
ABSTRACT

An abstract of the thesis of Janet Vorvick for the Master of Sci-

ence in Computer Science presented October 31, 1995.

Title: Evaluable Functions in the G�odel Programming Language:

Parsing and Representing Rewrite Rules

The integration of a functional component into a logic lan-

guage extends the expressive power of the language. One logic

language which would bene�t from such an extension is G�odel,

a prototypical language at the leading edge of the research in lo-

gic programming. We present a modi�cation of the G�odel parser

which enables the parsing of evaluable functions in G�odel. As

the �rst part of an extended G�odel, the parser produces output

similar to the output from the original G�odel parser, ensuring

that G�odel modules are properly handled by the extended-G�odel

parser. Parser output is structured to simplify, as much as pos-

sible, the future task of creating an extended compiler implement-

ing evaluation of functions using narrowing.

We describe the structure of the original G�odel parser, the

objects produced by it, the modi�cations made for the imple-

mentation of the extended G�odel and the motivation for those

modi�cations. The ultimate goal of this research is production of

a functional component for G�odel which evaluates user-de�ned

functions with needed narrowing, a strategy which is sound, com-

plete, and optimal for inductively sequential rewrite systems.

THESIS APPROVAL

The abstract and thesis of Janet Vorvick for the Master of Sci-

ence in Computer Science were presented October 31, 1995, and

accepted by the thesis committee and the department.

COMMITTEE
APPROVALS:

Sergio Antoy, Chair

James Hein

Andrew Tolmach

Michael A. Driscoll
Representative of the O�ce of Graduate Studies

DEPARTMENT APPROVAL:
John McHugh, Chair
Department of Computer Science

� �

ACCEPTED FOR PORTLAND STATE UNIVERSITY BY THE LIB-
RARY

by on

EVALUABLE FUNCTIONS IN THE G�ODEL PROGRAMMING
LANGUAGE: PARSING AND REPRESENTING REWRITE RULES

by

JANET VORVICK

A thesis submitted in partial ful�llment of the
requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Portland State University
1995

i

Contents

Acknowledgments : 1

1 Background 2

1.1 Evaluable Functions : 3
1.2 Narrowing : 4

2 The Extended G�odel 8

2.1 The Design of the Language : : : : : : : : : : : : : : : : : : 8
2.2 Syntax Details : 10
2.3 Conditional Rewrite Rules : : : : : : : : : : : : : : : : : : : 12
2.4 Restrictions on Rules and Systems of Rules : : : : : : : : : : 14

2.4.1 Requirements of Conditions : : : : : : : : : : : : : : 16
2.5 Overloading : 18
2.6 Evaluation of the Syntax : 20
2.7 A Simple Example : 22

3 Implementation 25

3.1 The Original G�odel Parser : : : : : : : : : : : : : : : : : : : 25
3.2 The Internal Representation of a Module : : : : : : : : : : : 27
3.3 Parsing in a Logic Language : : : : : : : : : : : : : : : : : : 29
3.4 The Extended Parser - Implementation Decisions : : : : : : 33

3.4.1 Distinguishing Between Evaluable Functions and Data
Constructors : 33

3.4.2 Representing Rewrite Rules : : : : : : : : : : : : : : 35
3.4.3 Declaring Evaluable Functions : : : : : : : : : : : : : 39

3.5 Testing the Rewrite Rules : : : : : : : : : : : : : : : : : : : 41
3.6 Parser Output : 43

4 Conclusion 45

4.1 Comparison with LPG and BABEL : : : : : : : : : : : : : : 45
4.2 Correctness and Performance : : : : : : : : : : : : : : : : : 51
4.3 A Larger Program : 54

4.3.1 G�odel Code : 56
4.3.2 The Extended G�odel Code : : : : : : : : : : : : : : : 57

ii

Bibliography 58

A Further Extensions 60

B The Order of the Rules 62

C More About the Internal Representation 66

D More About the Grammar Used in the Parser 70

1

Acknowledgments

I'd like to thank Sergio Antoy for his encouragement and help.

Also, my thanks to the creators of the G�odel language, espe-

cially John Lloyd and Tony Bowers who answered many ques-

tions. Thanks to the members of the thesis committee for their

participation.

2

Chapter 1

Background

The logic programming paradigm and the functional program-

ming paradigm share a number of appealing features. Both allow

a programmer to formalize a problem and use the formalization

as a program from which to compute a solution|which is to

say, both are declarative programming paradigms. However, the

formal systems underlying the two are di�erent. Functional pro-

gramming is based on the �-calculus and logic programming is

based on the �rst-order predicate calculus.

Some appealing features of functional programming are not

shared by logic programming. In particular, we are concerned

with functions. Though the �rst-order predicate calculus can

accommodate function symbols, they play the role of data con-

structors. A term (a function symbol together with it arguments)

is never equal to some other (distinct) term. There is a lack of

consensus about the vocabulary for distinguishing symbols which

stand for evaluable functions from those which stand for data

constructors. Often the word function means evaluable function

3

and constructor means data constructor. However, in the G�odel

language [7], a function is never evaluable. Thus every function

symbol is playing the part of a data constructor. Also, the term

constructor is used in G�odel to mean a symbol which is the name

of a type and which does not have arity zero. (Those of arity

zero are bases.) For this reason, we will use the phrases evalu-

able function and data constructor here.

1.1 Evaluable Functions

The introduction of a functional component to the G�odel lan-

guage allows the user to de�ne evaluable functions as part of the

formalization of the problem at hand. In some domains, pro-

grammers are accustomed to using functions when formalizing a

problem. Consider, for example, computing the circumference of

a circle given the length of its radius. In logic programming (in

the absence of evaluable functions) even this simple computation

requires several statements:

Circumference(rad, answer) Multiply(2, 3.14, ans1)
^ Multiply(ans1, rad, answer)

when the same ideas expressed with evaluable functions are much

more pithy and appealing:

Circumference(rad) =Multiply(2, Multiply(3.14, rad)).

Because programming without evaluable functions presents these

4

troubles, the G�odel language provides evaluable functions for the

built-in types Integers, Rationals, Floats and Sets. It is inter-

esting to note that no evaluable functions are provided for Lists,

Strings, Numbers, or Programs. There are a number of other

system modules which have predicates only.

G�odel does not provide a mechanism by which the user can

de�ne her own evaluable functions. Providing this facility and

supporting the evaluation of functions in an e�cient manner is

the goal of the research of our group under the direction of Sergio

Antoy. In addition to some administrative and communications

tasks, my part of the research has been the parser.

1.2 Narrowing

The language designer, having decided to include evaluable

functions in a logic language, is faced with the questions, \What

will be the meaning of a term?" and \How will we compute

that meaning?" In G�odel, the meaning of a term is based on

an equality theory that includes information about functions [3].

The same is true of the extended G�odel, except that it provides a

mechanism for the user to extend the equality theory that is built

into G�odel. In the abstract, equality is an equivalence relation

which partitions the set of all terms and which places a term in

an equivalence class that includes its meaning.

5

In actuality, it is not possible to generate the equivalence

classes for the set of all terms of a program because there are (al-

most always) an in�nite number of terms. Thus the answer to the

question \How will we compute the meaning of a term?" di�ers

dramatically from the description of the meaning of a term. In

the implementation of G�odel upon which the extension was built,

the basic method of dealing with a term whose root is an eval-

uable function involves processing it using a predicate. Loosely

speaking, a function call in a goal is changed by G�odel into a

subgoal which �nds the `answer'. An `answer' is some speci�c

term whose value is the same as the original term's value. Since

G�odel is implemented in Prolog, a function call in a G�odel goal

is changed into a Prolog predicate call.

The extended G�odel processes a term whose root is an evalu-

able function in the same manner, except that the subgoal which

�nds the answer may execute code generated from user-provided

rewrite rules. There are su�cient restrictions on the rewrite sys-

tems accepted by the extension to ensure that a term has a unique

normal form. This means that a function called on ground terms

gives just one answer.

Computing the normal form of a term requires some evaluation

mechanism. Term rewriting can accomplish function evaluation,

but would not serve to integrate the extension into G�odel in a

tidy manner because term rewriting cannot handle logic variables.

6

One can rewrite a term only if it can be made to correspond to

one of the rewrite rules by pattern matching. For example, con-

sider this rewrite system de�ning addition on the natural numbers

represented in unary form:

Plus(Zero, x)) x rule 1
Plus(Succ(x), y)) Succ(Plus(x, y)) rule 2

If one wishes to compute an answer to the equation

Plus(Succ(Zero), Zero) = z

The left-hand side can be rewritten until the value of z is found.

But term rewriting will not compute an answer to the equation

Plus(z, Zero) = Succ(Zero)

because neither rewrite rule for Plus matches Plus(z, Zero). In

fact, rewriting can transform a term that includes variables only

in special situations. For example, one can rewrite Plus(Zero,

z) only because it happens that the exact value of the second

argument is not needed to �re rule 1.

Narrowing [5] allows us to solve Plus(z, Zero) = Succ(Zero)

when rewriting does not. Trading rigor for clarity, the narrowing

process can be described as unifying z with both Zero and Succ(x)

in an attempt to �nd a value for z. The binding z/Zero leads

down a path that ends with Zero = Succ(Zero). This equation

is false; z/Zero is not a solution. But the other binding leads to

7

a valid equation: Succ(Zero) = Succ(Zero). Through narrowing

the solution to the equation has been found, and that solution is

recorded in the bindings used to reach a valid equation. In this

case, the binding is z = Succ(Zero).

Extending G�odel to allow user-de�ned evaluable functions com-

puted with narrowing improves the language by freeing the pro-

grammer from the constraints of a predicates-only style. Pro-

grams written with functions are often clearer and more intu-

itively appealing. The implementation of narrowing in our �rst

version of this extended G�odel is leftmost inner-most narrowing1.

This was a candidate for an early implementation because it

can be accomplished with the well understood technique
atten-

ing [13]. The ultimate goal of this research is the implementation

of needed narrowing [1], a strategy which performs only steps that

are, in a precise technical sense, needed to compute a solution.

On ground terms needed narrowing performs what is referred to

as lazy evaluation in functional programming. This strategy is

sound, complete, and optimal for inductively sequential rewrite

systems, a class that encompasses the �rst-order programs of

functional programming languages such as ML and Haskell.

1In appendix A some comments on future extensions can be found.

8

Chapter 2

The Extended G�odel

The di�erences between the original G�odel Language and the

extended G�odel are both syntactic and semantic. The following

sections discuss the inclusion of rewrite rules in a module, the kind

of rules allowed, and overloading. Then we present an example

of an extended-G�odel module.

2.1 The Design of the Language

Some of the guiding ideas for the design of the extended G�odel

were these:

� A G�odel module should be an acceptable extended-G�odel

module.

� The user should receive warnings rather than errors when

she provides rewrite rules that violate some requirement of

the extended G�odel.

9

� The
avor of a logic programming language should be re-

tained.

� The capability for de�ning evaluable functions should not

detract from the usefulness of the G�odel language.

The majority of the new code needed for the parsing of the

extended G�odel tests rewrite rules. Language design decisions

were required as the plan for testing the rules developed. The

attractiveness of restricting the accepted rewrite systems to those

which are con
uent and which allow us to compute normal forms

e�ciently motivated the choice of the tests of the rewrite rules.

Tests which produce warnings are the test for left-linearity,

the test that the condition of a rule is a conjunction of equations,

the test for overlapping, and the tests of the variables in a rule.

All of these are explained in section 3.5. The decision to print

a warning and compile some programs which do not meet all

the requirements was motivated by the fact that some attractive

properties of rewrite systems are undecidable. Thus there may

be programs that are useful and perform in a reasonable manner

which do not meet all the requirements we have established to

guarantee reasonable behavior. The tests which are classi�ed

as errors and cause the compilation to abort are the test that the

rewrite system is constructor-based and the test that rewrite rules

exist for an evaluable function declared with a system-de�ned

10

target type. Overloading errors are caught by the original G�odel

parser.

2.2 Syntax Details

The appearance of a module written in the extended G�odel

di�ers from that of a module written in G�odel in only one way:

it includes rewrite rules. A G�odel module has a section for de-

clarations followed by a (possible empty) section for statements.

A statement is simply a clause, though G�odel handles many con-

structs in the body of a clause which are unknown to a Prolog

programmer. Corresponding to these two sections, the extended

G�odel has three|one for declarations, one for statements and one

for rewrite rules. Since either statements or rewrite rules or both

may be absent from a module, a G�odel module will present no

problem to the extended G�odel system. It simply sees it as a

module which has no user-de�ned evaluable functions.

As an example, consider this small G�odel module which de�nes

the natural numbers, Plus and a test for Zero:

MODULE Nat.

BASE Nat.

CONSTANT Zero: Nat.

FUNCTION Succ: Nat -> Nat.

PREDICATE Plus: Nat * Nat * Nat;

IsZero: Nat.

11

IsZero(Zero).

Plus(Zero, x, x).

Plus(Succ(x), y, Succ(z)) <- Plus(x, y, z).

A module in the extended G�odel which accomplishes the same

tasks includes rewrite rules de�ning Plus. Also, the symbol Plus

is declared in the FUNCTION part of the module, rather than the

PREDICATE part.

MODULE Nat.

BASE Nat.

CONSTANT Zero: Nat.

FUNCTION Succ: Nat -> Nat;

Plus: Nat * Nat -> Nat. % DIFFERENT HERE

PREDICATE IsZero: Nat.

IsZero(Zero).

Plus(Zero, x) => x. % HERE

Plus(Succ(x), y) => Succ(Plus(x, y)). % HERE

The symbol => is a reserved, binary, in�x, overloaded operator

used for the de�nition of evaluable functions.

The rewrite rule Plus(Zero, x) => x can be transformed

into the clause Plus (Zero, x, x) by
attening. Flattening cre-

ates predicates from equational speci�cations. One implementa-

tion of the extended G�odel which we considered would consist of

a preprocessor which would
atten each rewrite rule to produce a

regular G�odel module. Though this approach would have simpli-

city as an asset, it would preclude the implementation of needed

narrowing because the evaluation of terms would always be done

12

by the mechanism provided by G�odel.

Careful consideration of the above extended-G�odel module

may excite some protest that the FUNCTION declarations lump

together Succ and Plus which have radically di�erent roles to

play in the module. This is true, and is certainly less than ideal.

The motivation for this approach will be presented in the discus-

sion of disadvantages of this syntax.

Though the presence of rewrite rules is the most striking syn-

tactic di�erence between G�odel and the extended G�odel, there

is much more that needs to be said about syntax. The details

concern the form the rewrite rules may have, and the properties

the rewrite system must have. Additional information about the

property called inductive sequentiality can be found in appendix

B.

2.3 Conditional Rewrite Rules

In the extension, the left and right operands of the reserved

symbol => are interpreted as the left- and right-hand sides of a

rewrite rule. Conditional rewrite rules are also allowed. They

have the form l => r <- c. The condition c is a conjunction of

equations such as those that can be found in the body of a clause.

If c is false, then the rule is not �red, even when the term being

narrowed uni�es with l.

13

As an example of the usefulness of conditional rewrite rules,

consider this rewrite system presented by Suzuki, Middeldorp,

and Ida in their paper on con
uence [12]:

Divide(Zero, Succ(x))) Pair(Zero, Zero).
Divide(Succ(x), Succ(y))) Pair(Zero, Succ(x))

 x < y = true.
Divide(Succ(x), Succ(y))) Pair(Succ(q), r))

 x � y = true
& Divide(x� y, Succ(y))
= Pair(q, r).

Here it is assumed that subtraction is suitably de�ned on the

unary representation of natural numbers. Solving the equation

Divide(Succ(Succ(Zero)), Succ(Zero))
= Pair(quotient, remainder),

in the process of rewriting the term

Divide(Succ(Succ(Zero)), Succ(Zero))

it becomes apparent that it matches the left-hand sides of both

the second and third rules. But the condition, x < y, of the

second rule is false, therefore the second rule is not �red. The

third rule is �red.

This example of the usefulness of conditional rewrite rules

overlooks the restrictions placed on rules in the extended G�odel.

The above rules are overlapping, for example, meaning that some

left-hand side may match more than one rule. The extended

14

G�odel sends a warning to the user when a rewrite system is over-

lapping. The restrictions are needed to attain the long term goal

of this research - the implementation of needed narrowing.

2.4 Restrictions on Rules and Systems of Rules

The rewrite rules provided by the user are expected to have

the properties that they are left linear, constructor-based [4, 8]

and non-overlapping.

A rule is left linear only if its left-hand side contains no re-

peated variables. A group of rules is constructor-based if every

rule has at the root of the term on the left-hand side an evaluable

function and has as the subterms of the left-hand side terms con-

taining no evaluable functions. For example, the following two

rules violate the above conditions.

SetUnion(x, x) => x.

SetUnion(x, SetUnion(y, z))

=>

SetUnion(SetUnion(x, y), z).

The second rule above violates the constructor-based restriction

even in isolation, but rules cannot be checked one at a time to

ensure that a rewrite system is constructor-based. A pair of rules

which are legal in isolation can violate the restriction when taken

together. For example,

15

Double(Halve(x)) => x.

Halve(Double(x)) => x.

In isolation, Double(Halve(x)) might be seen to have an evalu-

able function as its root, if Double is an evaluable function. Also,

it would have no evaluable functions as subterms if Halve is a

data constructor. But taken together with Halve(Double(x))

=> x, it forms a rewrite system that is not constructor-based.

Halve, like Double cannot be both an evaluable function and a

data constructor.

A rewrite system is overlapping if some (sub)term matches

more than one rewrite rule. For example, the rewrite rules

F(Zero) => Zero.

F(Succ(x)) => Zero.

F(Succ(Succ(x))) => Succ(F(x)).

is overlapping because F(Succ(Succ(Zero)) matches both the

second and the third rewrite rules|the second with x = Succ

(Zero) and the third with x = Zero. Thus the result of evalu-

ating F(Succ(Succ(Zero)) is both Zero and Succ(F(Zero)).

The violation of the requirement for left linearity has been

given the status of a warning. Some programs which include re-

write rules that are not left linear are well-behaved. For example,

the following program (if it is considered to be the whole program

and not just a program fragment) is not problematic.

16

MODULE F.

IMPORT Integers.

FUNCTION F: Integer * Integer -> Integer.

F(x, x) => x.

Where the extended-G�odel parser prints a warning concerning a

rewrite rule, the code includes a stub for changing this to an error.

A later implementation of an evaluation strategy may require

tighter restrictions.

2.4.1 Requirements of Conditions

The conditional part of a rewrite rule must be a conjunction

of equations. For example, the module

BASE Bool.

CONSTANT MyTrue, MyFalse: Bool.

FUNCTION InRange: Integer -> Bool.

InRange(x) => MyTrue <- x > 10 n= x < 0.

InRange(x) => MyFalse <- x =< 10 & x >= 0.

has a problem. Neither of the conditional parts of the rewrite

rules are the conjunction of equations.

Next, consider variables. A condition concerning variables is

imposed on the rewrite rules of the extension. In general, in

a rewrite system, the variables on the right-hand side of a rule

must be a subset of those on the left-hand side. A bit more

exibility is obtained by allowing extra variables in the right side

17

and/or condition of a rule if they satisfy the con
uence criteria

established by Suzuki, Middeldorp, and Ida [12].

As a �rst step in guaranteeing con
uence (a property of some

rewrite systems that involves multiple rewritings of a single term),

the class of term rewriting systems under consideration must be

described. Suzuki, Middeldorp, and Ida place conditional term

rewriting systems, CTRSs, in four categories. The �rst requires

the variables in the right-hand side of a rule and the variables in

the conditional part of a rule to be present in the left-hand side

of a rule. So, if the form of a conditional rewrite rule is

l => r <- s1 = t1 & s2 = t2 & : : :& sn = tn;

then the variables in r together with the variables in the equations

that make up the condition must be a subset of the variables in l.

As this is the �rst category of CTRSs, these are called 1-CTRSs.

LPG, discussed below, deals with 1-CTRSs.

A 2-CTRS has only the restriction that the variables in r are a

subset of the variables in l. The programming language BABEL,

also discussed below, deals with 2-CTRSs but includes others that

are not 2-CTRSs. The extended G�odel allows the de�nition of

rewrite systems that are 3-CTRSs. These require that variables

in r be present in l or in the conditional part of the rule.

The con
uence criteria restrict the variables of the equations

that form the condition of a 3-CTRS. The restriction on the vari-

18

ables that appear in the left-hand side of an equation is this: each

variable in some si must be in l or in some tj that comes before

si. Another way of saying this is that new variables are not in-

troduced in any s. Rewrite rules with this property are called

properly oriented.

Variables in the right-hand side of an equation are restricted,

too. The variables in any t must not be found in l or in any part

of the condition up to t. This property is called right-stability.

A further restriction on the right-hand sides of the equations re-

quires each to be a certain kind of term. For the extension it

is adequate to say that the right-hand sides must have no evalu-

able functions in them. This requirement is crucial for ensuring

con
uence. A relaxed version of this requirement allows an eval-

uable function in the right-hand side of an equation if the subterm

whose root is that evaluable function does not match the left-hand

side of any rewrite rule. Basically, these restrictions mean that

any t must be in normal form with respect to the non-conditional

part of the rewrite system.

2.5 Overloading

G�odel disallows the declaration in a module of distinct symbols

with the same name and arity in the same category. For the

extended G�odel, this prevents declaring a data constructor which

19

is indistinguishable from an evaluable function. For example, the

following extended-G�odel module has an error, since there are

two symbols with the same name and arity in the FUNCTIONS

category:

MODULE Nat.

IMPORT Integers.

BASE Nat.

CONSTANT Zero: Nat.

FUNCTION Succ: Nat -> Nat;

% SAME NAME, ARITY

Succ: Integer -> Integer;

% SAME NAME, ARITY

Interpret: Nat -> Integer.

Interpret(Succ(x)) => Succ(Interpret(x)).

However, programmers aren't saved from their ability to write

bad programs. The following module has no errors.

MODULE Nat.

BASE Nat.

CONSTANT Zero: Nat.

FUNCTION Succ: Nat -> Nat; % MANY SUCCs

Succ: Nat * Nat -> Nat.

PREDICATE Succ: Nat * Nat * Nat;

Succ: Nat.

The extension preserves the behavior of the G�odel module system

as it relates to importing a symbol that has the same name and

arity as a symbol declared in the importing module. The symbol

in the importing module obscures the imported symbol. Two

20

imported symbols that clash will cause an error in compilation if

the symbol appears in a statement or rule.

2.6 Evaluation of the Syntax

From the standpoint of user-friendliness, the syntax of the ex-

tended G�odel has the advantages already mentioned: formaliza-

tion of a problem can include the familiar functional forms and

programs are clearer. Also, rewrite rules can be interspersed with

statements, which prevents the programmer from being burdened

with the detail of sorting them herself.

From the standpoint of implementation, this syntax has the ad-

vantage of being only minimally di�erent from standard G�odel.

This is the overwhelming advantage of the syntax we chose. By

avoiding new categories of declarations and new syntax for declar-

ing data constructors, we have been able to use the parser that

came with the G�odel language for the vast majority of the parsing

of the extended language. Though this advantage of the syntax

requires only a sentence to state, it cannot be over-emphasized:

the syntax of the extended G�odel is only slightly di�erent from

the syntax of G�odel.

A disadvantage of the syntax we chose is the combining of

declarations of data constructors and evaluable functions. An

unsophisticated user may well be confused by the presence of re-

21

write rules de�ning one symbol declared in the FUNCTION section

and the absence of rules de�ning another. A much tidier method

of declaration would group a type declaration with all the data

constructors that can form objects of that type. For example, it

would be preferable to write

MODULE Nat.

BASE Nat = Zero | Succ: Nat.

% DIFFERENT HERE

FUNCTION Plus: Nat * Nat -> Nat.

PREDICATE IsZero: Nat.

IsZero(Zero).

Plus(Zero, x) => x.

Plus(Succ(x), y) => Succ(Plus(x, y)).

where the BASE declaration reads, \a term of type Nat can be

the nullary symbol Zero or the unary symbol Succ together with

its argument of type Nat." This not only solves the problem of

declaring data constructors side-by-side with evaluable functions,

but also allows us to see at a glance all the data constructors

that can make a term of type Nat. However, this nicer syntax

would be much more demanding to implement. The extended

parser would require changes in the predicates that parse BASE

declarations, changes in the predicates that parse FUNCTION de-

clarations, and changes to the symbol table generator. The extra

e�ort to make these changes would contribute nothing toward the

goal of implementing needed narrowing. Certainly separating the

22

declarations of data constructors and evaluable functions would

be a good choice for a new language.

Another manner in which the declarations of data constructors

could be separated from the declarations of evaluable functions

does not have the advantage of showing at a glance a type and all

its constructors. A section could be added to the declarations for

evaluable functions. With this approach, G�odel modules could

still be parsed by the extended G�odel parser. This would be less

demanding to implement. Since the design and implementation

of a new language is a major undertaking, we capitalize on the

features G�odel already has. Our approach has been to contain the

e�ort of producing a functional logic language by extending with

a functional component an already implemented logic language.

2.7 A Simple Example

The following are the standard and the extended versions of a

program fragment dealing with family relations [10]. In G�odel,

following a well-established tradition for this kind of relations,

the program fragment is

PREDICATE Father, Mother, PaternalGrandFather,

Parent : People * People.

Father(Joe,Tom).
...

PaternalGrandFather(x,y) <- SOME [z] (Father(x,z)

23

& Father(z,y)).

Parent(x,y) <- Father(x,y).

Parent(x,y) <- Mother(x,y).

where the type People and the predicate Mother are suitably

de�ned. In the extension, the same program fragment could be

coded as

FUNCTION Father, Mother,

PaternalGrandFather : People -> People.

PREDICATE Parent : People * People.

Father(Joe) => Tom.
...

PaternalGrandFather(x) => Father(Father(x)).

Parent(x,Father(x)).

Parent(x,Mother(x)).

The de�nition of Father makes clear that Tom is the father of Joe

rather than the reverse. The de�nitions of PaternalGrandFather

and Parent avoid several extraneous variables, a quanti�er, an

operator, and two clause bodies.

Since the relation between a person and their father is, in fact,

a function, it seems a burden to require a programmer to cast it

as a predicate by writing Father(Joe, Tom). But in identifying

all the grandparents of a person, a predicate is superior since

backtracking will �nd the many answers. A system that is
exible

enough to model single-valued relations as functions and multi-

valued relations as predicates encourages accurate modeling of a

24

problem.

25

Chapter 3

Implementation

3.1 The Original G�odel Parser

Modi�cation of the parser to accept evaluable functions was

facilitated by the straight-forward structure and careful comment-

ing of the system code. The G�odel parser is written in Prolog.

For our purposes, the system code which forms the 1.4 release of

G�odel from Bristol can be divided into four parts. First, there are

a group of �les which de�ne the system-provided G�odel modules

(such as Integers and Lists). Second, there are the six �les which

comprise the parser. Third, a single �le contains the compiler.

Fourth are some system �les not a�ected by this work. All four

parts consist of Prolog code, but some of the code was written

in Prolog and some was written in G�odel and compiled to Prolog

by machine.

A
Tokenizer

B
Parser

C
Compiler

D

� The input at A is a G�odel module (G�odel code).

26

� The input at B is a list of tokens.

� The input at C is the representation of the G�odel code.

� The output at D is Prolog code.

The parser begins with a tokenizer which catches errors such

as an unexpected end-of-�le, incomplete strings, and illegal AS-

CII characters. Throughout the parser, error messages are pro-

cessed by means of a call to a generic error-printing predicate.

Consequently, error messages can be passed up from lower level

predicates to higher level predicates as the list of tokens produced

in the �rst stage makes its way through the parser. For example,

if an undeclared predicate name is encountered as the parser is

working on a clause, the string \undeclared or illegal symbol"

is passed up to the more general module parsing predicate. It

calls the error printing predicate and then allows the parsing to

continue. In this manner several errors can be found in one com-

pilation instead of aborting the compilation when the �rst error is

found. This error message passing technique is just one example

of the tidiness of the parsing code.

The list of tokens produced by the tokenizer is passed to the

predicate parse module. There are two separate paths through

the parser for groups of tokens. One processes declarations; the

other processes statements. The path that parses declarations is

itself made up of many paths through the parser. Module de-

clarations go through one group of predicates, Base declarations

27

through another, and each of the ten other declarations through

their own group of predicates.

Statements are parsed with the help of a symbol table made

from the declarations parsed earlier. If no error causes the parsing

to abort, the output from the parser is not just con�rmation

that the module being parsed is well-formed, but also an object

representing the module. This object, the internal representation

of a module, is written out to a �le and is handed to the compiler

which generates Prolog code to implement the predicates.

3.2 The Internal Representation of a Module

The details of the internal representation of a module were

the main motivation for almost all implementation decisions con-

cerning the parser. Like other parts of the parser, the internal

representation has a tidy structure. Objects are wrapped up in

logical groups marked with names that hint at their importance

and specify the number of objects in the group. Since the internal

representation is a Prolog object, it is proper to call these wrap-

pers function symbols. In a sense, these function symbols play

the part of data constructors, except that they do not a�ect an

object's type (as Prolog is a typeless language).

Consider, as an example, the function symbol ProgDefs.Pro-

gram.F4. Together with its four arguments, this symbol forms the

28

internal representation of a program. The choice of the word pro-

gram for this function symbol re
ects the fact that G�odel has a

module system that allows one module to import another. Thus

the internal representation of a program may not be the internal

representation of a single module, but rather the internal repres-

entation of several modules.

To accomplish the modi�cation of the parser, it was important

to distinguish a program from a module. Other names given

to objects include language, symbol table, code, constraint, and

variable dictionary. It is our hope to spare the reader the details

of these names and objects, though some are signi�cant to the

explanation of implementation decisions. Most of the objects in

the parser have easily understood names, fortunately. There are

atoms, predicates, functions, terms, lists, heads, bodies, switches,

trees, delays and variables.

The internal representation of a program must provide all the

information about the program needed by the compiler. Most

important, the representation includes a dictionary of the symbols

that make up the language of the program. Since G�odel is strongly

typed, has a module system and distinguishes between symbols

by the category in which they are declared and their arity, a

dictionary entry includes the name of the module in which the

symbol was declared, its type, the types of its arguments and its

category (for details, see appendix C).

29

Detailed information concerning the modules that make up a

program forms a second part of the internal representation of a

program. The name of each module (actually the name of the

�le in which it was found) is recorded along with an indication

that the module is an EXPORT module, a LOCAL module or

a CLOSED module. The structure of the importing module is

documented so that the dependencies of one module upon another

can be found.

The compiler's work is the transforming of G�odel code into

Prolog code. Naturally the internal representation of a module

needs to include the G�odel code. In the original G�odel, the code is

simply the statements that de�ne the behavior of the predicates.

In the extended G�odel, rewrite rules are included also. Since the

statements and rules have already been through the parser and the

type checker, it is expedient to send the compiler a representation

of the code. The representation of the code speci�es the structure

of and the symbols in the statement (or rule). Compilation is

facilitated by the grouping together of the pieces of code relating

to the behavior of a single predicate of evaluable function.

3.3 Parsing in a Logic Language

G�odel 1.4 was implemented by Anthony Bowers and Jiwei

Wang at the University of Bristol. Anthony Bowers designed

30

the internal representation of a module and Jiwei Wang wrote

the parser.

The process of writing a parser in a logic language can be very

simple if one is parsing a context-free language. A grammar rule

can be changed into a clause in a straightforward manner. In

The Art of Prolog [11], Sterling and Shapiro give this example:

if a context-free grammar includes the rule

sentence ! noun phrase, verb phrase

then the Prolog program to parse the language of that grammar

will include the clause

sentence(S) :- append(NP, VP, S), noun phrase(NP),

verb phrase(VP).

As G�odel is a context-free language, a G�odel parser could be

written directly from the grammar describing G�odel. However,

this simple method of parser production su�ers from a signi�cant

ine�ciency because of the calls to append. A slightly more com-

plicated method of transforming the grammar rules solves this

problem using di�erence-lists to avoid the calls to append.

Di�erence-lists represent a sequence of elements, just as lists

do. But di�erence-lists are purposefully incomplete. A di�erence-

list consists of some elements and a logic variable standing in for

the missing part of the sequence. For example, the di�erence-list

that corresponds to the list [1,2] is the structure [1,2|Xs]nXs

31

where Xs is the incomplete portion of the di�erence-list [11]. The

bene�t of this incompleteness is that the logic variable Xs can

be instantiated at some suitable time, essentially appending an-

other list to [1,2]. To preserve the usefulness of the di�erence-

list, the Xs would be instantiated to a di�erence-list. So, to

add the numbers 4 and 5 to the di�erence-list [1,2,3|Xs]nXs,

one would bind Xs to [4,5|Ys] and form the new di�erence-list

[1,2,3,4,5|Ys]nYs.

Transforming a context-free grammar into clauses using di�erence-

lists is easily done either by hand or by a Prolog program. The

group of clauses obtained in this manner is called a de�nite clause

grammar. As Prolog programs, these grammars take advantage

of backtracking when an alternative solution is needed.

Backtracking might also come into play if there is ambiguity.

In this case, the process of parsing a module is not really func-

tional since the relation between programs and objects repres-

enting them is not single valued. As logic programming is suited

to calculating relations, one might write a parser that uses back-

tracking to assemble a list of all the possible parses of the input.

If some input results in a list of length zero, it is ill-formed. If it

produces a list whose length is greater than one, it is ambiguous.

A list of length one would be the desired output.

The G�odel parser is a recursive descent parser that was writ-

ten using some of the ideas of de�nite clause grammars. The

32

grammar describing terms, for example, was manipulated (by

hand) into a useful form and used to write the parser. difference-

lists were used in some places, and the code for parsing terms

uses backtracking to �nd multiple parse trees for a list of tokens.

However, Jiwei Wang was concerned with e�ciency. Therefore,

he wrote some parts of the parser in a style that is di�erent from

the simple de�nite clause grammars approach. For example, some

parts consist of predicates that are intended to succeed exactly

once and leave no choice points behind. Also, a stack is used for

sorting out the precedence of operations in a term. For details,

see appendix D.

On the subject of the e�ciency of the parser, Jiwei Wang [14]

reports,

The parser uses the recursive procedure method. By
analyzing the Goedel BNF grammar, I found out Goedel
grammar can be transformed into a simple recursive
pattern. Details can be found in term.pl. This should
be true to any mathematical logic based language. The
approach turned out to be very e�cient. The parser
can parse 200 line/second on a Sparc10. Comparing
with the 1000 line/sec performance of Sepia's parser
written in C, this is quite remarkable.

33

3.4 The Extended Parser - Implementation Deci-

sions

The extended parser plays the same role in the extended G�odel

that the original parser plays in G�odel. It provides an answer

to the question, \Is this module well-formed?" and either prints

error messages if it isn't or produces an object representing the

module if it is. The presence of rewrite rules a�ects both the

Boolean output of the parser and the code-representing output.

3.4.1 Distinguishing Between Evaluable Functions and

Data Constructors

We discussed above the negative aspects of declaring both eval-

uable functions and data constructors in the FUNCTION section of

a module with regard to program clarity. The implementation of

the extension to G�odel requires distinguishing between the two

for parsing, compiling and for the execution of goals. Since we

chose not to make major changes in the form of declarations, we

must resort to examining the rewrite rules included in a module

to determine the status of a function symbol. If there is a rewrite

rule de�ning the behavior of a symbol declared in the FUNCTION

part of a module, it is an evaluable function. If not, it is a data

constructor.

The code to identify the evaluable functions of a module would

34

be simple if not for the fact that rewrite systems must be constructor-

based in the extension. One cannot collect the names of the sym-

bols that appear at the root of the term on the left-hand side of the

symbol => and treat those and only those as evaluable functions.

The problem is that the symbols might be used inconsistently as

they are in the rewrite system

Double(Halve(x)) => x.

Halve(Double(x)) => x.

which was already discussed. The extended-G�odel code gathers

the names of the symbols that appear as the left-hand side's root

and then checks that these symbols don't occur in the left-hand

side's arguments.

The G�odel system writes out several �les during the compila-

tion process. The extension adds one to the number of auxiliary

�les by writing out a .ef �le. This �le holds a list containing the

names of the evaluable functions in the module. Referencing the

.ef �le simpli�es compilation. The alternative would be to pass

the list of evaluable functions from the parser to the compiler

when the object representing the module is passed. However, the

nature of Prolog programming makes the addition of an argument

a serious modi�cation. There is no type system to warn us that

some extra argument was inserted in one place but overlooked

in another. The code will continue to execute with possibly dis-

astrous results.

35

3.4.2 Representing Rewrite Rules

The representation of the rewrite rules that were included

by the user in an extended-G�odel module must be included in

the representation of the module. Naturally, we want to use the

structures already in place to represent the parts of an extended-

G�odel module which are identical to a G�odel module. The ob-

ject marked by the function symbol ProgDef.Program.F4 has a

section for the representation of statements. Since rewrite rules

are very much like statements (statements de�ne the behavior of

predicates and rewrite rules de�ne the behavior of evaluable func-

tions), it seems reasonable to include the representation of rewrite

rules with the representation of statements.

It was necessary to decide between two approaches. The �rst

extends the representation within Code to include rewrite rules

marked with their own function symbol. The second incorpor-

ates the representation of the rewrite rules into the Code section

without introducing any new function symbols. In the �nal ana-

lysis, the second proved expedient.

To accomplish the representation of the rewrite rules using

the �rst approach, a new function symbol ProgDefs.RuleDef.F4

would be needed. Since the object ProgDefs.Code.F2 has as its

second argument a dictionary of symbol which have statements

de�ning their behavior, an entry for each symbol which has a

36

rule de�ning its behavior would be inserted into the dictionary.

Just as statements are marked as predicate de�nitions with the

function symbol ProgDefs.PredDef.F4 we could mark rewrite

rules with the new symbol.

This plan has the merit of tidiness. Since the writers of the

parser were careful to provide a plethora of function symbols

that identify objects in the representation, a seamless integration

would need to enrich the representation with distinct symbols for

the new objects. Also, the production of the representation of

rewrite rules with their own identifying function symbol necessit-

ates the creation of a special path through the parser for rules.

This parallels the implementation decisions made by the original

parser writer, since there is a separate path through the parser for

statements (as described above). However, the introduction of a

new function symbol has tremendous consequences. Most predic-

ates that look through the representation within Code will need to

be modi�ed so that they succeed, with some reasonable behavior,

when they see ProgDefs.RuleDef.F4. Some predicates will not

need modi�cation because failure is the desired behavior when

they see ProgDefs.RuleDef.F4. The number of modi�cations

needed is large. Also, the result of missing even one of the neces-

sary modi�cations is the complete interruption of compilation.

Another problem emerges when adding a separate path to the

parser for dealing with rewrite rules. The type checking code of

37

the G�odel parser is quite complex. It would be wasteful to ex-

pend the e�ort to write a new type checker, but it isn't easy to

see how rewrite rules could be sent to the existing type checker.

Type checking is integrated into the parsing process, as one might

imagine, not done in a separate pass. Many type checking predic-

ates of the G�odel system were written in G�odel and compiled into

Prolog. Thus the code available to us is machine generated. It

has no comments and all variable names are the unhelpful choices

of a machine. Thus it is very di�cult to guess the function of the

type checking predicates.

For these reasons, we chose the second approach to producing

a representation of rewrite rules.

Incorporating the representation of the rewrite rules into the

Code section without introducing any new function symbols might

be expected to present a di�erent but similarly challenging set of

problems. Surprisingly this was not the case. The main modi�c-

ation to the parser that facilitated this approach was small, but

more signi�cant than the modi�cations that would be needed for

the �rst approach.

To accomplish the representation of the rewrite rules using

the second approach, a new system-wide symbol, => was de�ned.

The de�nition is modeled on G�odel's system-wide de�nition of

the equals symbol, =, and makes => an in�x predicate. Included

in the de�nition is the information that => is binary, is exported

38

to every module, and is part of the module named ". All system-

wide symbols are part of the module named ". The code for

adding the symbol => consists of one change to the system �le

system.pl and one change to the system �le parser.pl. In

system.pl, a single call to SharedPrograms.InsertSymbol.P5

was added:

'SharedPrograms.InsertSymbol.P5'(

'MetaDefs.Name.F4'(

'"', % IN THE MODULE "

'"=>', % DEFINE =>

'MetaDefs.Predicate.C0', % AS A PREDICATE

2), % OF ARITY TWO

F,

'ProgDefs.Exported.C0',

'ProgDefs.PredicateDecl.F3'(

2,

'Syntax.ZPZ.C0', % INFIX

['MetaDefs.Par.F1'(0),

'MetaDefs.Par.F1'(0)]), % MYSTERY PARAMETERS

G)

This call was inserted into a predicate SharedPrograms.Initial-

izeLanguage.P2. In parser.pl, two lines of new code provide

information that the symbol => is reserved.

reserved predicate name('=>').

reserved predicate name('~=>').

The symbol ~=> is also reserved and is part of G�odel's imple-

mentation of negation.

39

3.4.3 Declaring Evaluable Functions

An implementation decision already discussed concerns the

method of declaring evaluable functions. A change was made to

the module system to enable the declaration of a user-de�ned

function which returns a system-de�ned type. To see the neces-

sity of this change, consider the following version of a module Nat

which was presented before:

MODULE Nat.

IMPORT Integers.

BASE Nat.

CONSTANT Zero: Nat.

FUNCTION Succ: Nat -> Nat;

Succ2: Integer -> Integer;

Interpret: Nat -> Integer.

Interpret(Succ(x)) => Succ2(Interpret(x)).

Succ2(x) => x + 1.

If the G�odel module system is not changed, this module will be

rejected because it declares two functions whose target type is

non-local (in this case system-de�ned). G�odel was written under

the assumption that any symbol declared a FUNCTION will be used

as a data constructor. Thus the term Succ2(3) would not be re-

ducible and would be some new Integer. Similarly, Interpret(x)

would be a new Integer.

Clearly the G�odel system can't allow a user to de�ne new

Integers. To exclude these problematic modules there is a predic-

40

ate among the group of predicates which does type checking on

the function declarations. It enforces the condition that a func-

tion's target type is a type declared in the local module. The

�rst part of the modi�cation involved simply replacing a vari-

able, ModuleName, with an underscore everywhere it occured in

the predicate function type aux. This enables success in the

test for declarations which would have failed the test when the

module name of the target type didn't unify with the name of the

module being parsed. Not surprisingly, this change necessitated

another change to compensate for the discarded test.

The problem that needed to be solved after the change to

function type aux involves the possibility that the user might

declare a symbol in the FUNCTION section but neglect to provide

rewrite rules. In this case, it would be treated as a data con-

structor. If its target type is user-de�ned, this will not present

much of a problem, though it may produce behavior the program-

mer didn't expect. But a system-de�ned target type should be

treated as an error if there are no rewrite rules for the symbol.

The tests which �nds these errors comes at the end of the parsing

process.

41

3.5 Testing the Rewrite Rules

The most signi�cant implementation decision involving test-

ing of the rewrite rules was this: where in the parser should the

tests be done? The original code does many checks of the state-

ments that are part of a program as parsing progresses. Since the

new representation of rewrite rules puts them in the structure as

statements, it seemed reasonable to test the rewrite rules inside

the statement-checking predicates. This would avoid the pitfalls

inherent in writing predicates to create a separate path through

the parser for rewrite rules. To some extent, this was successful.

However, a combination of these two approaches worked best.

The tests of the rewrite rules are located in the midst of a predic-

ate called parse statements. The new predicate check rules

looks only at the statements whose head has the symbol => at

its root|that is, it looks only at the rewrite rules. In this sense,

there is a path through part of the parser which is for rewrite rules

exclusively. Each statement is either tested by check rules or

passed up because it isn't a rule. But afterward, every state-

ment goes through all the tests that the original parser has for

statements.

The predicate parse statements deals with one statement at

a time. This is a good place to test for left-linearity and for

testing the variables in a rule, among others. But the testing of a

42

rewrite system to see if it's constructor-based cannot be done at

this point in the parsing process. All the rewrite rules that were

provided in a module must be examined together to determine

whether the system is constructor-based. For this reason, there

is a second place in the code where testing of rules occurs. This

is at the end of a predicate called parse module which is very

near the top-level of the parser. This is also the place where the

group of rewrite rules de�ning each distinct evaluable function is

tested to see if they are non-overlapping.

Testing the condition of a rewrite rule can be done one rule at

a time. At �rst glance, it might seem that if the condition is not a

conjunction of equations, there is no need to see if the variables in

the condition meet the con
uence requirements. But the richness

of the G�odel language becomes an issue for implementing these

tests: some G�odel constructs are not actually equations, but can

still be tested. Speci�cally, a rule such as

F(x,y) => y <- SOME [x] (x=2)

fails the test for the condition being a conjunction of equations,

but can still be processed as if it passed. The variable, x, in the

condition is not the same variable as x in the left-hand side of the

rule. A reasonable response to this rule would not produce the

\not a conjunction of equations" warning. However, the rule is

not properly oriented, if we consider x=2 to be the conjunction

43

of equations, so a warning is printed.

The tests of the condition of a rewrite rule are located in-

side parse statements where the writers of the parser put their

checks of statements. The representation of the rule is complete at

that point in the parsing process, and code which is syntactically

wrong has been rejected.

3.6 Parser Output

Because => has been de�ned as a system-wide predicate sym-

bol, the representation of a rewrite rule appears with the state-

ments in the object representing a module. Luckily, the G�odel

parser groups the clauses de�ning a single predicate together.

Thus locating the rewrite rules in the structure (an AVL tree)

that holds the statements is not di�cult.

As an example, consider the rewrite rule

Plus(Zero, x) => x.

Its representation appears as one of the clauses de�ning =>. Since

the extended G�odel sees => as an in�x predicate, the representa-

tion indicates that the rule is a head clause.

[MetaDefs.<-'.F2(

MetaDefs.Atom.F2(% THE HEAD

MetaDefs.Name.F4(

",

44

"=>, % HAS ROOT =>

MetaDefs.Predicate.C0,

2),

[MetaDefs.Term.F2(% LEFT-HAND SIDE

MetaDefs.Name.F4(

"Nov7,

"Plus,

MetaDefs.Function.C0,

2),

[MetaDefs.CTerm.F1(% RIGHT-HAND SIDE

MetaDefs.Name.F4(

"Nov7,

"Zero,

MetaDefs.Constant.C0,

0)),

MetaDefs.Var.F2("x,0)]),

MetaDefs.Var.F2("x,0)])

MetaDefs.Empty.C0)] % EMPTY BODY

45

Chapter 4

Conclusion

4.1 Comparison with LPG and BABEL

LPG (Langage de Programmation G�en�erique) [2] is a functional-

logic language based on Horn clause logic with equality. LPG

allows the user to de�ne evaluable functions by providing rewrite

rules. Like G�odel, LPG is a strongly typed language and all

symbols must be declared.

The rewrite rules of an LPG program need not be constructor-

based. The rules must be left-linear. Conditional rewrite rules

are allowed, but the restriction on the variables is more strict than

in the extended G�odel. Every variable in the condition must be in

the left-hand side of the rule. Following the classi�cation system

mentioned before, the term rewriting systems of LPG must 1-

CTRSs; that is, any variables in the right-hand side of a rule

must be in the left-hand side.

LPG allows the use of IF-THEN-ELSE construct on the right-

hand side of a rewrite rule, which the extended G�odel does not.

46

For example, one can write in LPG

%insert x into the sorted list cons(y, s)

insert(x, cons(y, s)) ==> if x =< y

then cons(x, cons(y, s))

else cons(y, insert(x, s))

endif.

This is equivalent to writing

insert(x, cons(y, s)) ==> cons(x, cons(y, s))

<== x =< y == false.

insert(x, cons(y, s)) ==> cons(y, insert(x, s))

<== x =< y == true.

As the above rewrite rules suggest, the correspondence between

symbols is this: where the extended G�odel uses =>, LPG uses

==>; where G�odel uses <- and =, LPG uses <== and ==.

LPG has a facility for specifying that an operation is commut-

ative. Commutativity could be expressed by rewrite rules, for

example,

Multiply(x, y)) Multiply(y, x)

but a rewrite system that includes such a rule may rewrite some

terms forever without �nding a normal form. LPG solves this

problem by allowing the user to express commutativity in a prop-

erty module rather than expressing commutativity with a rewrite

rule.

47

LPG can accommodate evaluable functions which return a

Boolean value. In some cases, de�ning a function rather than

a predicate makes a program more readable. A predicate which

could be de�ned by the clauses

in-range(x) <== x > 10

in-range(x) <== x < 0

can be written as a function de�ned by the rewrite rule

in-range(x) ==> x > 10 or x < 0. This functional version

might be, for some programmers, more intuitively appealing.

To do the same in the extended G�odel, a user-de�ned type for

Booleans must be created. The G�odel system does not provide a

built-in type Boolean. The values True and False are provided

by G�odel, but they are propositions (predicates of arity zero) and

have no type. In the context of G�odel's type system this makes

sense|the type of a predicate is the cross product of the types

of its arguments. So there is no type for a predicate which has

no arguments. The following is a fragment of an (somewhat odd)

extended-G�odel module which mimics the LPG function.

BASE Bool.

CONSTANT MyTrue, MyFalse: Bool.

FUNCTION InRange: Integer -> Bool.

InRange(x) => MyTrue <- x > 10 n= x < 0.

InRange(x) => MyFalse <- x =< 10 & x >= 0.

% NOTE: CONDITION NOT A

% CONJ OF EQUATIONS

48

The unusual form of the conditional part of the rewrite rules

will be discussed in section 4.2, but for the moment, notice that

a use of InRange will always compare the return value of the

evaluable function to one of the constants. For example, one

might include the equation InRange(z) = MyTrue as a part of

the body of a clause. Providing a built-in type Boolean with

constants True and False is certainly a candidate for the next

step in the extension of G�odel.

Like G�odel and LPG, the programming language BABEL[9]

requires the declaration of the symbols which are data construct-

ors, the symbols which are evaluable functions and the symbols

which are predicates. However, the declarations give the arity of

the symbol and no other type information.

BABEL groups rewrite rules and clauses together as rules.

Every BABEL rule has the form

k(t1; t2; : : : ; tn) := C !M

where C is a condition, called a guard, and C ! is optional. This

makes BABEL a little di�erent from LPG and the extended G�odel

since there is no reason that the guard has to be a conjunction

of equations. In BABEL, a head clause is equivalent to p(x) :=

true and can be written in the Prolog-like style p(x). Clauses

with a non-empty body can be written in the Prolog-like way,

too. The result is that the BABEL rules section of a program

looks like a collection of rewrite rules and clauses.

49

BABEL rules are required to be left-linear. They must be

constructor-based. Since clauses are represented as rules, this

prevents programming with clauses that have repeated variables

in the head. Working around this requirement is not di�cult.

Consider a predicate which uses uni�cation to test two lists to

see if they begin with the same element.

same-head([x|y], [x|z])

If clauses, as well as rewrite rules must be left-linear, the clause
becomes

same-head([x|y], [x2|y2]) := x = x2 -> true.

BABEL does allow the omission of the -> true part of the rule,

which makes it nicer-looking.

The restriction on variables in BABEL rules are not as strict

as in LPG. Variables which did not appear in the left-hand side

can appear in a guard. Since the conditional rewrite rules of

BABEL are not required to have a conjunction of equations as

the condition, it is not possible to �t them into the classi�cation

scheme of 1, 2, and 3 CTRSs. However, they nearly qualify as

2-CTRSs since the requirement in BABEL is the variables in

the right-hand side must be a subset of the variables in the left-

hand side. Finally, BABEL rules must be constructor-based and

BABEL allows rules of the form

f(x) rewrites to IF y THEN z

50

and
f(x) rewrites to IF y THEN z ELSE w.

The Three Languages

The extended-G�odel, LPG and BABEL versions of the module

Nat follow. Notice that the code is similar.

� The Extended-G�odel Code

MODULE Nat.

BASE Nat.

CONSTANT Zero: Nat.

FUNCTION Succ: Nat -> Nat;

Plus: Nat * Nat -> Nat.

PREDICATE IsZero: Nat.

IsZero(Zero).

Plus(Zero, x) => x.

Plus(Succ(x), y) => Succ(Plus(x, y)).

� The LPG Code

type Nat

sorts nat

constructors zero: -> nat

succ: nat -> nat

operators plus: (nat, nat) -> nat

predicates iszero: nat

variables x, y: nat

equations

1 : plus(zero, x) ==> x

2 : plus(succ(x), y) ==> succ(plus(x, y))

51

clauses

1 : iszero(zero)

end Nat

� The BABEL Code

constructors

zero/0, succ/1

functions

plus/2

predicates

iszero/1

rules

plus(zero, x) := x.

plus(succ(x), y) := succ(plus(x, y))

iszero(zero).

4.2 Correctness and Performance

The parsing code has been tested on well-formed modules and

modules that have errors meant to exercise the new code. Also,

larger modules written by members of the research team unfamil-

iar with the parsing code have been used for testing. The modi�ed

parser performs the required tasks of rejecting modules that have

errors. It produces the object representing a correct module cor-

rectly. In these ways, the parser's functionality is everything it

needs to be. In addition, the parser never objects to any module

that the original G�odel would accept unless it uses the special

52

symbol =>. Naturally, this is essential if we are to claim that our

language is an extension of G�odel.

A number of properties of the rewrite rules which are essential

to guaranteeing con
uence are checked. But a violation of the

restrictions does not always result in an error (as was discussed

in section 2.1). The decision to print a warning and compile some

programs for which con
uence cannot be guaranteed was motiv-

ated by the fact that con
uence is, in general, undecidable. Many

rewrite systems do useful computations but cannot be proved to

be con
uent. Rather than restrict the programmer to only those

systems which are known to be con
uent, the extended G�odel

prints a warning that con
uence may be lost. The programmer

has the responsibility for creating rewrite systems that do useful

work. If a user chooses to run programs that do not meet all the

con
uence requirements, she may. An example of a program that

does useful work but does not meet the con
uence requirements

is the module fragment seen above.

BASE Bool.

CONSTANT MyTrue, MyFalse: Bool.

FUNCTION InRange: Integer -> Bool.

InRange(x) => MyTrue <- x > 10 n= x < 0.

InRange(x) => MyFalse <- x =< 10 & x >= 0.

Because the predicates >, <, >= and =< are well-behaved, this sys-

tem is con
uent, even though the conditional part of the rules use

53

system-de�ned predicates and are not the conjunction of equa-

tions. Allowing such a program with a warning is attractive for

the richness of expression of the language.

In addition to being con
uent, it is attractive for rewrite sys-

tems to be terminating. A non-terminating rewrite system may

rewrite some terms forever without �nding a normal form. The

programmer has the responsibility for termination, also. Termin-

ation is, in general, undecidable.

In terms of the object produced, the parser's performance is

more than adequate. Except to enable compilation, there is no

reason to have an object representing a module. The object

produced facilitates compilation in three ways. First, it is no

di�erent in structure from the object produced by the original

G�odel parser. Second, it has all the rewrite rules represented

in one place, and in order. Third, as a side e�ect, the parser

creates a �le that lists all the evaluable functions. Thus, during

compilation the distinguishing of evaluable functions and data

constructors is fast and easy. The usefulness of the extensions

to the parser for the task of compiling rewrite rules is its biggest

claim to fame.

The amount of time required for parsing a rewrite rule is no

di�erent from the amount of time needed to parse a predicate.

This is true because the extended G�odel sees a rule as a clause

de�ning the system-declared predicate =>. The extra tests done

54

on rewrite rules, however, do add to the time needed for parsing.

In places it is necessary to look through the representation of a

rule several times to check the various properties. The e�ciency

may be increased slightly by the removal of stubs in the extension

that facilitate easy changes between error and warning status for

some tests. Still, the new code probably does not detract much,

if at all, from the e�ciency of the parser.

4.3 A Larger Program

On the following two pages is an example adapted from Bert

and Echahed [2]. The module de�nes dots which are points whose

coordinates are integers and the lines that join any two of those

points. It also de�nes quadrilaterals whose vertices are dots.

Two lines can be tested to �nd whether they are parallel. The

diagonals of a quadrilateral can be computed.

Because NotParallel is truly a predicate in the sense that

one wants a yes/no answer from it, it is a predicate in both

programs. The predicate Diagonal is a relation which is not a

function. That is, a quadrilateral has more than one diagonal.

Thus Diagonal is a predicate in both programs. A line has just

one sign, however. So Sign is a function in the extended-G�odel

code. Similarly, Dist is a function in the extended-G�odel code.

Notice that the code de�ning the behavior of NotParallel is

55

quite di�erent in the presence of functions.

56

4.3.1 G�odel Code

MODULE DotsAndLines.

IMPORT Integers.

BASE Dot, Line, Quad, Sign.

CONSTANT Pos, Neg: Sign.

FUNCTION CDot: Integer * Integer -> Dot;

CLine: Dot * Dot -> Line;

CQuad: Dot * Dot * Dot * Dot -> Quad.

PREDICATE Dist: Integer * Integer * Integer;

Sign: Line * Sign;

NotParallel: Line * Line;

Diagonal: Quad * Line.

Dist(x, y, Abs(x - y)).

Sign(CLine(CDot(x, y), CDot(z, w)), Pos) <- (x =< z) & (y =< w).

% SIGN OF SLOPE

Sign(CLine(CDot(x, y), CDot(z, w)), Pos) <- (x >= z) & (y >= w).

Sign(CLine(CDot(x, y), CDot(z, w)), Neg) <- (x =< z) & (y >= w).

Sign(CLine(CDot(x, y), CDot(z, w)), Neg) <- (x >= z) & (y =< w).

NotParallel(CLine(CDot(x, y), CDot(z, w)),

CLine(CDot(x2, y2), CDot(z2, w2))) <-

Sign(CLine(CDot(x, y), CDot(z, w)), s1)

& Sign(CLine(CDot(x2, y2), CDot(z2, w2)), s2)

& s1 ~= s2. % SLOPES HAVE

% DIFFERENT SIGNS

NotParallel(CLine(CDot(x, y), CDot(z, w)),

CLine(CDot(x2, y2), CDot(z2, w2))) <-

Dist(x, z, ans1)

& Dist(y2, w2, ans2)

& Dist(y, w, ans3)

& Dist(x2, z2, ans4) % SLOPES ARE DIFFERENT

& ans1*ans2 ~= ans3*ans4.

Diagonal(Quad(CDot(x1, y1), CDot(,), CDot(x3, y3), CDot(,)),

CLine(CDot(x1, y1), CDot(x3, y3)).

Diagonal(Quad(CDot(,), CDot(x2, y2), CDot(,), CDot(x4, y4)),

CLine(CDot(x2, y2), CDot(x4, y4)).

57

4.3.2 The Extended G�odel Code

MODULE DotsAndLines.

IMPORT Integers.

BASE Dot, Line, Quad, Sign.

CONSTANT Pos, Neg: Sign.

FUNCTION % DATA CONSTRUCTORS

CDot: Integer * Integer -> Dot;

CLine: Dot * Dot -> Line;

CQuad: Dot * Dot * Dot * Dot -> Quad.

FUNCTION % EVALUABLE FUNCTIONS

Dist: Integer * Integer -> Integer;

Sign: Line -> Sign.

PREDICATE NotParallel: Line * Line;

Diagonal: Quad * Line.

Dist(x, y) => Abs(x - y).

Sign(CLine(CDot(x, y), CDot(z, w))) => Pos

<- (x =< z) & (y =< w).

% SIGN OF SLOPE

Sign(CLine(CDot(x, y), CDot(z, w))) => Pos

<- (x >= z) & (y >= w).

Sign(CLine(CDot(x, y), CDot(z, w))) => Neg

<- (x =< z) & (y >= w).

Sign(CLine(CDot(x, y), CDot(z, w))) => Neg

<- (x >= z) & (y =< w).

NotParallel(CLine(CDot(x, y), CDot(z, w)),

CLine(CDot(x2, y2), CDot(z2, w2))) <-

Sign(CLine(CDot(x, y), CDot(z, w)))

~= Sign(CLine(CDot(x2, y2), CDot(z2, w2))).

NotParallel(CLine(CDot(x, y), CDot(z, w)),

CLine(CDot(x2, y2), CDot(z2, w2))) <-

Dist(x, z) * Dist(y2, w2)

~= Dist(y, w) * Dist(x2, z2).

Diagonal(Quad(CDot(x1, y1), CDot(,), CDot(x3, y3), CDot(,)),

CLine(CDot(x1, y1), CDot(x3, y3)).

Diagonal(Quad(CDot(,), CDot(x2, y2), CDot(,), CDot(x4, y4)),

CLine(CDot(x2, y2), CDot(x4, y4)).

58

Bibliography

[1] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In

Proc. 21st ACM Symposium on Principles of Programming Languages,

pages 268{279, Portland, 1994.

[2] D. Bert and R. Echahed. On the Operational Semantics of the Algebraic

and Logic Programming Language LPG. Technical report, IMAG-LGI,

1995.

[3] A. Bowers. Personal communication, September, 1995.

[4] N. Dershowitz and J. Jouannaud. Rewrite systems. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science B: Formal Methods

and Semantics, chapter 6, pages 243{320. North Holland, Amsterdam,

1990.

[5] N. Dershowitz and D. A. Plaisted. Equational programming. In J. E.

Hayes, D. Mitchie, and J. Richards, editors, Machine Intelligence 11,

chapter 2, pages 21{56. Claredon Press, Oxford, 1988.

[6] R. Harper. Introduction to Standard ML. 1986-1993. Carnegie Mellon

University.

[7] P. M. Hill and J. W. Lloyd. The G�odel Programming Language. MIT

Press, 1993.

[8] J. W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and

T. Maibaum, editors, Handbook of Logic in Computer Science, Vol. II,

pages 1{112. Oxford University Press, 1992.

59

[9] J. J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logic programming

with functions and predicates: The language BABEL. Journal of Logic

Programming, 12:191{223, 1992.

[10] D. Shapiro S. Antoy and J. Vorvick. Evaluable Functions in the G�odel

Programming Language, December 1995. Visions for the Future of

Logic Programming Workshop, ILPS, To appear.

[11] L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, 2nd

edition, 1994.

[12] T. Suzuki, A. Middeldorp, and T. Ida. Level-con
uence of conditional

rewrite systems with extra variables in right-hand sides. In RTA'95,

pages 179{193, 1995. LNCS 914.

[13] M. H. van Emden and K. Yukawa. Logic programming with equations.

The Journal of Logic Programming, 4:265{288, 1987.

[14] J. Wang. Personal communication, October, 1995. email: jiwei@bnr.ca,

Bell-Northern Research Ltd.

60

Appendix A

Further Extensions

A number of attractive features could be added to the extended
G�odel we have produced. One of these would be a warning for
the user who provides rewrite rules that only partially de�ne a
function. Normally, it is not desirable to de�ne partial functions
because it means that some terms will not rewrite even though
they include evaluable functions.

Another extension, mentioned with respect to LPG, would
de�ne the symbols True and False as constants of some built-in
type Boolean. G�odel prede�nes the symbols True and False but
not their type. With this change, Boolean functions could be
de�ned by the user and would not di�er from any other user-
de�ned evaluable function. In particular, prede�ned Boolean op-
erators, such as & and \/, could appear in Boolean terms. Like-
wise, Boolean terms could appear as atoms in the body of a
clause.

It would also be useful to allow a conditional expression of the
form IF c THEN e1 ELSE e2 where c is a Boolean expression
and e1 and e2 are expressions of the same type. A conditional
expression could be allowed as a subterm of a term. The ELSE

branch of the conditional expression would be mandatory and
the value of the conditional expression would be the value of the
expression in either its THEN or ELSE branch according to the
truth of the condition c. This change will be di�cult because we
have de�ned => as a predicate. Thus the parser would have to
accept a conditional expression as an argument to a predicate.

61

A syntactic change which would clean up programs written
in the extended G�odel would allow the user to give a name to a
pattern that appears in the left-hand side of a rewrite rule. This
is allowed in ML [6] programs. For example, the rule

Insert(x, Cons(y, s)) => Cons(x, Cons(y, s))

<- x =< y = False

could be written

Insert(x, list as Cons(y, s)) => Cons(x, list)

<- x =< y = False

thus eliminating the need to repeat complicated terms which were
included only for uni�cation.

62

Appendix B

The Order of the Rules

We adopt a convention concerning the order of presentation
of the rewrite rules de�ning an evaluable function. The order
is signi�cant in the extended G�odel as it is in ML and Haskell.
The original G�odel does not attach signi�cance to the order in
which statements appear in a �le. The meaning of a variable is
sometimes a�ected by the order of the rules. For example, in the
rewrite system below (a functional de�nition of IsZero which
corresponds to the de�nition of IsZero as a predicate discussed
earlier), the variable x of the second rule stands for the comple-
ment of Zero, i.e., Succ(y).

IsZero(Zero)) True

IsZero(x)) False

Thus, the second rule is applied to a (sub)term IsZero(t) only
if t uni�es with Succ(y). If the order of the rules is reversed,
the meaning of x is di�erent.

IsZero(x)) False

IsZero(Zero)) True

Now the variable x of the second rule stands for Zero and Succ(y).
The second rule is never �red.

In both rewrite systems above, x is a variable that is used
only once in any rule. It can be replaced with the anonymous
variable, . G�odel takes advantage of the notational convention

63

that a variable name beginning with an underscore in the body
of a statement or goal stands for a unique variable existentially
quanti�ed at the front of the atom in which it appears [7]. To
achieve a seamless integration of rewrite rules into G�odel, a vari-
able name beginning with an underscore in a the left-hand side
of a rewrite rule is allowed.

The convention concerning the order of the rewrite rules is
useful for implementing e�cient narrowing. For the implement-
ation of needed narrowing, it is necessary to ensure that rewrite
systems are inductively sequential. A rewrite system presented
with this convention concerning order is automatically inductively
sequential, hence non-overlapping. Although the order in which
the rules appear in a �le is signi�cant, the order in which rules
are selected by the narrowing strategy is unspeci�ed. In a similar
manner, the order in which the clauses de�ning a predicate are
selected by G�odel's computation rule is unspeci�ed. In this way,
writing G�odel code is a bit di�erent from writing Prolog code.
Prolog chooses clauses in textual order.

It may be confusing to assess the rewrite system

IsZero(Zero)) True

IsZero()) False

in light of the fact that the two rules may be selected in any
order. In solving the equation IsZero(Zero) = x, the selection of
the second rewrite rule might seem problematic. But the left-hand
side of the second rewrite rule will not unify with IsZero(Zero).
Although there is an underscore in the text, it does not unify with
Zero. The underscore has the special meaning, \the complement
of Zero." This is the importance of using these conventions: the
rewrite system will not have several rules that specify di�erent
normal forms for a single term.

64

A disadvantage results from the need for inductive sequential-
ity. The clauses de�ning a predicate cannot necessarily be trans-
formed into functions easily. Consider the predicate IsZero. The
�rst de�nition of IsZero presented de�ned it as a predicate with
one clause,

IsZero(Zero).

Later a function mapping Nats to Boolean values was presented.
One of the rewrite rules was made directly from the predicate's
clause by adding an arrow and the word True.

IsZero(Zero)) True.

Some predicates which have attractive clauses cannot be trans-
formed into rewrite rules so easily. Though predicates can be seen
as Boolean functions, G�odel adopts no convention on the order
of the clauses of a predicate. Thus a predicate regarded as a
function may not be inductively sequential. An example of such
a predicate is the so-called parallel-or .

Or(True,).

Or(,True).

The expression Or(t1,t2) evaluates to True as long as one argu-
ment evaluates to True, even if the other argument is unde�ned.
Transforming the predicate into a Boolean function in the simple-
minded way yields

Or(True,)) True

Or(,True)) True

which is not inductively sequential.
Ideally, any predicate could be transformed into a Boolean

function directly from its clauses. But the restriction requiring

65

inductive sequentiality prohibits a simple transformation. Since
an e�cient narrowing strategy is available for inductively sequen-
tial functions, it seems an acceptable loss.

66

Appendix C

More About the Internal

Representation

The four arguments to ProgDefs.Program.F4 give the mod-
ule name, the structure of the module, the language de�ned by
the declarations and the statements de�ning predicates. The �rst
of these is a simple object, but the other three are AVL trees. The
tree representing the structure of the module includes informa-
tion concerning the importing module and all imported modules
(if any). The tree representing the language has a node for each
module in the previously described tree and one node corres-
ponding to the built-in language of G�odel. Within each node, the
symbols of the language are given together with type and arity
information. The tree representing the statements also has one
node for each module. However, there is no node for holding
the representation of statements de�ning built-in predicates. The
built-in predicates are `hard-wired' rather than de�ned by G�odel
clauses. Within each node, the statements are represented by an
object marked with the function symbol ProgDefs.Code.F2.

The object ProgDefs.Code.F2 has as its second argument
an AVL tree with a node for each symbol which has a statement
de�ning its behavior. All the statements that de�ne a speci�c pre-
dicate are collected in a single node. They are marked as predic-
ate de�nitions with the function symbol ProgDefs.PredDef.F4.
The object representing the module

67

MODULE Example.

BASE Type1.

CONSTANT A.

PREDICATE IsA: Type1.

IsA(A).

consists of ProgDefs.Program.F4 and its four arguments. The
�rst two are small enough to be included in their entirety. The
second has been edited to show the object representing just one
symbol, the constant A. The complete language object spans one
hundred lines. The fourth argument is the most important to the
extension.

ProgDefs.Program.F4(

"Example, % FIRST ARG

AVLTrees.Node.F5(AVLTrees.Null.C0, % SECOND ARG

"Example,

ProgDefs.ModDef.F4(

ProgDefs.ModuleKind.C0,[],[],[]),

AVLTrees.EQ.C0,

AVLTrees.Null.C0),

ProgDefs.Language.F1(% THIRD ARG

AVLTrees.Node.F5(

AVLTrees.Null.C0,

",

.

.

.

AVLTrees.Node.F5(

AVLTrees.Null.C0,

"A,

[ProgDefs.Symbol.F2(% IS A SYMBOL

68

ProgDefs.Hidden.C0,

ProgDefs.ConstantDecl.F1(

% CONSTANT

MetaDefs.BType.F1(

MetaDefs.Name.F4(

"Example,

"Type1, % ITS TYPE

MetaDefs.Base.C0,

0))))],

AVLTrees.RH.C0,

AVLTrees.Node.F5(

.

.

.

AVLTrees.Null.C0))),

AVLTrees.Node.F5(% FOURTH ARG

AVLTrees.Null.C0,

"Example,

ProgDefs.Code.F2(

0,

AVLTrees.Node.F5(

AVLTrees.Null.C0,

"IsA, % `IsA' HAS CLAUSES

% DEFINING IT

[ProgDefs.PredDef.F4(

1,

[MetaDefs.<-'.F2(% A CLAUSE

MetaDefs.Atom.F2(

MetaDefs.Name.F4(

"Example,

"IsA,

MetaDefs.Predicate.C0,

69

1),

[MetaDefs.CTerm.F1(

MetaDefs.Name.F4(

"Example,

"A,

MetaDefs.Constant.C0,

0))]),

MetaDefs.Empty.C0)],

% EMPTY BODY

[],

[])],

AVLTrees.EQ.C0,

AVLTrees.Null.C0)),

AVLTrees.EQ.C0,

AVLTrees.Null.C0)))

70

Appendix D

More About the Grammar Used

in the Parser

The grammar describing terms is explained in the �le term.pl.
The strategy used for parsing terms focuses �rst on sorting through
the sequence of tokens to form terms and then dealing with the
operators. The grammar that provided the starting point for the
code was manipulated by hand to remove left recursion. Many of
the clauses of the parser in term.pl are directly related to clauses
of the grammar. As an example of the relationship between the
grammar that describes G�odel programs and the parser code,
consider this clause which was commented with the grammar rule
that inspired it:

% This clause is for grammar T -> f1 T | f2 T

term aux(prefix function(Functor, Indicator),

Tokens, Return, SpecLeft,

PrecLeft, Language) :-

Indicator =.. [SpecOp, PrecOp],

term(Tokens, Return2, SpecOp, PrecOp, Language),

term aux prefix(Return2, Return,

Tokens, SpecLeft,

PrecLeft, Functor,

SpecOp, PrecOp).

The code is not simply a variation of the grammar rule, but
some relationship is evident:

71

� The rule concerns those terms which are made up of pre�x
functions and their arguments.

� The code looks for a pre�x function and, when one is found,
sends the tokens that will give its arguments to the predicate
term which parses them.

