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1 Introduction

Declarative languages[7] provide powerful techniques that allow programmers
to work at a higher-level of abstraction. This leads to a focus on algorithms
and design rather than on low-level details by pushing the details into the
compiler. The claim is that this abstraction leads to more elegant solutions
developed in a shorter amount of time than solutions in imperative languages.
A recent development in declarative programming has been the emergence of
functional logic languages[7], which hope to increase the level of abstraction
by merging the power of the two most popular declarative paradigms.

Hanus et al.[9] have been relatively successful in developing a compiler,
called PAKCS, for the functional-logic language Curry[8]; unfortunately, the
depth-first evaluation strategy of their Prolog[4]-based back-end leads to op-
erational incompleteness. Current efforts are therefore focused on a virtual
machine (hereafter VM) that uses both[7] narrowing and residuation to con-
duct functional-logic computations and provides operational completeness[1]
by exploiting concurrent programming techniques.

In this paper, we present a technique for improving the efficiency of
non-deterministic and narrowing[2] computations within the current VM[1].
These improvements will assist the current VM in closing the performance
gap between itself and PAKCS[9]. The technique that we have developed
allows the cost of computations to be proportional to their longevity rather
than only proportional to their size.

The overall organization of our paper is fairly straightforward. Section 2
begins by presenting a more in-depth overview of functional, logic, and func-
tional logic languages so that the reader has a better understanding of the
context of our research. Section 3 then discusses the organization of the cur-
rent VM, and its shortcomings in handling non-deterministic and narrowing
steps in computations. A detailed examination of technique to improve these
computations is then presented in section 4. This examination explores both
the theoretical idea behind our research and its practical implementation.
Section 5 then provides some benchmarking data comparing our implementa-
tion against the current one. This will demonstrate that our technique really
does improve the efficiency of computations. Finally, Section 6 presents our
final conclusions and some direction for future work. Many of the examples
used in this program come from a paper by Antoy[3], and we thank him for
allowing us to use them.
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2 Functional Logic Programming and Curry

Functional logic languages[7], such as Curry[8]and Toy[13], attempt to com-
bine the best features of two much older language paradigms: functional
programming[11], and logic programming[4]. The goal of merging these fea-
tures together is to create a class of languages that is as expressive as possible
without sacrificing too much efficiency. This section will describe the impor-
tant features of both these paradigms before describing some of the unique
features of functional logic languages. This will establish the context in which
our research occurred.

2.1 Functional Languages

Functional languages, such as Haskell[12] and ML, arose from a desire to
concentrate on what a program computes rather than focusing on the specific
instructions that must be executed by the underlying machine. As we will
see, Curry is really just an attempt to further pursue this ideal. As its name
suggests, this community decided the best building block for solving problems
in this manner would be functions.

In a functional language everything is treated as a function, although
some are degenerate like the number three, or the letter a. These functions
are interesting because they have a closer relationship to functions in a mathe-
matical sense than “functions” represented in other languages. Namely, there
is only one result computed by a function for a given input. Functions ex-
hibit this property because they are, for the most part, side-effect free. This
means they do not update or destroy variables, consume input, or perform
similar operations. Hopefully, this makes reasoning about programs easier
because if something goes wrong within a function it is apparantly because
of that function and not a peculiar interaction with its surrounding context.

Another interesting trait of functional languages is that they support the
concept of higher-order functions. A higher-order function is one that can
take other functions as arguments; a function that takes only degenerate
values as arguments is first-order, hence one that takes first-order functions
as arguments must be second-order, etc. This allows programmers to build
very abstract, powerful, functions that can be reused in a variety of situations.
For example, it is common for Haskell programmers to approach problems
by thinking in terms of the higher-order function foldr.

The final trait of functional languages that we wish to mention briefly is
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factorial 0 = 1
factorial n = foldr (*) 1 [1..n]

Figure 1: Haskell Implementation of factorial

that it provides a robust, easy-to-use, mechanism for user-defined data types.
Once again, its main strength is its close relationship to mathematics and
its expressiveness as compared to other languages. This simplicity allows
the programmer to focus on using the data type to solve his specific prob-
lem instead of focusing on the minutiae of implementing the data structure
correctly. Figure 3 shows a data type definition.

Before completing this quick summary of functional languages we wish
to present a brief example of a functional program, which uses higher-order
and piecewise functions. The program in figure 1 is a naive Haskell imple-
mentation of a function that computes the factorial of a given number.

2.2 Logic Languages

Logic languages, such as Prolog[4], utilize propositional logic and Horn clauses[10]
to perform computations. They differ from traditional languages because
they compute whether something is true within a given axiomatic system
rather than a value. The techniques needed to compute these answers in-
clude predicates, logic variables, and non-determinism.

Predicates are at the core of logic languages. Predicates specify a truth-
valued function that denotes a relationship between its arguments. If the
arguments to the predicate satisfy the relationship then the result is yes (or
success), and the result is no (or failure) if they do not. Figure 2 shows
the two predicates necessary to express the factorial relationship. The first
predicate states that 1 is the factorial of 0. The second predicate states that
N is the factorial of M if the conditions on the right-hand side are all true.

Logic variables are a more interesting feature of these languages. Logic
variables start off free, but become bound in an attempt to satisfy the pred-
icate as execution proceeds; if an appropriate binding cannot be found then
that instance of the predicate is false. For example, the variable J is an un-
bound logic variable in the goal factorial(3,J), and it will be instantiated to
the value 6 in order to satisfy the predicate. Even though this does compute
that 6 is the factorial of 3, it is important to remember that the result of the
computation is the fact that the predicate can be satisfied, and not the value
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factorial(0,1).
factorial(M,N) :- M ¿ 0, M1 is M-1, factorial(M1,N1), N is M*N1.

dice(1).
dice(2).
. . .
dice(6).

Figure 2: Prolog Implementation of Factorial and Dice

6.
Logic variables also enable another powerful feature of logic languages:

non-determinism. Non-determinism is possible in logic languages because
there may exist several bindings of a logic variable that satisfy the goal.
The dice predicates in figure 2 demonstrates this property because the goal
dice(M) can be satisfied by any integer between one and six. In logic lan-
guages, this feature may not be that interesting because we are only interested
in a truth value, but as we will see below this can provide a lot of power when
we are interested in calculating values.

2.3 Curry

Curry takes the powerful features of both these language paradigms to create
an efficient, highly expressive, programming language. Its primary strength is
that it allows programmers to develop programs by specifying the equations a
solution must satisfy, rather than the specific algorithm necessary to generate
the solution. Unlike logic languages, its primary purpose in satisfying these
equations is to produce a value. We need to revisit non-determinism and
discover narrowing to understand how Curry does this.

In Curry, non-determinism allows functions to have multiple definitions
that may return different values for the same input arguments. Furthermore,
the use of unbound variables is not necessary to induce non-deterministic
results. This mechanism allows programmers to make an arbitrary choice of
values when no simple algorithm exists to make a better one. The expectation
is that later on an equation will constrain the choice to the appropriate one(s)
for that solution.

This brings us to an important point, which is that functions can fail
rather than producing a value. Unlike functional languages, this is even
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desirable because it filters out the unproductive choices and continues on
with the (possibly) productive ones. This notion that failure is acceptable,
and will probably occur often, is at the core of this thesis. Our work centers
around reducing the performance penalties that each failure incurs.

Returning to how Curry produces values that satisfy equations, the con-
cept of narrowing[2] needs to be introduced. Narrowing is built on top of
non-determinism, but the values that can be chosen are patterns from a
function’s left-hand side. These patterns are non-deterministically chosen
as instantiation values for an unbound (or logic) variable. Once again, the
incorrect values should be filtered out via equational constraints. Narrowing
may need to be recursively applied many times to substructures of the initial
instantiation before a correct value is found.

Now that we have briefly seen how Curry produces values that satisfy
equations, we wish to present a concluding example that will be used through-
out the rest of this paper to illustrate concepts. Figure 3 is a Curry program
that implements Dijkstra’s[6] Dutch National Flag problem. The problem
is to rearrange a given list of n objects, which are colored red, white, or
blue, so that objects of the same color are adjacent. An important feature of
this algorithm is that the items in the list are actually swapped rather than
simply creating a new list with the same properties as the first one except
the colors are already adjacent. Additionally, the colors must be sorted so
that all of the red objects appear before the white ones, and all of the white
objects appear before the blue ones.

The example is interesting because it uses many of the features we have
discussed above. The functions mono and solve are both non-deterministic,
which is exploited to keep the program simple. Solve also uses narrowing to
instantiate the free variables x, y, and z such that the values on either side of
the =:= are unifiable. If the equation can be satisfied then the body of that
particular rule of solve is executed. If not, an incorrect non-deterministic
choice was made so another choice must be tried. This continues with re-
cursive calls to solve until the conditions of a solution, as expressed by the
fourth rule of solve, are satisfied.

3 The Current Implementation

The implementation of Curry our research is based off of is a virtual machine
(VM) developed by Prof. Sergio Antoy and his research group[1], which is
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Figure 3: Curry Implementation of the Dutch National Flag Problem

data Color = red | white | blue

mono _ = []

mono c = c : mono c

solve flag | flag =:= x ++ white:y ++ red:z

= solve (x ++ red:y ++ white:z)

where x,y,z free

solve flag | flag =:= x ++ blue:y ++ red:z

= solve (x ++ red:y ++ blue:z)

where x,y,z free

solve flag | flag =:= x ++ blue:y ++ white:z

= solve (x ++ white:y ++ blue:z)

where x,y,z free

solve flag | flag =:= mono red ++ mono white ++ mono blue

= flag
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written in Java. The VM is an attempt to provide an operationally-complete
and sound implementation of the Curry language. It leverages the theory
of term-rewriting systems[5] and the power of concurrent programming to
accomplish this. To understand our research better, an overview of the VM
and its shortcomings needs to be presented.

3.1 Terms

Terms are the primary unit of evaluation in the VM. This is not surprising
since it is based off of term-rewriting systems. Terms are composed of vari-
ables, operations over other terms, and constructors over other terms. As
evaluation within the VM progresses the terms are replaced by new terms via
rewrite rules until no rewrite rules can be applied. At this point we say the
term is in normal form. The VM imposes the additional requirement that
normal forms must be constructor terms, meaning that the term and all of
its subterms must consist of only constructors.

A constructor-rooted term is one in which the root of the outermost term
is a constructor, such as :, which is the non-empty list constructor. Similarly,
a term is operation-rooted if the outermost term is an operator, such as
++. Constructor- and operation-rooted terms have subterms associated with
them, which are the terms that the constructor or operation is applied to.
In turn, these subterms may contain other subterms, and therefore they may
need to be rewritten before anything useful can be accomplished on the top-
level term.

During the process of rewriting it may also be necessary to apply a sub-
stitution to a term. Substitutions express the mapping of variables to terms,
or inotherwords the binding of a variable to a term. When a substitution
{x 7→ t2} is applied to a term t1, it states that every occurrence of x within
t1 should be replaced by t2. This substitution is carried through every sub-
term of t1. The goal of a substitution is to allow new rewrite rules to be
applied that will hopefully move t1 closer to its normal form.

Two important definitions related to terms are still needed: redex and
narrex. Allterms that can be rewritten are known as redexes, meaning re-
ducible expression. A narrex is a term that can take a narrowing step, which
includes rewriting. Therefore, every redex is a narrex, but not every narrex
is a redex. The narrowing strategy employed by the VM requires that all
narrexes be operation-rooted.
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3.2 Computations

The management of this complex rewriting system is not left to the terms
themselves to manage. Instead, a computation abstraction is added onto
the virtual machine. Each computation is given one term that it is tasked
with rewriting, in most cases to normal form. Over the course of its life each
computation may actually evaluate many terms; each one a subterm of the
original top-level term.

This computation abstraction manages the actual task of evaluating a
term by performing a series of rewrite “steps.” At each step the compu-
tation determines if the current term needs to be rewritten further. This
is accomplished by querying the term to determine if it is in either normal
or head-normal form. If further rewriting is necessary, the computation exe-
cutes a sequence of instructions associated with the current term. This series
of “steps” continues until either the computation fails or further rewriting is
no longer possible.

The computation maintains a pre-narrex stack to keep track of the sub-
terms that it must rewrite. A subterm is pushed onto this stack once the
computation determines it needs to be rewritten, and a subterm cannot be
put onto the stack unless its parent term is already on it. Evaluation pro-
ceeds by popping the next term off of the stack once the current one can
not be rewritten any further; the previous term should be a subterm of this
new term. This method of evaluation is very top-down in nature because the
parent term always invokes the rewriting of its subterm as well as providing
the subterms their execution context.

3.3 Non-determinism, Narrowing, and Efficiency

The efficiency problems with this implementation arise when non-deterministic
steps are taken within a computation. This is likely to occur often since non-
determinism is one of the primary advantages of Curry. Two attributes of
the current implementation contribute this inefficiency: first, the use of a
top-down execution strategy that can lead to redundancy; second, this strat-
egy must be repeated for each of the n distinct choices presented whenever
we narrow or make a non-deterministic step. An examination of how the
machine behaves in these situations will be presented so that the reader can
understand the magnitude of the inefficiencies.

When a non-deterministic step is encountered, the machine must prepare
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to evaluate the top-level term with each distinct choice replacing the current
term. For example, if the current, non-deterministic, term presented us with
four distinct choices then the machine must evaluate the top-level term four
times: once for each distinct choice; shared subterms that are not dependent
on the non-deterministic choice will be shared amongst the evaluations. This
helps mitigate the cost of non-determinism to a certain extent. The machine
executes the terms for each choice in parallel to ensure no term will block
the others from executing even if it continues rewriting forever; this also
makes the computation more non-deterministic than simply choosing the first
choice that satisfied all constraints and allowed the top-level term to evaluate
to a normal form. However, this also means that the steps described in the
following paragraphs will be performed for each choice simultaneously, which
will compound the inefficiencies they discuss.

The VM begins by selecting the right-hand of a particular instance of the
non-deterministic term. For example, the term mono from Figure 3 may be
the non-deterministic term and the right-hand side [] maybe selected. Every
instance of the non-deterministic term (mono) within the current top-level
term is then replaced by its right-hand side ([]). At this point, all ancestors
of the newly-replaced terms are copied and updated to reflect their new
subterm. This copying propagates all the way to the top-level term. This is
necessary because the top-level term needs to reflect the distinct choice that
was chosen throughout all of its subterms.

A new computation is then created to manage the new top-level term just
created, and the current computation is disregarded. This means that eval-
uation of the term has to begin at the top-level once again. Terms that had
already been rewritten will not be reevaluated, but it still computationally-
expensive to push and pop subterms off of the stack and ensure that they are
in the proper form already. This process will continue until we reach the term
where the last computation became abandoned. At that point, evaluation
resumes as normal, but clearly a heavy price was paid to get to this point.

Instantiation of free variables and narrowing proceed via a similar process;
obviously, instantiation will only do the process once and not n times. The
primary difference is that we are substituting a term for all occurrences of a
variable rather than replacing one term with another. The relative expense
of these operations is probably equivalent.

Narrowing is much more expensive than plain non-determinism in the
long run, however, because narrowing is generally a recursive process. This
recursion occurs when a narrowing operation introduces another free vari-
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able, and it often does. Figure 4 provides a good example of how this can
occur. The VM will try both [] and (x:xs) as possible instantiations when-
ever we attempt to narrow on the first argument of ++. Notice that when
(x:xs) is chosen as the instantiation, x and xs are introduced as two new
uninstantiated variables. Furthermore, xs may be narrowed again because
the term (xs++ys) is introduced. The machine may then repeat the process
of narrowing the first argument of ++ all over again.

Figure 4: Append Operation in Curry

[] ++ ys = ys

(x:xs) ++ ys = x : (xs++ys)

4 Improving the Implementation

The above description of the current system shows why the focus of our
research has been on improving the efficiency of computations involving nar-
rowing and non-determinism. Their relative expense and frequency in com-
putations means that any improvement in them should provide an apprecia-
ble gain in efficiency. However, we also had to be careful in approaching this
problem because we did not want our techniques to reduce the efficiency of
“normal” computations.

We used an insight about the unique behavior of non-deterministic and
narrowing to achieve this goal. Specifically, our insight was that most non-
deterministic choices fail quickly. Many do not even satisfy the constraints
placed upon them by their parent term. This means that all of the effort
placed in carefully copying their ancestor terms, and pushing them onto the
pre-narrex stack, is rarely productive, and instead it is usually pure overhead.
Clearly, eliminating unproductive computational steps should provide us with
the efficiency gains we seek.

The first fruit of our research is a technique that solves this problem. We
do this by only performing the copying and substitution on the term that
precipitated the non-deterministic step. We then save a small portion of the
computation’s state inside the new computation. This saved state allows us
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to rebuild the term’s ancestors as they are needed. The new computation is
then setup to treat this new term as its top-level term.

Computation proceeds normally from this point until the computation
reaches a point where it needs the parent of this term to continue. At this
point, the parent term, and all of its subterms, are copied and have the
current substitution applied. The subterm the machine has been rewriting
up to this point then replaces the newly copied subterm; if we did not do this
then our previous rewriting steps on that subterm would have to be repeated.
The evaluation of the parent term then continues on until it needs its parent,
and this pattern is repeated until the original top-level term is reached.

This approach may sound reasonable, but it doesn’t sound like it will
gain us any efficiency. Instead, it appears that all we have done is allowed
terms to be copied incrementally rather than all at once. The efficiency gain
comes in when we determine we need the parent of a term, however. Before
we make the copy of the parent, we check to see if the current term has
failed, and if so rewriting stops with the entire computation failing. This
is perfectly reasonable because a term cannot possibly succeed if any of its
subterms have failed.

This model of computation certainly solves the problem, but it makes the
structure of the computation quite interesting (and worth a brief tangent).
The term begins by evaluating in a top-down manner as in the previous im-
plementation, but after a non-deterministic step it will begin computing in a
bottom-up fashion instead. This bottom-up computation is then interrupted
by further top-down computations on subterms after each step upwards. This
creates a computation that is constantly reaching upwards only to delve by
back down into other subterms.

4.1 Implementation

We needed to implement the strategy outlined above in the Curry VM to
truly test its validity and efficiency. This implementation presented some
interesting challenges and minor deviations from our theoretical strategy.
As one might expect, the majority of the work had to take place inside the
computation abstraction, but the implementation of terms and some internal
instructions also had to change. This section will outline the implementation
of our technique within these three areas.
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4.1.1 Computation

The first decision that had to be made within computation was how to cap-
ture the state of the computation. We decided that a copy of the pre-narrex
stack would make the most logical choice because a term is pushed onto it
right before being rewritten. This not only captures every term, but also the
hierarchy of the terms. Subterms always appear above their parent terms
on the stack. Another advantage of the pre-narrex stack is that it contains
no frivolous state because once a term no longer needs to be rewritten it is
removed from the stack.

At first glance, this approach seems ideal. Computations can simply
pre-fill their pre-narrex stack with the stack from the previous computation
whenever a non-deterministic step is made. New terms will be added onto
the stack as computation progresses, and when only the copied terms remain
we begin computing upwards.

Remember that the structure of a computation is not nearly as ideal
as this approach assumes, however. Instead, top-down evaluation may in-
terleave with bottom-up evaluation frequently for non-deterministic terms.
The approach we chose to take keeps the old and the new pre-narrex stacks
separate. The old stack manages the bottom-up state of the program while
the new stack manages the top-down state.

Managing this new state is therefore the primary new task the computa-
tion abstraction has to manage. This task is localized within a single method,
which is shown in Figure 5. Localizing this management into one place allows
the rest of the computation to believe that it only computes in a top-down
manner, which means less likelihood of undesirable side-effects. The only
change that had to be propagated was replacing each attempt to pop the
pre-narrex stack into a call to the updatePreNarrex function.

UpdatePreNarrex itself works by first examining the current pre-narrex
stack to determine if it is empty or not. If it is not empty, or if the old stack
contains nothing, then none of the new code is executed and the machine
behaves just as it did before. This means that traditional deterministic com-
putations behave exactly as they did before, and the only extra overhead
they incur is one additional method invocation. It also makes sure that non-
deterministic computations compute in a top-down style until an upward
step is absolutely necessary.

The interesting work of the code happens when an upward step does
become necessary because the current top-down pre-narrex stack is empty.
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First, the current term is examined to verify that it has not failed, and if it
has failed we simply signal the failure and quit computing at that moment.
Otherwise, the top term from the old stack is popped off. Since this term
was the last one placed on the stack, it must be the bottom most term.
Ignoring the &-operator for a moment, the old term is then cloned (copied)
with the current substitution, and has the appropriate subterm replaced by
the current term; we will discuss how this replacement occurs later. The
computation then reinitializes itself to evaluate our new term to a normal
form if possible.

The &-operator throws an interesting wrinkle into our system, however. It
is the only process in the machine that can fire off subsequent computations
without abandoning itself. Therefore, the machine could easily compute
many steps redundantly, or worse, if both computations tried to compute
beyond the & in a bottom-up fashion. Instead, the computation indicates to
its parent computation that it has successfully evaluated and returns control
to it. The only deviation from this is when the computation has no parent
computation. It has to continue evaluating beyond the & to ensure that the
computation does not terminate prematurely in this case.

4.1.2 Term

Our term implementation’s new responsibility lies in replacing the appropri-
ate subterm of the newly copied term. This subterm needs to be replaced by
our previously evaluated term so that all the effort that went into rewriting
it is not duplicated. Determining which subterm to replace is not trivial pro-
cess. Problems arise because the evaluated version of the subterm may not
share any characteristics with the unevaluated, newly copied, version. This
is especially true because the evaluated form may be the result of several
non-deterministic choices, and therefore several copies of the term removed
from the original.

Terms now keep a reference to their previous incarnation whenever they
are copied to avoid this problem; sadly, this reduces the efficiency of the
garbage collector. The point of this reference is to allow us to determine if two
terms originated from the same original term. Therefore, subsequent copying
of a term that had an original parent of its own preserves the reference to the
original parent rather than to the term being currently copied. The actual
replacement then becomes a fairly trivial task. The goal of this replacement
is to plug the previously evaluated term into the proper position within its
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protected void updatePreNarrex() {

Term repl = (Term) stack.peek();

pop();

if(stack.isEmpty() && !oldStack.isEmpty()) {

if(repl.getRoot() == SuccessModule.termFail.getRoot()) {

result.update(repl);

selfSetState(FAILED);

return;

}

Term oldTerm = (Term) oldStack.pop();

if(oldTerm.getRootSymbol().equals("&")) {

if(client instanceof Computation) {

selfSetState(SUCCESS);

return;

}

}

Term newTerm = (Term) oldTerm.cloneWithSubst(subst);

newTerm.replArgument(repl);

result = newTerm;

taskCase[NORMAL] = new NFTask(result);

task = taskCase[NORMAL];

}

}

Figure 5: Managing the Pre-Narrex Stack
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newly copied parent term. To determine the correct position we compare
the memory location of the evaluated term against the memory location of
every subterm in the newly copied parent term. If both the evaluated term
and the subterm occupy the same memory location, or if the references to
the terms they diverged from are the same, then we have found the correct
position. The previously evaluated term therefore replaces the subterm at
this position.

Every subterm of the current term is compared against our evaluated
term. If the two terms are the same term, or if the original term both
progressed from is the same, we replace the subterm with the evaluated
term. The equality test is based off of where the term’s reside in memory.

4.1.3 Instructions

The behavior of the built-in VM instructions remained remarkably similar.
The code that previously dealt with cloning terms and starting new compu-
tations was removed and abstracted away into the computation abstraction
itself. Instructions now only need to calculate the new substitutions in most
places. The only place this did not happen was in the code for the &-operator
because it does not want to discard the current computation when it creates
new ones.

Our new evaluation strategy for non-deterministic steps did introduce
some problems that the built-in instructions had to compensate for, how-
ever. The biggest of these involved how substitutions behaved. Substitutions
involving bindings for multiple layers of uninstantiated variables would not
propagate the substitutions correctly. For example, say the variable l became
bound to (x:y), and y became bound to ( 2:[ 3]). When a term involving l
had l ’s binding substituted for it, only the (x:y) would replace l rather than
(x:2:[ 3]). If not handled properly, this could lead to multiple bindings for
y, unnecessary narrowing steps, and even computations failing when they
should not.

To make sure these problems did not arise, we checked to see if the variable
was in fact already bound. If not, the narrowing proceeded as before. If it
was bound, we would use the facilities described above in term to replace the
variable with its binding in its parent term. The narrowing step would then
be ignored, and the computation would continue on as before. It should be
noted that we are not entirely sure why the new system causes this problem,
or that the fix presented here is even a good solution.
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5 Measuring Our Improvement

We now present some benchmarking results comparing the current imple-
mentation with our new implementation as outlined in this paper. This
benchmarking allows us to prove that our technique does improve the ef-
ficiency of non-deterministic computations, and quantify the degree of im-
provement. These benchmarking tests measure two different criteria: the
number of built-in instructions executed, and the amount of time it takes for
the computation to execute.

Our testing methodology was to run each test ten times to provide a more
reliable measurement. The numbers that appear in the tables are the average
of the results from the ten tests. Each test was run by starting up a fresh
VM and executing the benchmark code. Tests run within an already started
VM would provide erroneous results because of the Java runtime’s dynamic
optimization techniques. When that happens, it is difficult to tell how much
of the improvement is a result of our work and how much is a result of the
Java runtime system. As a final note on our methodology, our benchmarking
platform was a PowerMac G4 867MHz with 640MB of RAM using the Java
1.4.2 runtime environment. Example of DNF, reduction in the number of
instructions, reduction in execution time.

5.1 Benchmark Programs

Before presenting the actual results, we wish to present the programs used
in our benchmarking and remark on why they were chosen. The first bench-
mark program is a naive implementation of the Fibonacci numbers shown
in Figure 6. It was chosen as a test case because it does not use narrowing
or non-determinism. Results from these tests will therefore show whether
our implementation had any adverse effects on deterministic computations,
which it should have left unchanged. All tests calculated the 26th Fibonacci
number.

The second sample program in Figure 6 calculates the last element in a list
through extensive use of narrowing on the first argument to ++. Calculating
the last element of a list may seem too trivial to provide good results, but on
large enough inputs it actually provides meaningful differentiations between
implementations; all of our tests involved 100-element lists. Furthermore, a
simple non-deterministic computation such as this will likely lay at the core
of many programs so its performance may be vitally important just as the

18



performance of a simple inner for-loop in C may have a large effect on an
entire C program.

We chose a program that permutes a list as the final sample program; it
is also displayed in Figure 6. It was chosen because of how much narrow-
ing is involved in the algorithm presented because of the recursive call to
permute. Non-Determinism also plays a large role in the program because
the variables u and v can be bound in many different ways and still satisfy
their constraints. Indeed, this non-determinism is what makes the algorithm
works. All tests with permute were done on eight-element lists.

fibo x | x == 0 = 0

| x == 1 = 1

| otherwise = fibo (x-1) + fibo (x-2)

last x | l ++ [e] =:= x = x where l,e free

permute [] = []

permute (x:xs) | u++v=:=permute xs = u++x:v where u,v free

Figure 6: Programs used in our benchmarking.

5.2 Instruction Benchmark

The first benchmark we analyzed was how many built-in instructions the
VM needed to execute in evaluating a given expression. This metric was
chosen because it provides a stable indicator of how the machine is perform-
ing. The results are not effected by other processes running on the machine
or other irregularities that can interfere with time-based benchmarks. In Ta-
ble 1 the lower the number of instructions the more efficiently the machine
behaved, and the numbers in the second column indicate behavior without
our improvements while the third column indicates behavior with our im-
provements.

Clearly, the results from Table 1 show that VM performance has only
improved with our modifications. Calculating the 26th Fibonacci number
involved the same number of instructions, which indicates that our technique
does not affect the efficiency of deterministic computations. This is exactly
the result we were looking for, and expected, since our system is designed
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Current VM New VM
fibo 19902232 19902232
last 27764 8058
permute 825415 199076

Table 1: Number of Instructions Needed For a Given Computation

to worry about bottom-up computations and additional state only when
absolutely necessary.

The second and third rows are even more encouraging because they show
a considerable improvement in the efficiency of the VM when our new tech-
nique is applied to computations involving primarily non-determinism and
narrowing. In particular, the number of instructions executed decreased by
roughly 71% for last, and it decreased by roughly 76% for permute. These are
pretty dramatic improvements. More importantly, the benchmark provides
reproducable, quantitative, proof that our research has been a success.

5.3 Time Benchmark

The results above may provide quantitative data that validates the effective-
ness of our technique, but in the real world what matters to users is time.
Therefore, we present and analyze the amount of time taken by the VM to
execute the same programs as above. These results provide a more tangi-
ble benchmark of the performance of our system. However, they are not as
constant as the numbers above because elapsed time can be influenced by
external factors. Table 2 presents the results of our benchmarking. As stated
previously, the times shown are the average of ten runs of each test so that
the effects of external factors can be minimized.

Current VM (time in ms) New VM (time in ms)
fibo 35910 36615
last 2595 682
permute 40967 11373

Table 2: Elapsed Time Needed

Once again, these results seem to confirm that we have achieved the goals
we set out to attain in our research. The fibo test indicates that the two
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implementations perform equally well on deterministic computations, and
the difference in execution time can probably be chalked up to the additional
function call overhead our new approach introduces when a term is popped
off of the pre-narrex stack; the percent increase is only 2%, which is hardly
statistically significant. lastand permute show a 74% and 72% decrease in
elapsed time respectfully.

Both benchmarks also correlate with each other nicely. To us, this corre-
lation lends extra credibility to our results. When two seperate benchmarks
produce the same results, it is much more likely that the data is correct
rather than that the benchmarks are skewed.

5.4 Permutation In-Depth

The permutation benchmark is worth studying in more detail because it
exhibits some behavior that the other two tests do not. Namely, it is the only
test that can produce multiple answers for the same input because of non-
determinism. This search for subsequent answers really stress-tests the VM
and emphasizes the performance gap between the current implementation
and ours.

Figure 7 shows both VMs trying to calculate several different permuta-
tions of an eight-element list. The most obvious fact that jumps out is that
our implementation can calculate four permutations of a list using a little
over half the time and half the instructions it takes for the current VM to
calculate even one. More interestingly, the current VM is not able to calcu-
late the fourth permutation at all while our implementation does so without
issue.

Both of these phenomena are due to the greater length of time the average
computation lives in the current VM. As we noted in Section 3.3, the push-
ing and popping of already evaluated terms takes a considerable amount
of time. Also consider that each one of these pushing or popping opera-
tions constitutes one “step” in the VM. Many computations therefore waste
many “steps” trying to die. As these computations languish, other com-
putations are being introduced by further narrowing and non-deterministic
steps, which leads to computations having to wait longer between productive
“steps.” This continues until the machine cannot continue to perform any
useful work, and actually runs out of memory. By making sure that compu-
tations die as young as possible our approach avoids this problem, or at least
prolongs the time it takes for it to manifest.
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Figure 7: Calculating Several Permutations in Both VMs

[Current VM]

permute [1,2,3,4,5,6,7,8] -> :(1,:(2,:(3,:(4,:(5,:(6,:(7,:(8,[]))))))))

Elapsed time:40223ms. steps:37030 instructions:825415 terms:154798

permute [1,2,3,4,5,6,7,8] -> :(2,:(1,:(3,:(4,:(5,:(6,:(7,:(8,[]))))))))

Elapsed time:67983ms. steps:46850 instructions:1041629 terms:203159

permute [1,2,3,4,5,6,7,8] -> :(1,:(3,:(2,:(4,:(5,:(6,:(7,:(8,[]))))))))

Elapsed time:84078ms. steps:49128 instructions:1089571 terms:213795

java.lang.OutOfMemoryError

[Our Implementation]

permute [1,2,3,4,5,6,7,8] -> :(1,:(2,:(3,:(4,:(5,:(6,:(7,:(8,[]))))))))

Elapsed time:11724ms. steps:13895 instructions:199076 terms:66724

permute [1,2,3,4,5,6,7,8] -> :(_4,:(1,:(3,:(4,:(5,:(6,:(7,:(8,[]))))))))

Elapsed time:22294ms. steps:24233 instructions:358700 terms:123914

permute [1,2,3,4,5,6,7,8] -> :(1,:(_8215,_8216))

Elapsed time:24283ms. steps:27104 instructions:402516 terms:139472

permute [1,2,3,4,5,6,7,8] -> :(1,:(2,:(_3927,_3928)))

Elapsed time:26206ms. steps:28134 instructions:418763 terms:145543

permute [1,2,3,4,5,6,7,8] -> ...
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6 Future Work

The performance measurements demonstrate a marked improvement in the
VM’s efficiency, but there are further opportunities for improvement that
are worth exploring. The first of these is to implement a “clone-on-write”
strategy for copying objects, which delays the cloning of subterms until they
are actually rewritten.. Currently, whenever a term is cloned so are all of
its subterms. This may not be a very wise strategy, however, as many of
these terms may never be rewritten and therefore will never change; this is
especially true for terms that are about to fail. Object creation is one of
the most expensive operations in Java, and therefore removing unnecessary
creations should yield good results.

Perhaps the most promising technique for further exploration is a throt-
tling mechanism within the VM. This throttling mechanism would notice
when too many computations were alive in the VM at the same time, and
it would then enable computations to take multiple “steps” at a time un-
til the number of computations decreased below a certain threshold. The
hope is that this technique would eliminate problems such as the one involv-
ing permute. However, implementing this technique will not easy. The first
problem is that we can not allow computations to execute too many steps at
a time because we still need to ensure fairness. Furthermore, it will take a
lot of tuning to ensure that the throttling engages as little as possible, but
is still invoked when there is a good liklihood of recovery from the resource
starvation.

7 Conclusion

In conclusion, this thesis has presented a technique for improving the ef-
ficiency of narrowing and nondeterministic computations within the Curry
VM. It began by outlining the niche within the programming languages com-
munity that functional logic languages occupy. Next, we described the cur-
rent virtual machine and its shortcomings before presenting our bottom-up
technique for improving the efficiency of non-deterministic computations. Fi-
nally, we presented some quantitative numbers that showed a 71% decrease
in the amount of time needed to execute narrowing computations when using
our new technique.

Our technique worked by delaying the cloning of terms until that became
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necessary for the computation to proceed. This allowed us to reduce the cost
incurred by computations that failed quickly after taking a non-deterministic
or narrowing step. In practice, this failure happens frequently because these
computations are usually designed to have poor choices filtered out, which is
what facilitated our efficiency gains.
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