figure 1. PropertyW2 gives up on
the validity of the written data only if C2 receives a y that exploits
C2.handle(y) (vulnerability V3). However, as discussed above, a
compromised C1 could, in theory, try to compromise C2 by calling
C2.process without proper initialization (exploiting vulnerability
V2). Showing that this cannot actually happen requires using step
0 of the game from Figure 3, which gives us that the original com-
piled program obtained by linking C0↓, C1↓ and, C2↓ can produce
the tracem1 · Undef(C1), for some prefixm1 of the bad trace prefix
in which C2.process is called without calling C2.init first. But it
is easy to check that the straight-line code of the C1.main() proce-
dure can only cause undefined behavior after it has called C2.init,
contradicting the existence of a bad trace exploiting V2.

3 FORMALLY DEFINING RSCC
For pedagogical purposes, we define RSCC in stages, incrementally
adapting the existing notion of Robustly Safe Compilation (RSC)
introduced by Abate et al. [6] (and reviewed in §3.1). We first bring
RSC to unsafe languages with undefined behavior (§3.2), and then
further extend its protection to any set of mutually distrustful com-
ponents (§3.3). These ideas lead to the more elaborate RSCC property
(§3.4), which directly captures the informal dynamic compromise
game from §2. These definitions are generic, and will be illustrated
with a concrete instance in §4.

3.1 RSC: Robustly Safe Compilation
RSC [6] is a recent criterion for secure compilation that captures the
preservation of all robust safety properties—i.e., safety properties
that hold in the presence of arbitrary adversarial contexts [31, 51,
72]. A trace property (i.e., a set of potentially infinite traces built
over events like I/O with the environment [56]) is a safety prop-
erty [52] if any trace violating it has a finite “bad prefix” that already
violates it. We focus on robust safety since it captures many im-
portant program properties (e.g., robust partial correctness), while
allowing for a simple secure-compilation proof technique (§3.5).

RSC is a property of a whole compilation chain: the source lan-
guage and its trace-based big-step operational semantics (we write
P⇝t to mean that the complete program P can produce trace t ),
plus its compiler (P↓), source and target linking (where CS [P] de-
notes linking a partial program P with contextCS to obtain a whole
source program, andCT [PT ] does the same in the target), and target-
level semantics (PT⇝t ) including for instance the target machine,
loader, and deployed protection mechanisms.
Definition 3.1. A compilation chain provides RSC iff

∀P CT t . CT [P↓]⇝t ⇒ ∀m≤t . ∃CS t ′. CS [P]⇝t ′ ∧m≤t ′.

That is, RSC holds for a compilation chain if, for any partial
source program P and any target contextCT , whereCT linked with
the compilation of P can produce a trace t in the target (CT [P↓]⇝t ),
and for any finite prefix m of trace t (written m ≤ t ), we can
construct a source-level context CS that can produce prefixm in
the source language when linked with P (i.e.,CS [P]⇝t ′ for some t ′
so thatm ≤ t ′). Intuitively, if we think of the contexts as adversarial
andm as a bad behavior, RSC says that any finite attackm that a
target context CT can mount against P↓ can already be mounted
against P by some source context CS . So proving RSC requires that
we be able to back-translate each finite prefix m of CT [P ↓] into
a source context CS that performs m together with the original
program P . Conversely, any safety property that holds of P when
linked with an arbitrary source context will still hold for P↓ when
linked with an arbitrary target context [6].

As in CompCert, we assume that the traces are exactly the same
in the source and target languages. We anticipate no trouble relax-
ing this to an arbitrary relation between source and target traces.

3.2 RSCDC: Dynamic Compromise
The RSC criterion above is about protecting a partial program
written in a safe source language against adversarial target-level
contexts. We now adapt the idea behind RSC to an unsafe source
language with undefined behavior, in which the protected partial
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program itself can become compromised. As explained in §2, we
model undefined behavior as a special Undef event terminating
the trace: whatever happens afterwards at the target level can no
longer be explained in terms of the code of the source program.
We further assume that each undefined behavior in the source lan-
guage can be attributed to the part of the program that causes it by
labeling the Undef event with “blame the program” (P ) or “blame
the context” (C) (while in §3.3 we will blame the precise component
encountering undefined behavior).
Definition 3.2. A compilation chain provides Robustly Safe Compi-
lation with Dynamic Compromise (RSCDC) iff

∀P CT t .CT [P↓]⇝t ⇒ ∀m≤t . ∃CS t ′.CS [P]⇝t ′∧(m≤t ′∨t ′≺Pm).

Roughly, this definition relaxes RSC by forgoing protection for
the partial program P after it encounters undefined behavior. More
precisely, instead of always requiring that the trace t ′ produced by
CS [P] contain the entire prefixm (i.e.,m≤t ′), we also allow t ′ to be
itself a prefix ofm followed by an undefined behavior in P , which
we write as t ′≺Pm (i.e., t ′≺Pm ≜ ∃m′≤m. t ′=(m′ · Undef(P))). In
particular, the context CS is guaranteed to be free of undefined
behavior before the whole prefixm is produced or P encounters
undefined behavior. However, nothing prevents CS from passing
values to P that try to trick P into causing undefined behavior.

To illustrate, consider the partial program P defined below.
program P {

import E . write ; export foo ;
foo ( x ) {

y : = P . process ( x ) ;
E . write ( y ) ;

}
/ / can e n c o u n t e r Undef f o r some x
process ( x ) { . . . }

}

context CS {
import E . read , P . foo ;
main ( ) {

x : = E . read ( ) ;
P . foo ( x ) ;

}
}

Supposewe compile P with a compilation chain that satisfies RSCDC,
link the result with a target context CT obtaining CT [P↓], execute
this and observe the following finite trace prefix:
m = [E . read ( ) ; Ret ( " feedbeef " ) ; P . foo ( " feedbeef " ) ; E . write ( " bad " ) ]

According to RSCDC there exists a source-level context CS (for
instance the one above) that explains the prefixm in terms of the
source language in one of two ways: either CS [P] can do the entire
m in the source, or CS [P] encounters an undefined behavior in P
after a prefix ofm, for instance the following one:
t ′ = [E . read ( ) ; Ret ( " feedbeef " ) ; P . foo ( " feedbeef " ) ; Undef ( P ) ]

As in CompCert [56, 68], we treat undefined behaviors as ob-
servable events at the end of the execution trace, allowing compiler
optimizations that move an undefined behavior to an earlier point
in the execution, but not past any other observable event. While
some other C compilers would need to be adapted to respect this
discipline [68], limiting the temporal scope of undefined behavior
is a necessary prerequisite for achieving security against dynamic
compromise. Moreover, if trace events are coarse enough (e.g., sys-
tem calls and cross-component calls) we expect this restriction to
have a negligible performance impact in practice.

One of the top-level CompCert theorems does, in fact, already
capture dynamic compromise in a similar way to RSCDC. Using our
notations this CompCert theorem looks as follows:

∀P t . (P↓)⇝t ⇒ ∃t ′. P⇝t ′ ∧ (t ′=t ∨ t ′≺t)

This says that if a compiled whole program P↓ can produce a trace
t with respect to the target semantics, then in the source P can
produce either the same trace or a prefix of t followed by unde-
fined behavior. In particular this theorem does provide guarantees
to undefined programs up to the point at which they encounter
undefined behavior. The key difference compared to our secure
compilation chains is that CompCert does not restrict undefined
behavior spatially: in CompCert undefined behavior breaks all secu-
rity guarantees of the whole program, while in our work we restrict
undefined behavior to the component that causes it. This should
become clearer in the next section, where we explicitly introduce
components, but even in RSCDC we can already imagine P↓ as a set
of uncompromised components for trace prefixm, and CT as a set
of already compromised ones.

A smaller difference with respect to the CompCert theorem
is that (like RSC) RSCDC only looks at finite prefixes in order to
simplify the difficult proof step of context back-translation, which
is not a concern that appears in CompCert and the usual verified
compilers. Appendix A precisely characterizes the subclass of safety
properties that is preserved by RSCDC even in adversarial contexts.

3.3 RSCDC
MD: Mutually Distrustful Components

RSCDC gives a model of dynamic compromise for secure compi-
lation, but is still phrased in terms of protecting a trusted partial
program from an untrusted context. We now adapt this model to
protect any set ofmutually distrustful componentswith clearly spec-
ified privileges from an untrusted context. Following Juglaret et
al.’s work in the full abstraction setting [43], we start by taking both
partial programs and contexts to be sets of components; linking a
program with a context is then just set union. We compile sets of
components by separately compiling each component. Each com-
ponent is assigned a well-defined interface that precisely captures
its privilege; components can only interact as specified by their in-
terfaces. Most importantly, context back-translation respects these
interfaces: each component of the target context is mapped back to a
source component with exactly the same interface. As Juglaret et al.
argue, least-privilege design crucially relies on the fact that, when
a component is compromised, it does not gain any more privileges.
Definition 3.3. A compilation chain provides Robustly Safe Compi-
lation with Dynamic Compromise and Mutual Distrust (RSCDCMD) if
there exists a back-translation function ↑ taking a finite trace prefix
m and a component interface Ii to a source component with the
same interface, such that, for any compatible interfaces IP and IC ,

∀P :IP . ∀CT :IC . ∀t . (CT ∪ P↓)⇝t ⇒ ∀m≤t .
∃t ′. ({(m, Ii )↑ | Ii ∈ IC } ∪ P)⇝t ′ ∧ (m≤t ′ ∨ t ′≺IPm).

This definition closely follows RSCDC, but it restricts programs
and contexts to compatible interfaces IP and IC . We write P : I
to mean “partial program P satisfies interface I .” The source-level
context is obtained by applying the back-translation function ↑
pointwise to all the interfaces in IC . As before, if the prefixm is
cropped prematurely because of an undefined behavior, then this
undefined behavior must be in one of the program components,
not in the back-translated context components (t ′≺IPm).
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3.4 Formalizing RSCC
Using these ideas, we now define RSCC by following the dynamic
compromise game illustrated in Figure 3. We use the notation
P⇝∗m when there exists a trace t that extendsm (i.e.,m ≤ t ) such
that P⇝t . We start with all components being uncompromised and
incrementally replace each component that encounters undefined
behavior in the source with an arbitrary component with the same
interface that may now attack the remaining components.
Definition 3.4. A compilation chain provides Robustly Safe Compart-
mentalizing Compilation (RSCC) iff ∀compatible interfaces I1, ..., In ,

∀C1:I1, ...,Cn :In . ∀m. {C1↓, ...,Cn↓}⇝∗m ⇒
∃Ai1 :Ii1 , ...,Aik :Iik .
(1) ∀j ∈ 1...k . ∃mj . (mj ≺Iij m) ∧ (mj−1 ≺Iij−1 mj ) ∧

({C1, ...,Cn }\{Ci1 , ...,Ci j−1}∪{Ai1 , ...,Ai j−1})⇝
∗mj

∧ (2) ({C1, ...,Cn }\{Ci1 , ...,Cik }∪{Ai1 , ...,Aik })⇝
∗m.

This says that Ci1 , ...,Cik constitutes a compromise sequence
corresponding to finite prefix m produced by a compiled set of
components {C1↓, ...,Cn↓}. In this compromise sequence each com-
ponent Ci j is taken over by the already compromised components
at that point in time {Ai1 , ...,Ai j−1} (part 1). Moreover, after re-
placing all the compromised components {Ci1 , ...,Cik } with their
corresponding source components {Ai1 , ...,Aik } the entirem can
be reproduced in the source language (part 2).

This formal definition allows us to play an iterative game in
which components that encounter undefined behavior successively
become compromised and attack the other components. This is
the first security definition in this space to support both dynamic
compromise andmutual distrust, whose interaction is subtle and has
eluded previous attempts at characterizing the security guarantees
of compartmentalizing compilation as extensions of fully abstract
compilation [43] (further discussed in §5).

3.5 A Generic Proof Technique for RSCC
We now describe an effective and general proof technique for RSCC.
First, we observe that the slightly simpler RSCDC

MD implies RSCC.
Then we provide a generic proof in Coq that any compilation chain
obeys RSCDC

MD if it satisfies certain well-specified assumptions on
the source and target languages and the compilation chain.

Our proof technique yields simpler and more scalable proofs
than previous work in this space [43]. In particular, it allows us to
directly reuse a compiler correctness result à la CompCert, which
supports separate compilation but only guarantees correctness for
whole programs [45]; which avoids proving any other simulations
between the source and target languages. Achieving this introduces
some slight complications in the proof structure, but it nicely sep-
arates the correctness and security proofs and allows us to more
easily tap into the CompCert infrastructure. Finally, since only the
last step of our proof technique is specific to unsafe languages, we
expect it can be further simplified to provide scalable proofs of
vanilla RSC for safe source languages [6, 66].

RSCDCMD implies RSCC The first step in our proof technique
reduces RSCC to RSCDC

MD, using a theorem showing that RSCC can
be obtained by iteratively applying RSCDC

MD. This result crucially

relies on back-translation in RSCDC
MD being performed pointwise

and respecting interfaces, as explained in §3.3.
Theorem 3.5. RSCDC

MD implies RSCC.
We proved this by defining a non-constructive function that

produces the compromise sequence Ai1 , ...,Ai1 by case analysis
on the disjunction in the conclusion of RSCDC

MD (using excluded
middle in classical logic). If m ≤ t ′ we are done and we return
the sequence we accumulated so far, while if t ′≺Pm we obtain a
new compromised component ci : Ii that we back-translate using
(m, Ii ) ↑ and add to the sequence before iterating this process.

Generic RSCDCMD proof outline Our high-level RSCDC
MD proof is

generic and works for any compilation chain that satisfies certain
well-specified assumptions, which we introduce informally for now,
leaving details to the end of this section. The RSCDC

MD proof for the
compiler chain in §4 proves all these assumptions.

The proof outline is shown in Figure 4. We start (in the bottom
left) with a complete target-level program CT ∪ P↓ producing a
trace with a finite prefixm that we assume contains no undefined
behavior (since we expect that the final target of our compilation
will be a machine for which all behavior is defined). The prefixm
is first back-translated to synthesize a complete source program
CS ∪ P

′ producingm (the existence and correctness of this back-
translation are Assumption 1). For example, for the compiler in §4,
each component Ci produced by back-translation uses a private
counter to track howmany events it has produced during execution.
Whenever Ci receives control, following an external call or return,
it checks this counter to decide what event to emit next, based on
the order of its events onm (see §4.3 for details).

The generated source program CS ∪ P
′ is then separately com-

piled to a target program CS↓ ∪ P ′↓ that, by compiler correctness,
produces again the same prefixm (Assumptions 2 and 3). Now from
(CT ∪ P ↓)⇝∗m and (CS ↓ ∪ P ′↓)⇝∗m we would like to obtain
(CS↓ ∪ P↓)⇝∗m by first “decomposing” (Assumption 4) separate
executions for P↓ andCS↓, which we can then “compose” (Assump-
tion 5) again into a complete execution for (CS↓ ∪ P↓). However,
since P↓ and CS are not complete programs, how should they exe-
cute? To answer this we rely on a partial semantics that captures the
traces of a partial program when linked with any context satisfying
a given interface. When the partial program is running, execution
is the same as in the normal operational semantics of the target
language; when control is passed to the context, arbitrary actions
compatible with its interface are non-deterministically executed.
Using this partial semantics we can execute CS↓ with respect to
the interface of P↓, and P↓ with respect to the interface of CS↓, as
needed for the decomposition and composition steps of our proof.

Oncewe know that (CS↓ ∪ P↓)⇝∗m, we use compiler correctness
again—now in the backwards direction (Assumptions 3 and 6)—to
obtain an execution of the source program CS ∪ P producing trace
t . Because our source language is unsafe, however, t need not be an
extension ofm: it can end earlier with an undefined behavior (§3.2).
So the final step in our proof shows that if the source execution
ends earlier with an undefined behavior (t ′≺m), then this undefined
behavior can only be caused by P (i.e., t ′≺Pm), not by CS , which
was correctly generated by our back-translation (Assumption 7).
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(CT ∪ P↓)⇝∗m (CS↓ ∪ P ′↓)⇝∗m

(m, IC ∪ IP )↑
= (CS ∪ P

′)⇝∗m

CS↓⇝∗IPm
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4 Decomposition

1 Back-translation
2 Forward Compiler Correctness
+ 3 Separate Compilation

4 Decomposition

7 Blame

5 Composition

6 Backward Compiler Correctness
+ 3 Separate CompilationPartial Semantics

So
ur
ce

Ta
rg
et

Figure 4: Outline of our generic proof technique for RSCDC
MD

Assumptions of the RSCDCMD proof The generic RSCDC
MD proof

outlined above relies on assumptions about the compartmentalizing
compilation chain. In the reminder of this subsection we give details
about these assumptions, while still trying to stay high level by
omitting some of the low-level details in our Coq formalization.

The first assumption we used in the proof above is that every
trace prefix that a target program can produce can also be produced
by a source program with the same interface. A bit more formally,
we assume the existence of a back-translation function↑ that given
a finite prefixm that can be produced by a whole target program
PT , returns a whole source program with the same interface IP as
PT and which can produce the same prefixm (i.e., (m, IP )↑⇝∗m).
Assumption 1 (Back-translation).

∃ ↑ . ∀P :IP . ∀m defined. P⇝∗m ⇒ (m, IP )↑ : IP ∧ (m, IP )↑⇝∗m

Translating only finite prefixes simplifies our proof technique
but at the same time limits it to only safety properties. While the
other assumptions from this section can probably also be proved
for infinite traces, there is no general way to define a finite program
that produces an arbitrary infinite trace. We leave devising scalable
back-translation proof techniques that go beyond safety properties
to future work.

It is not always possible to take an arbitrary finite sequence of
events and obtain a source program that realizes it. For example, in
a language with a call stack and events {call, return}, there is no
program that produces the single event trace return, since every
return must be preceded by a call. Thus we can only assume we can
back-translate prefixes that are produced by the target semantics.

As further discussed in §5, similar back-translation techniques
that start from finite execution prefixes have been used to prove
fully abstract compilation [41, 64] and very recently RSC [66] and
even stronger variants [6]. Our back-translation, on the other hand,
produces not just a source context, but a whole program. In the
top-left corner of Figure 4, we assume that this resulting program,
(m, IC ∪ IP )↑, can be partitioned into a context CS that satisfies the
interface IC , and a program P ′ that satisfies IP .

Our second assumption is a form of forward compiler correct-
ness for unsafe languages and a direct consequence of a forward
simulation proof in the style of CompCert [56]. It says that if the
whole program P can produce the finite trace prefixm that does
not end with undefined behavior (m defined) then P ’s compilation
P↓ can also producem.

Assumption 2 (Forward Compiler Correctness).

∀P . ∀m defined. P⇝∗m ⇒ P↓⇝∗m

In Figure 4, we apply this assumption to (CS ∪P ′)⇝∗m to obtain
(CS ∪ P

′)↓⇝∗m and then, we distribute compilation over linking
using the following separate compilation assumption:
Assumption 3 (Separate Compilation).

∀P C m. (C ∪ P)↓⇝∗m⇔ (C↓ ∪ P↓)⇝∗m

The next assumption we make is decomposition, stating that if
a program obtained by linking two partial programs PT and CT
produces a finite trace prefixm that does not end in an undefined
behavior in the complete semantics, then each of the two partial
programs (below we take PT , but the CT case is symmetric) can
producem in the partial semantics:
Assumption 4 (Decomposition).

∀PT :IP . ∀CT :IC . ∀m defined. (CT ∪ PT )⇝∗m ⇒ PT⇝
∗
ICm

The converse of decomposition, composition, states that if two
partial programs with matching interfaces produce the same prefix
m with respect to the partial semantics, then they can be linked to
produce the samem in the complete semantics:
Assumption 5 (Composition). For any IP , IC compatible interfaces:

∀PT :IP . ∀CT :IC . ∀m. PT⇝∗ICm ∧CT⇝∗IPm ⇒ (CT ∪ PT )⇝∗m
When taken together, composition and decomposition capture

that the partial semantics of the target language is adequate with
respect to its complete counterpart. This adequacy notion is tailored
to the RSC property and thus different from the requirement that a
so called “trace semantics” is fully abstract [41, 64].

In order to get back to the source language our proof uses again
separate compilation together with a backwards compiler correct-
ness assumption. As also explained in §3.2, we need to take into
account that a trace prefixm of P↓ can be explained in the source ei-
ther by an execution producingm or by one ending in an undefined
behavior (i.e., producing t≺m).
Assumption 6 (Backward Compiler Correctness).

∀P m. P↓⇝m ⇒ ∃t . P⇝t ∧ (m ≤ t ∨ t≺m)

Finally, we assume that the context obtained by back-translation
can’t be blamed for undefined behavior:
Assumption 7 (Blame). ∀CS : IC . ∀P , P ′ : IP . ∀m defined. ∀t .
If (CS ∪ P ′)⇝∗m and (CS ∪ P)⇝t and t ≺m thenm ≤ t ∨ t ≺P m.
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We used Coq to prove the following theorem that puts together
the assumptions from this subsection to show RSCDC

MD:

Theorem 3.6. The assumptions above imply RSCDC
MD.

4 SECURE COMPILATION CHAIN
We designed a simple proof-of-concept compilation chain to illus-
trate the RSCC property. The compilation chain is implemented in
Coq. The source language is a simple, unsafe imperative language
with buffers, procedures, and components (§4.1). It is first compiled
to an intermediate compartmentalized machine featuring a compart-
mentalized, block-structured memory, a protected call stack, and
a RISC-like instruction set augmented with an Alloc instruction
for dynamic storage allocation plus cross-component Call and
Return instructions (§4.2). We can then choose one of two back
ends, which use different techniques to enforce the abstractions
of the compartmentalized machine against realistic machine-code-
level attackers, protecting the integrity of component memories and
enforcing interfaces and cross-component call/return discipline.

When the compartmentalized machine encounters undefined
behavior, both back ends instead produce an extended trace that
respects high-level abstractions; however, they achieve this in very
different ways. The SFI back end (§4.4) targets a bare-metal machine
that has no protection mechanisms and implements an inline ref-
erence monitor purely in software, by instrumenting code to add
address masking operations that force each component’s writes and
(most) jumps to lie within its own memory. The Micro-policies back
end (§4.5), on the other hand, relies on specialized hardware [26]
to support a novel tag-based reference monitor for compartmen-
talization. These approaches have complementary advantages: SFI
requires no specialized hardware, while micro-policies can be en-
gineered to incur little overhead [26] and are a good target for
formal verification [14] due to their simplicity. Together, these two
back ends provide evidence that our RSCC security criterion is com-
patible with any sufficiently strong compartmentalization mech-
anism. It seems likely that other mechanisms such as capability
machines [81] could also be used to implement the compartmental-
ized machine and achieve RSCC.

Both back ends target variants of a simple RISC machine. In
contrast to the abstract, block-based memory model used at higher
levels of the compilation chain, the machine-level memory is a
single infinite array addressed by mathematical integers. (Using
unbounded integers is a simplification that we hope to remove in
the future, e.g. by applying the ideas of Mullen et al. [59].) All com-
partments must share this flat address space, so—without proper
protection—compromised components can access buffers out-of-
bounds and read or overwrite the code and data of other compo-
nents. Moreover, machine-level components can ignore the stack
discipline and jump to arbitrary locations in memory.

We establish high confidence in the security of our compilation
chain with a combination of proof and testing. For the compiler
from the source language to the compartmentalized machine, we
prove RSCC in Coq (§4.3) using the proof technique of §3.5. For the
SFI back end, we use property-based testing with QuickChick [62]
to systematically test RSCDC

MD.

e ::= v values
| local local static buffer
| e1 ⊗ e2 binary operations
| e1; e2 sequence
| if e1 then e2 else e3 conditional
| alloc e memory allocation
| !e dereferencing
| e1 := e2 assignment
| C.P(e) procedure call
| exit terminate

Figure 5: Syntax of source language expressions

4.1 Source Language
The source language from this section was designed with simplicity
in mind. Its goal was to allow us to explore the foundational ideas
of this paper and illustrate them in the simplest possible concrete
setting, keeping our formal proofs tractable. The language is expres-
sion based (see Figure 5). A program is composed of an interface,
a set of procedures, and a set of static buffers. Interfaces contain
the names of the procedures that the component exports to and
imports from other components. Each procedure body is a single
expression whose result value is returned to the caller. Internal and
external calls share the same global, protected call stack. Additional
buffers can be allocated dynamically. As in C, memory is manually
managed; out-of-bounds accesses lead to undefined behavior.

Values include integers, pointers, and an undefined value ⊤,
which is obtained when reading from an uninitialized piece of
memory or as the result of an erroneous pointer operation. As in
CompCert and LLVM [55], our semantics propagates these⊤ values
and yields an undefined behavior if a⊤ value is ever inspected. (The
C standard, by contrast, specifies that a program is undefined as
soon as an uninitialized read or bad pointer operation takes place.)

Memory Model The memory model for both source and com-
partmentalized machine is a slightly simplified version of the one
used in CompCert [57]. Each component has an infinite memory
composed of finite blocks, each an array of values. Accordingly, a
pointer is a triple (C,b,o), where C is the identifier of the compo-
nent that owns the block, b is a unique block identifier, and o is an
offset inside the block. Arithmetic operations on pointers are lim-
ited to testing equality, testing ordering (of pointers into the same
block), and changing offsets. Pointers cannot be cast to or from
integers. Dereferencing an integer yields undefined behavior. For
now, components are not allowed to exchange pointers; as a result,
well-defined components cannot access each others’ memories at
all. We hope to lift this restriction in the near future. This abstract
memory model is shared by the compartmentalized machine and is
mapped to a more realistic flat address space by the back ends.

Events Following CompCert, we use a labeled operational se-
mantics whose events include all interactions of the program with
the external world (e.g., system calls), plus events tracking control
transfers from one component to another. Every call to an exported
procedure produces a visible event C Call P(n) C ' , recording that
component C called procedure P of component C ' , passing argument
n. Cross-component returns are handled similarly. All other com-
putations, including calls and returns within the same component,
result in silent steps in the operational semantics.
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instr ::= Nop | Halt | Jal l
| Const i -> r | Jump r
| Mov rs -> rd | Call C P
| BinOp r1⊗r2 -> rd | Return
| Load *rp -> rd | Bnz r l
| Store *rp <- rs | Alloc r1 r2

Figure 6: Instructions of compartmentalized machine

fetch[pc] = Call C ′ P C , C ′

P ∈ C .import pc′ = E[C ′][P]
reg′ = reg⊤[R_ COM← reg[R_ COM], R_ RA← pc + 1]
α = C Call(P , reg[R_ COM]) C ′

(C,σ ,mem, reg, pc)
α
−→ (C ′, (pc + 1) :: σ ,mem, reg′, pc′)

fetch(pc) = Return C , C ′

reg[R_ RA] = pc′

reg′ = reg⊤[R_ COM← reg[R_ COM]]
α = C Return(reg[R_ COM]) C ′

(C, pc′ :: σ ,mem, reg, pc)
α
−→ (C ′,σ ,mem, reg′, pc′)

Figure 7: Compartmentalized machine semantics

4.2 The Compartmentalized Machine
The compartmentalized intermediate machine aims to be as low-
level as possible while still allowing us to target our two rather
different back ends. It features a simple RISC-like instruction set
(Figure 6) with two main abstractions: a block-based memory model
and support for cross-component calls. The memory model leaves
the back ends complete freedom in their layout of blocks. The
machine has a small fixed number of registers, which are the only
shared state between components. In the syntax, l represent labels,
which are resolved to pointers in the next compilation phase.

The machine uses two kinds of call stacks: a single protected
global stack for cross-component calls plus a separate unprotected
one for the internal calls of each component. Besides the usual Jal
and Jump instructions, which are used to compile internal calls and
returns, two special instructions, Call and Return, are used for
cross-component calls. These are the only instructions that can
manipulate the global call stack.

The operational semantics rules for Call and Return are pre-
sented in Figure 7. A state is composed of the current executing
componentC , the protected stack σ , the memorymem, the registers
reg and the program counter pc. If the instruction fetched from the
program counter is a Call to procedure P of component C ′, the
semantics produces an event α recording the caller, the callee, the
procedure and its argument, which is stored in register R_ COM. The
protected stack σ is updated with a new frame containing the next
point in the code of the current component. Registers are mostly
invalidated at Calls; reg⊤ has all registers set to ⊤ and only two
registers are passed on: R_ COM contains the procedure’s argument
and R_ RA contains the return address. So no data accidentally left
by the caller in the other registers can be relied upon; instead the
compiler saves and restores the registers. Finally, there is a redun-
dancy between the protected stack and R_ RA because during the
Return the protected frame is used to verify that the register is
used correctly; otherwise the program has an undefined behavior.

4.3 RSCC Proof in Coq
We have proved that a compilation chain targeting the compart-
mentalized machine satisfies RSCC, applying the technique from
§3.5. As explained in §2, the responsibility for enforcing secure com-
pilation can be divided among the different parts of the compilation
chain. In this case, it is the target machine of §4.2 that enforces
compartmentalization, while the compiler itself is simple, standard,
and not particularly interesting (so omitted here).

For showing RSCDC
MD, all the assumptions from §3.5 are proved

using simulations. Most of this proof is formalized in Coq: the only
non-trivial missing pieces are compiler correctness (Assumptions 2
and 6) and composition (Assumption 5). The first is standard and
essentially orthogonal to secure compilation; eventually, we hope
to scale the source language up to a compartmentalized variant of C
and reuse CompCert’s mechanized correctness proof. Amechanized
proof of composition is underway. Despite these missing pieces,
our formalization is more detailed than previous paper proofs in
the area [3, 5, 9–11, 29, 40, 41, 43, 61, 63–65]. Indeed, we are aware
of only one fully mechanized proof about secure compilation: De-
vriese et al.’s [24] recent full abstraction result for a translation
from the simply typed to the untyped λ-calculus in around 11KLOC
of Coq.

Our Coq development comprises around 22KLOC, with proofs
taking about 60%. Much of the code is devoted to generic models
for components, traces, memory, and undefined behavior that we
expect to be useful in proofs for more complex languages and com-
pilers, such as CompCert. We discuss some of the most interesting
aspects of the proof below.

Back-translation function. We proved Assumption 1 by defining
a↑ function that takes a finite trace prefixm and a program interface
I and returns a whole source program that respects I and produces
m. Each generated component uses the local variable local[0]
to track how many events it has emitted. When a procedure is in-
voked, it increments local[0] and produces the event inm whose
position is given by the counter’s value. For this back-translation to
work correctly,m is restricted to look like a trace emitted by a real
compiled program with an I interface—in particular, every return
in the trace must match a previous call.

This back-translation is illustrated in Figure 8 on a trace of four
events. The generated program starts running MainC.mainP, with
all counters set to 0, so after testing the value of MainC.local[0],
the program runs the first branch of mainP:
local [ 0 ] + + ; C . p ( 0 ) ; MainC . mainP ( 0 ) ;

After bumping local[0], mainP emits its first event in the trace:
the call C.p(0). When that procedure starts running, C’s counter
is still set to 0, so it executes the first branch of procedure p:
local [ 0 ] + + ; return 1 ;

The return is C’s first event in the trace, and the second of the
program. When mainP regains control, it calls itself recursively
to emit the other events in the trace (we can use tail recursion to
iterate in the standard way, since internal calls are silent events).
The program continues executing in this fashion until it has emitted
all events in the trace, at which point it terminates execution.
Theorem 4.1 (Back-translation). The back-translation function ↑
illustrated above satisfies Assumption 1.
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ECall MainC p 0 C
ERet C 1 MainC
ECall MainC p 2 C
ECall C mainP 3 MainC

(a) Trace of 4 events

MainC {
mainP ( _ ) {

if ( local [ 0 ] == 0 ) {
local [ 0 ] + + ;
C . p ( 0 ) ;
MainC . mainP ( 0 ) ;

} else if ( local [ 0 ] == 1 ) {
local [ 0 ] + + ;
C . p ( 2 ) ;
MainC . mainP ( 0 ) ;

} else {
exit ( ) ;

}
}

} (b) Component MainC

C {
p ( _ ) {

if ( local [ 0 ] == 0 ) {
local [ 0 ] + + ;
return 1 ;

} else if ( local [ 0 ] == 1 ) {
local [ 0 ] + + ;
MainC . mainP ( 3 ) ;
C . p ( 0 ) ;

} else {
exit ( ) ;

}
}

}
(c) Component C

Figure 8: Example of program with two components back-translated from a trace of 5 events.

Partial semantics. Our partial semantics has a simple generic
definition based on the small-step operational semantics of a whole
target program, which we denote as

α
−→. In this semantics, each step

is labeled with an action α that is either an event or a silent action
τ . The definition of the partial semantics

α
−⇀ uses a partialization

function par that, given a complete state cs and the interface IC of
a program part C , returns a partial state ps where all information
about C (such as its memory and stack frames) is erased.

par(cs, IC ) = ps par(cs ′, IC ) = ps ′ cs
α
−→ cs ′

ps
α
−⇀ ps ′

The partial semantics can stepwith actionα from the partial state
ps to ps ′, if there exists a corresponding transition in the complete
semantics whose states partialize to ps and ps ′. We denote with
P⇝∗ICm that the partial program P produces the trace prefixm in
the partial semantics after a finite execution prefix, with respect to
the context interface IC .

A consequence of abstracting away part of the program as non-
deterministic actions allowed by its interface is that the abstracted
part will always have actions it can do and it will never be stuck,
whereas stuckness is the standard way of modeling undefined be-
havior [56]. Given P⇝∗ICm, ifm ends with an undefined behavior,
then this was necessarily caused by P , which is still a concrete
partial program running actual code, potentially unsafe.

Our partial semantics was partially inspired by so-called “trace
semantics” [41, 43, 64], where a partial program of interest is de-
coupled from its context, of which only the observable behavior is
relevant. One important difference is that our definition of partial
semantics in terms of a partialization function is generic and can be
easily instantiated for different languages. On the contrary previous
works defined “trace semantics” as separate relations with many
rules, making the proofs to correlate partial and complete semantics
more involved. Moreover, by focusing on trace properties (instead
of observational equivalence) composition and decomposition can
be proved using standard simulations à la CompCert, which is easier
than previous proof techniques for fully abstract “trace semantics.”
Theorem 4.2 (Partial Semantics). The source language and compart-
mentalized machine partial semantics defined as described above
provide decomposition and composition (Assumptions 4 and 5).

Blame. We prove Assumption 7 by noting that the behavior of
the context CS can only depend on its own state and on the events
emitted by the program. A bit more formally, suppose that the
states cs1 and cs2 have the same context state, which, borrowing
the partialization notation from above, we write as par(cs1, IP ) =
par(cs2, IP ). Then:

• If cs1
α1
−−→ cs ′1, cs2

α2
−−→ cs ′2, and CS has control in cs1 and cs2,

then α1 = α2 and par(cs ′1, IP ) = par(cs ′2, IP ).
• If cs1

τ
−→ cs ′1 and the program has control in cs1 and cs2, then

par(cs ′1, IP ) = par(cs2, IP ).
• If cs1

α
−→ cs ′1, the program has control in cs1 and cs2, and α ,

τ , then there exists cs ′2 such that cs2
α
−→ cs ′2 and par(cs

′
1, IP ) =

par(cs ′2, IP ).
By repeatedly applying these properties, we can analyze the behav-
ior of two parallel executions (CS ∪P ′)⇝∗m and (CS ∪P)⇝ t , with
t ≺m. By unfolding the definition of t ≺m we get that ∃m′≤m. t =
m′ · Undef (_ ). It suffices to show thatm≤t ∨ t=m′ · Undef(P). If
m = t =m′ · Undef (_ ), we havem≤t , and we are done. Otherwise,
the execution of CS ∪ P ended earlier because of undefined behav-
ior. After producing prefixm′, CS ∪ P ′ and CS ∪ P will end up in
matching states cs1 and cs2. Aiming for a contradiction, suppose
that undefined behavior was caused by CS . By the last property
above, we could find a matching execution step for CS ∪ P that
produces the first event inm that is outside ofm′; therefore,CS ∪P
cannot be stuck at cs2. Hence t ≺P m.
Theorem 4.3 (Blame). Assumption 7 is satisfied.
Theorem 4.4 (RSCC). The compilation chain described so far in this
section satisfies RSCC.

4.4 Software Fault Isolation Back End
The SFI back end uses a special memory layout and code instrumen-
tation sequences to realize the desired isolation of components in
the produced program. The target of the SFI back end is a bare-metal
RISC processor with the same instructions as the compartmental-
ization machine minus Call, Return, and Alloc. The register file
contains all the registers from the previous level, plus seven addi-
tional registers reserved for the SFI instrumentation.

The SFI back end maintains the following invariants: (1) a compo-
nent may not write outside its own data memory; (2) a component
may transfer control outside its own code memory only to entry
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points allowed by the interfaces or to the return address on top of
the global stack; and (3) the global stack remains well formed.

Figure 9 shows the memory layout of an application with three
components. The entire address space is divided in contiguous
regions of equal size, which we will call slots. Each slot is assigned
to a component or reserved for the use of the protection machinery.
Data and code are kept in disjoint memory regions and memory
writes are permitted only in data regions.

An example of a logical split of a physical address is shown in
Figure 10. A logical address is a triple: offset in a slot, component
identifier, and slot identifier unique per component. The slot size,
as well as the maximum number of the components are constant
for an application, and in Figures 9 and 10 we have 3 components
and slots of size 212 bits.

The SFI back end protects memory regions with instrumentation
in the style of Wahbe et al. [79], but adapted to our component
model. Eachmemory update is preceded by two instructions that set
the component identifier to the current one, to prevent accidental
or malicious writes in a different component. The instrumentation
of the Jump instruction is similar. The last four bits of the offset
are always zeroed and all valid targets are sixteen-word-aligned by
our back end [58]. This mechanism, along with careful layout of in-
structions, ensure that the execution of instrumentation sequences
always starts from the first instruction and continues until the end.

The global stack is implemented as a shadow stack [73] in mem-
ory accessible only from the SFI instrumentation sequences. Align-
ment of code [58] prevents corruption of the cross-component stack
with prepared addresses and ROP attacks, since it is impossible to
bypass the instructions in the instrumentation sequence that store
the correct address in the appropriate register.

The Call instruction of the compartmentalized machine is trans-
lated to a Jal (jump and link) followed by a sequence of instructions
that push the return address on the stack and then restore the val-
ues of the reserved registers for the callee component. To protect
from malicious pushes that could try to use a forged address, this
sequence starts with a Halt at an aligned address. Any indirect
jump from the current component, will be aligned and will execute
the Halt, instead of corrupting the cross-component stack. A call
from a different component, will execute a direct jump, which is
not subject to masking operations and can thus target an unaligned
address (we check statically that it is a valid entry point). This Halt
and the instructions that push on the stack are contained in the
sixteen-unit block.

The Return instruction is translated to an aligned sequence: pop
from the protected stack and jump to the retrieved address. This
sequence also fits entirely in a sixteen-unit block. The protection of
the addresses on the stack itself is realized by the instrumentation
of all the Store and Jump instructions in the program.

We used the QuickChick property-based testing tool [62] for Coq
to test the three compartmentalization invariants described at the
beginning of the subsection. For each invariant, we implemented a
test that executes the following steps: (i) randomly generates a valid
compartmentalized machine program; (ii) compiles it; (iii) executes
the resulting target code in a simulator and records a property-
specific trace; and (iv) analyzes the trace to verify if the property
has been violated. We also manually injected faults in the compiler

Reserved
(Code)

Component Code Protected
Stack

Component Data
1 2 3 1 2 3

Init 
Code Slot 0 Slot 0 Slot 0 Slot 1 Slot 1 Slot 1 Slot 1

Unused Slot 2 Slot 2 Slot 2 Slot 3 Slot 3 Slot 3 Slot 3
Unused Slot 4 Slot 4 Slot 4 Slot 5 Slot 5 Slot 5 Slot 5

... ... ... ... ... ... ... ...

Figure 9: Memory layout of three user components

Slot (Unbounded) Component Identifier (2 bits) Offset (12 bits)

Figure 10: Address Example

by mutating the instrumentation sequences of the generated output
and made sure that the tests can detect these injected errors.

More importantly, we also tested two variants of the RSCDC
MD

property, which consider different parts of a whole program as
the adversarial context. Due to the strict memory layout and the
requirement that all components are instrumented, the SFI back end
cannot to link with arbitrary target code, and has instead to compile
a whole compartmentalized machine program. In a first test, we (1)
generate a whole compartmentalized machine program P ; (2) com-
pile P ; (3) run a target interpreter to obtain trace tt ; (4) if the trace is
empty, discard the test; (5) for each componentCT in the trace tt (5-
1) use back-translation to replace, in the program P , the component
CT with a component CS without undefined behavior (5-2) run the
new program on the compartmentalized machine and obtain a trace
ts (5-3) if the condition tt ≤ ts or ts≺P\∪CS tt is satisfied then the
test passes, otherwise it fails. Instead of performing step (5), our
second test replaces in one go all the components exhibiting unde-
fined behavior, obtaining a compartmentalized machine program
that should not have any undefined behavior.

4.5 Tag-based Reference Monitor
Our second back end is a novel application of a programmable
tagged architecture that allows reference monitors, called micro-
policies, to be defined in software but accelerated by hardware for
performance [14, 26]. On a micro-policy machine, each word in
memory or registers carries a metadata tag large enough to hold a
pointer to an arbitrary data structure in memory. As each instruc-
tion is dispatched by the processor, the opcode of the instruction
as well as the tags on the instruction, its argument registers or
memory cells, and the program counter are all passed to a software
monitor that decides whether to allow the instruction and, if so,
produces tags for the results. The positive decisions of this monitor
are cached in hardware, so that, if another instruction is executed
in the near future with similarly tagged arguments, the hardware
can allow the request immediately, bypassing the software monitor.

This enforcement mechanism has been shown flexible enough to
implement a broad range of tag-based reference monitors, and for
many of them it has a relativelymodest impact on runtime (typically
under 10%) and power ceiling (less than 10%), in return for some
increase in energy (typically under 60%) and chip area (110%) [26].
Moreover, the mechanism is simple enough so that the security
of the reference monitors can be verified formally [12–15]. The
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micro-policy machine targeted by our compartmentalizing back
end builds on a “symbolic machine” that Azevedo de Amorim et al.
used to prove the correctness and security of several micro-policies
in Coq [12, 14, 15].

The code generation and static linking parts of the micro-policy
back end are much simpler than for the SFI one. The Call and
Return instructions are mapped to Jal and Jump. The Alloc in-
struction is mapped to a monitor service that tags the allocated
memory according to the calling component.

A more interesting aspect of this back end is the way memory
must be tagged by the (static) loader based on metadata from pre-
vious compilation stages. Memory tags are records of the form
{vtag = tv , color = c, entry = cs}. The vtag field stores the tag of
the payload value. The color field stores a component identifier c ,
which we call a color, of the component that owns the memory
location. Our monitor forbids any attempt to write to memory if
the color of the current instruction is different from the color of
the target location. The entry field stores a (by default empty) set
of colors identifying all the components that are allowed to call to
this location. The value tags used by our monitor distinguish return
addresses from all other words in the system: tv ::= Ret(n) | Any.
To enforce the stack discipline return addresses are treated as linear
return capabilities, i.e., unique capabilities that cannot be duplicated
and that can only be used to return once [48]. This is achieved by
giving return addresses tags of the form Ret(n), where the natural
number n represents the stack level to which this capability can
return. We keep track of the current stack level using the label of
the program counter: tpc ::= Level(n). Calls increment the counter
n, while returns decrement it. A global invariant of the system is
that when the stack is at Level(n) there is at most one capability
Ret(m) for any levelm from 0 up to n−1.

Our tag-based reference monitor for compartmentalization is
simple. For Mov, Store, and Load the monitor copies the tags to-
gether with the values, but for return addresses the linear capability
tag Ret(n) is moved from the source to the destination. Store oper-
ations are only allowed if the color of the changed location matches
the one of the currently executing instruction. Bnz is restricted
to the current component. Jal is only allowed if the color of the
current component is included in the allowed entry points; in this
case and if we are at some Level(n) the machine puts the return
address in register RA and the monitor gives it tag Ret(n) and it
increments the pc tag to Level(n+1). Jump is allowed either to the
current component or using a Ret(n) capability, but only if we are at
Level(n+1); in this case the pc tag is decremented to Level(n) and the
Ret(n) capability is destroyed. Instruction fetches are also checked
to ensure that one cannot switch components by continuing to
execute past the end of a code region.

Azevedo de Amorim et al. [14] also devised a micro-policy for
compartmentalization, based on a rather different componentmodel.
The biggest distinction is that our micro-policy enforces the stack
discipline on cross-component calls and returns.

5 RELATEDWORK

Fully Abstract Compilation, originally introduced in seminal work
by Abadi [1], is phrased in terms of protecting two partial program

variants written in a safe source language, when these are com-
piled and linked with a malicious target-level context that tries to
distinguish the two variants. This original attacker model differs
substantially from the one we consider in this paper, which protects
the trace properties of multiple mutually-distrustful components
written in an unsafe source language.

In this line of research, Abadi [1] and later Kennedy [46] identi-
fied failures of full abstraction in the Java and C# compilers. Abadi et
al. [3] proved full abstraction of secure channel implementations
using cryptography. Ahmed et al. [9–11, 61] proved the full abstrac-
tion of type-preserving compiler passes for functional languages.
Abadi and Plotkin [5] and Jagadeesan et al. [40] expressed the
protection provided by address space layout randomization as a
probabilistic variant of full abstraction. Fournet et al. [29] devised
a fully abstract compiler from a subset of ML to JavaScript. More
recently, Patrignani et al. [63] studied fully abstract compilation
to machine code, starting from single modules written in simple,
idealized object-oriented and functional languages and targeting a
hardware enclave mechanism similar to Intel SGX [38].
Modular, Fully Abstract Compilation. Patrignani et al. [65] sub-
sequently proposed a “modular” extension of their compilation
scheme to protecting multiple components from each other. The
attacker model they consider is again different from ours: they fo-
cus on separate compilation of safe languages and aim to protect
linked target-level components that are observationally equiva-
lent to compiled components. This could be useful, for example,
when hand-optimizing assembly produced by a secure compiler. In
another thread of work, Devriese et al. [24] proved modular full
abstraction by approximate back-translation for a compiler from
simply typed to untyped λ-calculus. This work also introduces a
complete Coq formalization for the original (non-modular) full
abstraction proof of Devriese et al. [22].
BeyondGood and Evil. The closest relatedwork is that of Juglaret et
al. [43], who also aim at protecting mutually distrustful components
written in an unsafe language. They adapt fully abstract compilation
to components, but observe that defining observational equivalence
for programs with undefined behavior is highly problematic. For
instance, is the partial program “int buf[5]; return buf[42]”
equivalent to “int buf[5]; return buf[43]”? Both encounter
undefined behavior by accessing a buffer out of bounds, so at the
source level they cannot be distinguished. However, in an unsafe
language, the compiled versions of these programs will likely read
(out of bounds) different values and behave differently. Juglaret et
al. avoid this problem by imposing a strong limitation: a set of com-
ponents is protected only if it cannot encounter undefined behavior
in any context. This amounts to a static model of compromise: all
components that can possibly be compromised during execution
have to be treated as compromised from the start. Our aim here is to
show that, by moving away from full abstraction and by restricting
the temporal scope of undefined behavior, we can support a more
realistic dynamic compromise model. As discussed below, mov-
ing away from full abstraction also makes our secure compilation
criterion easier to achieve in practice and to prove at scale.
Robustly Safe Compilation. Our criterion builds on Robustly Safe
Compilation (RSC), recently proposed by Abate et al. [6], who study
several secure compilation criteria that are similar to fully abstract
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compilation, but that are phrased in terms of preserving hyper-
properties [21] (rather than observational equivalence) against an
adversarial context. In particular, RSC is equivalent to preserva-
tion of robust safety, which has been previously employed for the
model checking of open systems [51], the analysis of security pro-
tocols [31], and compositional verification [72].

Though RSC is a bit less extensional than fully abstract compi-
lation (since it is stated in terms of execution traces), it is easier
to achieve. In particular, because it focuses on safety instead of
confidentiality, the code and data of the protected program do not
have to be hidden, allowing for more efficient enforcement, e.g.,
there is no need for fixed padding to hide component sizes, no clean-
ing of registers when passing control to the context (unless they
store capabilities), and no indirection via integer handlers to hide
pointers; cross-component reads can be allowed and can be used
for passing large data. We believe that in the future we can obtain
a more practical notion of data (but not code) confidentiality by
adopting Garg et al.’s robust hypersafety preservation criterion [6].

While RSC serves as a solid base for our work, the challenges
of protecting unsafe components from each other are unique to
our setting, since, like full abstraction, RSC is about protecting
a partial program written in a safe source language against low-
level contexts. Our contribution is extending RSC to reason about
the dynamic compromise of components with undefined behavior,
taking advantage of the execution traces to detect the compromise
of components and to rewind the execution along the same trace.

Proof Techniques. Abate et al. [6] observe that, to prove RSC, it
suffices to back-translate finite execution prefixes, and recently they
propose such a proof for a stronger criterion where multiple such
executions are involved. In recent concurrent work, Patrignani and
Garg [66] also construct such a proof for RSC. The main advantages
of our RSCDC

MD proof are that (1) it applies to unsafe languages with
undefined behavior and (2) it directly reuses a compiler correctness
result à la CompCert. For safe source languages or when proof
reuse is not needed our proof could be further simplified.

Even as it stands though, our proof technique is simple and
scalable compared to previous full abstraction proofs. While many
proof techniques have been previously investigated [3, 5, 10, 11, 24,
29, 40, 61], fully abstract compilation proofs are notoriously difficult,
even for very simple languages, with apparently simple conjectures
surviving for decades before being finally settled [23]. The proofs of
Juglaret et al. [43] are no exception: while their compiler is similar
to the one in §4, their full abstraction-based proof is significantly
more complex than our RSCDC

MD proof. Both proofs give semantics to
partial programs in terms of traces, as was proposed by Jeffrey and
Rathke [41] and adapted to low-level target languages by Patrignani
and Clarke [64]. However, in our setting the partial semantics is
given a one line generic definition and is related to the complete one
by two simulation proofs, which is simpler than proving a “trace
semantics” fully abstract.

Verifying Low-Level Compartmentalization. Recent successes in
formal verification have focused on showing correctness of low-
level compartmentalization mechanisms based on software fault
isolation [58, 85] or tagged hardware [14]. That work only consid-
ers the correctness of low-level mechanisms in isolation, not how a

secure compilation chain makes use of these mechanisms to pro-
vide security reasoning principles for code written in a higher-level
programming language with components. However, more work
in this direction seems underway, with Wilke et al. [82] working
on a variant of CompCert with SFI, based on previous work by
Kroll et al. [50]; we believe RSCC or RSCDC could provide good
top-level theorems for such an SFI compiler. In most work on ver-
ified compartmentalization [14, 58, 85], communication between
low-level compartments is done by jumping to a specified set of
entry points; the model considered here is more structured and
enforces the correct return discipline. Skorstengaard et al. have
also recently investigated a secure stack-based calling convention
for a simple capability machine [71]; they plan to simplify their
calling convention using a notion of linear return capability [70]
that seems similar to the one used in our micro-policy from §4.5.
Attacker Models for Dynamic Compromise. While our model of
dynamic compromise is specific to secure compilation of unsafe lan-
guages, related notions of compromise have been studied in the set-
ting of cryptographic protocols, where, for instance, a participant’s
secret keys could inadvertently be leaked to a malicious adversary,
who could then use them to impersonate the victim [16, 17, 28, 32].
This model is also similar to Byzantine behavior in distributed sys-
tems [19, 53], in which the “Byzantine failure” of a node can cause
it to start behaving in an arbitrary way, including generating arbi-
trary data, sending conflicting information to different parts of the
system, and pretending to be a correct node.

6 CONCLUSION AND FUTUREWORK
We introduced RSCC, a new formal criterion for secure compilation
providing strong security guarantees despite the dynamic compro-
mise of components with undefined behavior. This criterion gives
a precise meaning to informal terms like dynamic compromise and
mutual distrust used by proponents of compartmentalization, and
it offers a solid foundation for reasoning about security of practical
compartmentalized applications and secure compiler chains.
Formally Secure Compartmentalization for C. Looking ahead, we
hope to apply RSCC to the C language by developing a provably
secure compartmentalizing compiler chain based on the CompCert
compiler. Scaling up to the whole of C will certainly entail further
challenges such as defining a variant of C with components and
efficiently enforcing compartmentalization all the way down. We
believe these can be overcome by building on the solid basis built
by this paper: the RSCC formal security criterion, the scalable proof
technique, and the proof-of-concept secure compilation chain.

A very interesting extension is sharing memory between com-
ponents. Since we already allow arbitrary reads at the lowest level,
it seems appealing to also allow external reads from some of the
components’ memory in the source. The simplest would be to allow
certain static buffers to be shared with all other components, or
only with some if we also extend the interfaces. For this extension
the back-translation would need to set the shared static buffers to
the right values every time a back-translated component gives up
control; for this back-translation needs to look at the read events
forward in the back-translated trace prefix. More ambitious would
be to allow pointers to dynamically allocated memory to be passed
to other components, as a form of read capabilities. This would
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make pointers appear in the traces and one would need to accom-
modate the fact that these pointers will vary at the different levels
in our compilation chain. Moreover, each component produced by
the back-translation would need to record all the read capabilities it
receives for later use. Finally, to safety allow write capabilities one
could combine compartmentalization with memory safety [14, 15].
Verifying Compartmentalized Applications. It would also be in-
teresting to build verification tools based on the source reasoning
principles provided by RSCC and to use these tools to analyze
the security of practical compartmentalized applications. Effective
verification on top of RSCC will, however, require good ways for
reasoning about the exponential number of dynamic compromise
scenarios. One idea is to do our source reasoning with respect to
a variant of our partial semantics, which would use nondetermin-
ism to capture the compromise of components and their possible
successive actions. Correctly designing such a partial semantics
for a complex language is, however, challenging. Fortunately, our
RSCC criterion provides a more basic, low-TCB definition against
which to validate any fancier reasoning tools, like partial semantics,
program logics [42], logical relations [25], etc.
Dynamic Component Creation. Another interesting extension is
supporting dynamic component creation. This would make crucial
use of our dynamic compromise model, since components would
no longer be statically known, and thus static compromise would
not apply, unless one severely restricts component creation to only
a special initialization phase [60]. We hope that our RSCC defini-
tion can be adapted to rewind execution to the point at which the
compromised component was created, replace the component’s
code with the result of our back-translation, and then re-execute.
This extension could allow us to also explore moving from our
current “code-based” compartmentalization model to a “data-based”
one [33], e.g., one compartment per incoming network connection.
Dynamic Privilege Notions. Our proof-of-concept compilation
chain used a very simple notion of interface to statically restrict the
privileges of components. This could, however, be extended with
dynamic notions of privilege such as capabilities and history-based
access control [2]. In one of its simplest form, allowing pointers
to be passed between components and then used to write data, as
discussed above, would already constitute a dynamic notion of priv-
ilege, that is not captured by the static interfaces, but nevertheless
needs to be enforced to achieve RSCC, in this case probably using
some form of memory safety.
Preserving Confidentiality and Hypersafety. It would be interesting
to extend our security criterion and enforcement mechanisms from
robustly preserving safety to confidentiality and hypersafety [6, 21].
For this one needs to control the flow of information at the target
level—e.g., by restricting direct reads and read capabilities, cleaning
registers, etc. This becomes very challenging though, in a realistic
attacker model in which low-level contexts can observe time.
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A CLASS OF SAFETY PROPERTIES
PRESERVED BY RSCDC

Since RSC corresponds exactly to preserving robust safety prop-
erties [6], one might wonder what properties RSCDC preserves. In
fact, RSCDC corresponds exactly to preserving the following class
ZP against an adversarial context:
Definition A.1. ZP ≜ Safety ∩ Closed≺P , where

Safety ≜ {π | ∀t<π . ∃m≤t . ∀t ′≥m. t ′<π }
Closed≺P ≜ {π | ∀t∈π . ∀t ′. t≺P t ′ ⇒ t ′∈π }

= {π | ∀t ′<π . ∀t . t≺P t ′ ⇒ t<π }

The class of properties ZP is defined as the intersection of Safety
and the classClosed≺P of properties closed under extension of traces
with undefined behavior in P [56]. If a property π is in Closed≺P
and it allows a trace t that ends with an undefined behavior in P—
i.e., ∃m. t =m · Undef(P)—then π should also allow any extension
of the tracem—i.e., any trace t ′ that hasm as a prefix. The intuition
is simple: the compilation chain is free to implement a trace with
undefined behavior in P as an arbitrary trace extension, so if the
property accepts traces with undefined behavior it should also
accept their extensions. Conversely, if a property π in Closed≺P
rejects a trace t ′, then for any prefixm of t ′ the property π should
also reject the tracem · Undef(P).

For a negative example that is not in Closed≺P , consider the
following formalization of the property S1 from §2, requiring all
writes in the trace to be preceded by a corresponding read:

S1={t | ∀m d x.m · E .write(<d,x>) ≤ t
⇒ ∃m′.m′ · E .read · Ret(x) ≤ m}

While property S1 is Safety it is not Closed≺P . Consider the trace
t ′ = [C0.main(); E .write(<d,x>)] < S1 that does a write without
a read and thus violates S1. For S1 to be Closed≺P it would have
to reject not only t ′, but also [C0.main(); Undef(P )] and Undef(P ),
which it does not. One can, however, define a stronger variant of
S1 that is in ZP :

S
Z+P
1 ={t |∀m d x.(m · E .write(<d,x>)≤t ∨m · Undef(P )≤t)

⇒ ∃m′.m′ · E .read · Ret(x) ≤ m}
The property SZ

+
P

1 requires any write or undefined behavior in P to
be preceded by a corresponding read. While this property is quite
restrictive, it does hold (vacuously) for the strengthened system in
Figure 2 when taking P = {C0} andC = {C1,C2}, since we assumed
that C0 has no undefined behavior.

Using ZP , we proved an equivalent RSCDC characterization:
Theorem A.2.

RSCDC ⇐⇒
( ∀P π∈ZP . (∀CS t . CS [P]⇝t ⇒ t∈π )

⇒ (∀CT t . CT [P↓]⇝t ⇒ t∈π )

)
This theorem shows that RSCDC is equivalent to the preservation

of all properties in ZP for all P . One might still wonder how one
obtains such robust safety properties in the source language, given
that the execution traces can be influenced not only by the partial
program but also by the adversarial context. In cases in which the
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trace records enough information so that one can determine the
originator of each event, robust safety properties can explicitly talk
only about the events of the program, not the ones of the context.
Moreover, once we add interfaces in RSCDC

MD (§3.3) we are able
to effectively restrict the context from directly performing certain
events (e.g., certain system calls), and the robust safety property can
then be about these privileged events that the sandboxed context
cannot directly perform.

One might also wonder what stronger property does one have
to prove in the source in order to obtain a certain safety property π
in the target using an RSCDC compiler in the case in which π is not
itself in ZP . Especially when all undefined behavior is already gone
in the target language, it seems natural to look at safety properties
such as S1<ZP above that do not talk at all about undefined behavior.
For S1 above, we manually defined the stronger property SZ

+
P

1 ∈ZP
that is preserved by an RSCDC compiler. In fact, given any safety
property π we can easily define πZ

+
P that is in ZP , is stronger than

π , and is otherwise as permissive as possible:

πZ
+
P ≜ π ∩ {t | ∀t ′. t≺P t ′ ⇒ t ′∈π }

We can also easily answer the dual question asking what is left of
an arbitrary safety property established in the source when looking
at the target of an RSCDC compiler:

πZ
−
P ≜ π ∪ {t ′ | ∃t∈π . t≺P t ′ ∨ t ′ ≤ t}
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