
COMPILING EVALUABLE FUNCTIONS IN THE GÖDEL PROGRAMMING

LANGUAGE

by

DAVID SHAPIRO

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Portland State University
1996

1

Table of Contents
1 Introduction... 3
2 Background... 5

2.1 Logic Programming.. 5
2.2 Functional Programming .. 10
2.3 Narrowing .. 12

3 Gödel.. 19
3.1 Introduction to Gödel.. 20
3.2 Extended Gödel .. 22

4 Compiler Design ... 24
4.1 Evaluation of functional arguments .. 25
4.2 Rule translation... 26
4.3 Function detection .. 28

5 Implementation Overview ... 29
5.1 Parsed Program Structure ... 31
5.2 Build Process.. 36
5.3 Rule translation by tau .. 38

6 Implementation Details ... 39
6.1 Compiler invocation ... 39
6.2 Predicate compilation ... 40
6.3 Rule compilation .. 42
6.4 Function detection .. 46
6.5 Building constraints.. 47
6.6 Making ... 50
6.7 Loading .. 51

7 Conclusion.. 52
7.1 Feasibility of functional-logic programming language 52
7.2 Narrowing .. 53
7.3 Compiler Design... 53
7.4 Versions ... 55

8 Other functional-logic programming languages... 61
8.1 ALF.. 61
8.2 K-LEAF ... 63

Bibliography ... 66
Appendices... 68

2

1 Introduction

Logic programming offers the programmer the opportunity to create programs using

the powerful, familiar tool of mathematical logic. A programmer can translate a set of

logic axioms directly into a computer source program. The programmer need not be

concerned with control details of program execution, but only with the correct

statement of that program.

Unfortunately, logic programming languages do not include the ability to compute

using functions. Functions are a natural way to express many relations. Their

unavailability in logic programming languages leads, at the least, to less clarity and

expressiveness in logic programs.

A combined functional-logic programming language could offer such increased clarity

and expressiveness. What is more, depending on the implementation of function

evaluation, other gains may be achieved. Programs may run more efficiently.

Programs which would otherwise be non-terminating can be successfully executed to

termination. Thus, a functional-logic programming language is a very desirable goal.

This thesis represents part of an attempt [ASV] to integrate functional and logic

programming using needed narrowing. Specifically, I have extended the Gödel logic

programming language code generator to accept and evaluate terms which contain

functions. Of course, it is impossible to generate compiled code without any input.

Janet Vorvick [JV] has modified the front-end of the Gödel compiler to parse

functions defined as rewrite rules in an extended Gödel source program. The parsed

3

Gödel program output by her parser provides the input for my code generator. Taken

together, our work represents an integrated functional-logic programming language.

I have implemented leftmost-innermost narrowing to evaluate functional terms.

Narrowing is a functional computational method compatible with logic programming

languages. It is the most popular computation method in use today for the integration

of functional and logic languages [Hanus].

Narrowing requires that functions be defined in a manner known as rewrite rules.

Rather than narrowing terms directly, my implementation of narrowing requires the

translation of rewrite rules into clauses. Thus, one major addition I have made to the

Gödel compiler is the inclusion of a rule-to-clause translator for rewrite rule

compilation.

The other major changes I have made concern the detection and evaluation of

functional arguments within clauses and goals. I have greatly expanded Gödel’s

primitive pre-defined function evaluation system to permit the evaluation of user-

defined functions. I have added a narrowing mechanism for evaluating functional

arguments during clause and goal compilation.

Due to the way functions are declared in this extension of Gödel, they are

indistinguishable from constructors in the parsed code. I have implemented a method

of function detection for user-defined functions.

Technically speaking, the Gödel compiler comprises the front-end parser and the

back-end code generator. I will refer to the front-end as the parser and to my back-end

4

code generator as the compiler. This corresponds to the division made in the Gödel

source code.

The structure of this paper is as follows. Chapter 2 explains some theoretical

underpinnings--logic and functional programming and narrowing. Chapter 3

introduces both the standard and extended Gödel logic programming languages.

Chapter 4 discusses the compiler design changes and additions necessitated by

extended Gödel. Chapter 5 examines the implementation of extended Gödel from a

broad perspective, while Chapter 6 does so in finer detail. Chapter 7 draws some

conclusions from the work done. Chapter 8 looks briefly at two other functional-logic

programming languages.

2 Background

2.1 Logic Programming

This section introduces basic logic programming terminology used throughout the

paper. For a full treatment of logic programming, see [Art]. It concludes with a

motivation for choosing narrowing as the computational method for integrating

functions into a logic programming language.

“A logic program is a set of axioms...defining relations between objects. A

computation of a logic program is a deduction of consequences of the program.” [Art,

5

p. 9]. The classic logic programming example of a relation is the family relations

program

Father(Abraham, Isaac).
Father(Abraham, Ishmael).

Male(Isaac).
Male(Abraham).
Male(Ishmael).

The first statement states that Abraham is the father of Isaac, the second that he is

Ishmael’s father. The last three state that they’re all men.

Another example is

Plus(2, 3, 5).

A more complex relation may be of the form

Son(x, y) <- Father(y, x) & Male(x).

which means that x is the son of y if y is the father of x and x is a male.

The relations Father, Son and Plus are known as predicates. They, and all terms

comprising a name and arguments, are known as functors. “A functor is characterized

by its name...and its arity or number of arguments. Constants are considered functors

of arity 0.... A functor f of arity n is denoted f/n. Functors with the same name but

different arities are distinct.” [Art p. 27]. Accordingly, the predicates we have

defined above are denoted by the functors Father/2, Son/2 and Plus/3.

The above relation statements are known as clauses. The head of the clause is an

indivisible term known as an atom. Plus(2, 3, 5) and Son(x, y) are heads of their

respective clauses. A clause consisting of a head only is also referred to as a fact. The

Plus clause is a fact. The body of a clause is an optional, possibly complex series of

6

atoms appearing to the right of the <- arrow. A logic program consists of one or more

of these clauses.

A logic program executes through the evaluation of goals. A goal resembles a clause

head or body, but is a query which is answered positively or negatively by

examination of the program clauses during execution. For example, the goal

Father(Abraham, Isaac)

would be answered positively, or succeed, whereas the goal

Father(Abraham, Sarah)

would be answered negatively, or fail.

Another type of goal is an existential query. Given the facts above, we expect the goal

Son(w, Abraham)

to succeed with answers

w = Isaac.
w = Ishmael.

whereas we expect the goal

Son(w, Isaac)

to fail.

Goals are solved using resolution. Goals are repeatedly replaced by sub-goals until

each sub-goal can be solved. Replacement of goals by sub-goals is accomplished

through unification. Two terms are unifiable if performing substitutions on variables

of one or both of the terms makes the terms identical. To resolve a goal, we attempt to

unify the goal with the head of a program clause, resolving any sub-goals in the clause

body as necessary. For example, the goal

7

Son(w, Abraham)

binds y in Son/2 to Abraham. The first body clause of Son/2 becomes

Father(Abraham, w).

which becomes our first sub-goal. If we substitute Isaac for w, we can unify this sub-

goal with the program fact

Father(Abraham, Isaac).

The second body atom of Son/2 now becomes

Male(Isaac).

due to the substitution, and our goal

Son(w, Abraham)

succeeds as

Son(Isaac, Abraham).

Note that we need not stop evaluation there. We may also attempt the substitution of

Ishmael for w, and our goal also succeeds with this value. This backtracking

mechanism is a key element of logic programming, and enables us to find multiple

correct solutions to a query, if they exist.

It also enables us to continue evaluation after discarding incorrect solutions. For

example, suppose our program contains the fact

Father(Abraham, Deborah). % Forgive the blasphemy

When executing the query

Son(w, Abraham).

our newest fact will allow x in the

Father(y, x)

subgoal of Son/2 to succeed as

8

Father(Abraham, Deborah).

But

Male(Deborah)

will fail, causing Deborah to be rejected as a son of Abraham. Nevertheless, due to

backtracking, our computation can continue and successfully return Isaac and Ishmael

as sons of Abraham.

Note further that we are not guaranteed in which order our solutions will be returned

to us. Deborah may be attempted before or after the boys. Nor is the order of body

formula evaluation guaranteed. The program may evaluate the Male sub-clause before

the Father sub-clause. In these two ways, a logic program is non-deterministic. That

is, the declaration of a program does not indicate the order of execution of clauses or

sub-clauses.

* * * *

A logic program states what to do, but not how to do it. Otherwise said, a logic

program states the logic, but not the control, of the program [Escher, p. 3]. This

implies, as previously noted, that the execution of a logic program is non-

deterministic; i.e., the order of statement evaluation at execution time is unknown.

Consequently, it is quite possible that some statement variables will be uninstantiated

when that statement is executed.

Consider, for example, a trivial example where the predicates add1 and add2 mean,

respectively, add one and add two to the first argument to obtain the second:

add2(x, z) <- add1(y, z) & add1(x, y).

9

If the body sub-clauses are evaluated in left-to-right order when solving a goal like

add2(1, w), y will be uninstantiated at the first call to add1.

Evaluation with partial information, the ability to proceed with program execution in

the face of uninstantiated predicate variables [Escher p. i], is a requirement of a viable

logic programming language. Narrowing is a functional computational model which

proceeds, via unification, when faced with partially-instantiated terms. The concept

of narrowing is thus quite compatible with the logic programming paradigm.

2.2 Functional Programming

In this section, several advantages reaped by adding a functional component to a logic

programming language are discussed. The lack of a mechanism in logic programming

to handle functions is noted, a lack we will fill using narrowing.

Many relations are most naturally expressed as functions. For example, the Father

relation expressed above as a predicate may also be expressed functionally as

Father(Isaac) --> Abraham.
Father(Ishmael) --> Abraham.

In fact, this method of expression is clearer than its logic counterpart in denoting

exactly who is the father and who is the son. Arithmetic operations are also much

more easily understood as functional operations; e.g., it makes more sense to think of

2 + 3 returning the value 5 than it does to think of a Plus predicate with arguments 2,

3, and 5. Naturalness of expression is one of the main goals of logic programming.

The addition of functions to logic language aids in that goal.

10

There are other implementation-dependent benefits to adding a functional component

to logic programming. As opposed to predicates, functions expressed as rewrite rules

do not necessarily require choice points. That is, a compiler may demand that rewrite

rules defining a function be mutually exclusive, or it may so interpret them. In either

case, there will be only one rule which can be chosen for execution, given ground

arguments. This implies there will be no time-consuming backtracking during

function evaluation.

For example, if we are trying to find the father of Isaac using the predicate version of

Father, we have to create a choice point when selecting Abraham as the father to

account for the possible existence (?!) of another fact defining a second father for

Isaac. If we use the functional version of Father, we immediately have the unique

result

Father(Isaac) = Abraham

and no choice point need be created for future backtracking.

Functions also afford the possibility of implementing lazy evaluation. An expression

is not evaluated until it is actually needed. One benefit of this is to increase the

number of programs that successfully terminate.

For example, consider the following functions from [Antoy] for printing the first n

prime numbers:

 primes --> sieve(ints_from(2))
 sieve([A|B]) --> [A|sieve(filter(B,A))]
 filter([A|B],C) --> if factor(C,A) then filter(B,C)

 else [A|filter(B,C)]

11

 ints_from(A) --> [A|ints_from(succ(A))]
 show(0,[A|B]) --> []
show(succ(A),[B|C]) --> [B|show(A,C)]

A call such as show(50, primes) will never finish if eagerly evaluated, since primes is

a non-terminating function. If lazily evaluated, this call can succeed, since show can

terminate after it has received fifty prime numbers from primes.

Integrating functions into a logic programming language may be a great idea, but

logic languages are equipped neither to compile function definitions nor to evaluate

functional predicate arguments. A mechanism must be installed in the language for

this purpose. Narrowing is the mechanism we will use for this purpose.

2.3 Narrowing

In order to implement narrowing, functions must be defined as rewrite rules. Here we

define rewrite rules (also referred to simply as rules), as well as terms and

substitutions. We then show how narrowing consists of: 1) applying a substitution to a

term; and 2) applying a rewrite rule to that substituted-for term.

Terms

A symbol is an arbitrary item. We typically enumerate a set of symbols which we will

find useful. For example, the set of symbols

S = {Zero, Succ, Plus, True, False, &, | , <}

12

will be useful for defining some basic arithmetic and boolean operations.

A sort defines the type of a symbol. For our example, natural and boolean are likely

sorts.

A typing function, denoted tf, associates a symbol with a non-empty list of sorts. We

type our set of symbols as follows:

tf(Zero) = natural
tf(Succ) = natural, natural
tf(Plus) = natural, natural, natural
tf(True) = boolean
tf(False) = boolean
tf(&) = boolean, boolean, boolean
tf(|) = boolean, boolean, boolean
tf(<) = natural, natural, boolean

As we can see, each symbol resembles a function whose output type is the last

element in its type list and whose inputs types are all the preceding elements.

A term is an expression made up of validly typed symbols. Some terms from our

example are

Succ(Zero)
Plus(Zero, Zero)
True & (Zero < Zero)

and some expressions which are not terms are

Plus(Zero)
True | Zero.

Substitutions

13

Symbols for unknown values are called variables. In the following examples, we will

denote them as w, x, y, or z. They take no arguments, but assume the sort of the value

for which they stand.

A substitution maps the elements of a finite set of variables to a set of terms, which

can themselves contain variables. For example, if we apply the substitution

{ x |--> Zero, y |--> Succ(z) }

to the term

Plus(z, Succ(Plus(x, y)))

we obtain

Plus(z, Succ(Plus(Zero, Succ(z)))).

Rewrites

A rewrite system is a set R of pairs of terms, called rewrite rules, with the following

requirements: if l --> r is in R, then l and r have the same sort, l is not a variable, and

each variable of r is a variable of l. The set R for our example might contain, in part,

these rules

Plus(Zero, x) --> x R1
Plus(Succ(x), y) --> Succ(Plus(x, y)) R2
True & x --> x R3
False & x --> False R4

If a substitution applied to the left side of a rewrite rule yields some subterm of a

term, the rewrite operation consists of replacing that subterm with the result of

14

applying the same substitution to the right side of the rule. For example, if we have

the term

Plus(Succ(Zero), Succ(Zero))

then the substitution

{ x |--> Zero, y |--> Succ(Zero) }

applied to the left side of R2 yields our entire term. Thus, we may rewrite the whole

term by applying the substitution to the right side of R2 to get

Succ(Plus(Zero, Succ(Zero)))

We may continue rewriting by applying the substitution

{ x |--> Succ(Zero) }

to R1 to yield the subterm

Plus(Zero, Succ(Zero))

Again, we rewrite the whole term by applying the substitution to the right side of R1,

yielding

Succ(Succ(Zero))

In sum, we have applied two consecutive rewrites to simplify

Plus(Succ(Zero), Succ(Zero))

to

Succ(Succ(Zero))

A broader view reveals that we have used rewriting to compute

1 + 1 = 2.

As a second example, the term

Zero < Plus(Zero, Zero)

rewrites to

Zero < Zero

15

by applying the substitution

{ x |--> Zero }

to R1.

Narrowing

Narrowing is rewriting with a more generalized substitution method used. Rewriting

can be seen as employing a pattern-matching type of substitution, where the

substitutions are one-way. That is, variables in the rule are replaced by symbols in the

subterm. Narrowing employs unification, which, as explained previously, is a two-

way substitution. Variables in the rule may be replaced by symbols in the subterm, or

vice versa--symbols in the subterm may be replaced by rule variables. For example,

the term

Plus(w, z)

may be narrowed by applying the substitution

{ w |--> Zero, x |--> z }

to w of the term (the subterm and term are one and the same in this case) and x of R1

to yield the unified term

Plus(Zero, z)

Applying rewrite rule R1 yields

z.

As a second example, the term

Plus(w, z)

unifies with the left side of R2 as

Plus(Succ(Zero), Zero)

16

when the substitution

{ w |--> Succ(Zero), z |--> Zero, x |--> Zero, y |--> Zero }

is applied to w and z of the (sub)term and x and y of R2. Completing the narrowing

operation by applying rewrite rule R2 yields

Succ(Plus(Zero, Zero))

Further rewriting is possible using R1 to yield

Succ(Zero)

Function evaluation using narrowing

We will use narrowing to simplify functional terms which we encounter as we process

the arguments of a predicate clause. Specifically, we use repeated rewrites, and the

more general narrowing process when we are unable to rewrite, until we’ve rewritten

and narrowed the functional subterm out of existence. We will be left with variables

and constructors (unevaluable, irreducible functor terms).

As an example, let’s define a predicate to test whether a number is equal to one:

IsOne(Succ(Zero)).

Now let’s attempt to solve the goal

IsOne(Plus(Succ(Zero), x))

Using rule R2, we rewrite the expression to

IsOne(Succ(Plus(Zero,x)))

Then we use rule R1 to rewrite this as

IsOne(Succ(x))

As we see in the example, we have applied repeated rewrites to the function call until

it is reduced to constructor terms. This is as simplified a term as we can hope for.

17

Where does narrowing enter into the picture? Consider an example where we are

solving the following goal:

IsOne(Plus(w, z))

In this case, there is no substitution we can apply to the variables on the left side of

any of our rewrite rules which will produce the subterm Plus(w, z). In order to

continue the computation, we must narrow by applying a unifying substitution to a

rule and the term. We can choose to unify with R1 with the substitution

{ w |--> Zero, x |--> z }

and then apply the rule to yield

IsOne(z).

Or we can unify with R2 using the substitution

{ x |--> Zero, w |--> Succ(Zero), y |--> z }

yielding

IsOne(Succ(Plus(Zero, z)))

which can be rewritten using R1 to

IsOne(Succ(z))

In essence, we have made a ‘guess’ as to an appropriate value for w that allows us to

continue rewriting. In practice, we will make the most general unification, i.e., a

unification from which all other unifications can be derived.

What if we ‘guess’ wrong? If a choice point exists, we backtrack and try a different

unifier. Otherwise, we fail. The ability to backtrack is another distinguishing factor

between narrowing and rewriting. The latter does not require backtracking.

18

Partially-instantiated terms are a fact of life in logic programming. The allure of

narrowing resides in its ability to carry out computations in the face of such terms.

3 Gödel

Rather than create a functional-logic programming language from scratch, we have

chosen to integrate functions into an existing logic programming language. This

integration is a much more tractable project than the creation of an entirely new

language. The obvious drawbacks are the potential constraints contained in that

language and the obstacles it presents when altering it.

We chose the Gödel logic programming language as our starting point. Gödel has

many desirable features that make it a sensible choice. It is publicly and freely

distributed along with its compiler’s source code. It has good documentation. With the

exception of input/output, it is nearly free of non-declarative predicates.

The Gödel compiler, implemented in Prolog, run as an application above the

underlying Prolog system (SICStus in our case). It compiles a Gödel source file into

Prolog. The Prolog system then executes the Prolog code.

Except where noted, all the logic programming language examples included in this

paper thus far are valid Gödel fragments.

19

In the following sections, we introduce first the Gödel language as it presently exists,

and then our extension to it.

3.1 Introduction to Gödel

A brief description of the Gödel language follows. (For more details, see [Gödel].) A

Gödel source program is contained in one or more modules. A module declares all the

symbols of the language of that module. A module may import other modules in order

to avail itself of their symbols.

Symbols begin with upper-case letters and variables begin with lower-case letters.

Every symbol is declared as one of six categories: BASE, CONSTRUCTOR,

CONSTANT, FUNCTION, PROPOSITION, or PREDICATE.

BASE declarations enumerate the types (sorts) of the module language. Constants of

any type are declared under the CONSTANT category. Predicates are declared using

the PREDICATE category. The name of the predicate is listed followed by the type of

each argument. One or more clauses defining the predicate may appear anywhere in

the module following the predicate’s declaration. PROPOSITION declares a

proposition; i.e., a predicate with no arguments.

Unfortunately for our discussion, the meanings of the CONSTRUCTOR and

FUNCTION categories are not the same as the meanings we have given them

throughout this paper. What we have heretofore referred to as a constructor is declared

20

in Gödel under the FUNCTION category. What we have been calling a function--an

evaluable functor term--barely exists in Gödel. Gödel contains a few pre-defined

evaluable functions--the basic arithmetic operations, and some operations on strings.

We will continue to refer to functions as functions, or evaluable functions, and to

constructors as constructors. When we wish to refer to the Gödel meaning, we will

either preface it with the word Gödel or denote it using upper-case letters.

A CONSTRUCTOR is declared, along with its arity, to construct new types from a

BASE. For example, if we have declared a BASE Day and a CONSTRUCTOR List of

arity one, then the types of the module language are: Day, List(Day), List(List(Day)),

etc. [Gödel, p. 17].

Gödel is polymorphic. A single FUNCTION or PREDICATE may be declared to

accept different types as its arguments. For example, the declaration

PREDICATE Append : List(a) * List(a) * List(a).

declares Append to be a predicate which accepts three list arguments. The type of

elements contained within the list may vary from predicate call to predicate call.

3.2 Extended Gödel

Our extension to Gödel consists of allowing users to define functions. These functions

may be employed as arguments to predicates in definitions or goals.

21

Our extension to integrate functions into Gödel requires one syntax change, the

addition of the reserved, binary, infix operator symbol =>. A function is declared

identically to a constructor as the category FUNCTION. Its definition is accomplished

similarly to a predicate definition, but with the left arrow <- being replaced by =>. So,

our Father predicate could be declared and defined in standard Gödel as

BASE Guy.
CONSTANT Abraham, Isaac, Ishmael : Guy.
PREDICATE Father : Guy * Guy.
Father(Abraham, Isaac).
Father(Abraham, Ishmael).

Or, Father could be declared and defined as a function in extended Gödel as

BASE Guy.
CONSTANT Abraham, Isaac, Ishmael : Guy.
FUNCTION Father : Guy -> Guy.
Father(Isaac) => Abraham.
Father(Ishmael) => Abraham.

Note that a rewrite rule may have a conditional clause, much like a predicate has a

body. For example, the rule

Plus(x, y) => y <- IsZero(x).

can be understood as

If IsZero(x), then Plus(x, y) => y.

Rule definitions must observe certain restrictions to insure that extended Gödel

possesses desirable qualities such as confluence and consistency. They must be left-

linear [Klop]. That is, variables may not be repeated on the left side. They must be

constructor-based. In other words, the outermost left side symbol must be a function,

and no functions may appear in left side subterms. Extra variables, those appearing in

22

the right side or condition but not in the left side of a rule, must satisfy several

technical conditions discussed in [SMI]. For an extensive discussion of the restrictions

on extended Gödel rewrite rules, see [JV].

Here is a simple example module, first in standard Gödel and then in extended Gödel:

MODULE Nat.
BASE Nat.
CONSTANT Zero.
FUNCTION Succ: Nat -> Nat.
PREDICATE Plus: Nat * Nat * Nat;

IsZero: Nat.
IsZero(Zero).
Plus(Zero, x, x).
Plus(Succ(x), y, Succ(z)) <- Plus(x, y, z).

MODULE Nat.
BASE Nat.
CONSTANT Zero.
FUNCTION Succ: Nat -> Nat;

+ : yFx(510): Nat * Nat -> Nat.
PREDICATE IsZero: Nat.
IsZero(Zero).
Zero + x => x.
Succ(x) + y => Succ(x + y).

Whereas Plus must be declared as a predicate in standard Gödel, + is declared as an

infix function in extended Gödel, which allows for a more natural mode of expression.

For example, to test whether the sum of two numbers is zero using the standard Gödel

module, we would have to write the goal

Plus(x, y, z) & IsZero(z).

Extended Gödel allows us the more natural expression

IsZero(x + y).

23

4 Compiler Design

Extending Gödel to include functions required additions or alterations to the Gödel

compiler in the areas of rule translation, function detection, and function evaluation.

The design decisions underlying these additions and alterations are discussed below.

(In the following discussion, I have adopted some of the terminology used within the

Gödel compiler. Thus, when I refer to a ‘predicate’ or ‘statement’, I am really

referring to a clause which defines a predicate. Likewise, I refer to a ‘rule’ to mean a

formula which defines a function. Thus, when I write about predicate (or statement) or

rule compilation, I am referring to the compilation of a clause or formula which

defines a predicate or function.)

Recall that the Gödel compiler compiles Gödel source code into Prolog source code,

then relies on the Prolog compiler for compilation and evaluation of predicates and

goals. Implicit in the Prolog compilation process is the unification of goals with clause

heads using substitution, backtracking upon failure to unify; i.e., all the processes we

have mentioned in our discussion of computation using narrowing.

The extended Gödel compiler takes advantage of these Prolog facilities. In effect, all

we need do is re-package functions in a form palatable to the Prolog compiler. That

done, the standard Gödel compilation process passes them to the Prolog compiler,

which performs the bulk of the narrowing process.

This re-packaging is accomplished via a simple implementation of narrowing. This

implementation is leftmost-innermost, not needed narrowing. Consequently, it does

24

not permit lazy evaluation. Its overriding virtue is simplicity, a major concern in this

first functional-logic implementation.

4.1 Evaluation of functional arguments

When a functional expression is encountered as an argument of a predicate, rule, or

goal during compilation, it must be evaluated by narrowing. The standard Gödel

compiler provides a narrowing-like implementation for its pre-defined arithmetic and

string functions. The technique converts the functional argument into predicate form

for subsequent standard Gödel compilation. We extend this technique to user-defined

functions. The extended technique conforms to the method expounded in [vEY, p

281] for reducing terms and goals.

4.2 Rule translation

Since the narrowing process for evaluating functional expressions appearing as

arguments to predicates has converted the functional argument into predicate form, we

must do the same to the function definition. Otherwise, the Prolog compiler will be

unable to find a unifying clause head during evaluation of the functional argument.

Recall that user-defined functions are denoted in extended Gödel source programs as

rewrite rules. Accordingly, we have created a rule translation scheme which translates

25

the rule into predicate form. The former rule (now a predicate) is then compiled via

the standard Gödel compilation method.

The rule translation scheme is consistent with that demonstrated in [vEY]. It translates

all rules of a constructor-based rewrite system; that is, rules of the form

f(t1,...,tk) --> t

where f is a function and no functions appear in arguments t1,...,tk.

tau algorithm

The tau algorithm [AFM] is the basis of the rule translation scheme. It translates a

function into a predicate by flattening the rewrite rule representing the function and

recursively flattening any functional expressions found among the arguments within

the rule. On its initial invocation, tau processes the whole rewrite rule. Recursive calls

to tau handle arguments of the rule, which may be variables, constructor terms, or

function terms.

In order to understand the tau algorithm, it is necessary to introduce some special

notation, dot and bar. “If f is a function whose range is a set of non-null strings, then

dotf(x) is the last element of f(x), and barf(x) is f(x) without its last element.” [AFM].

Using a comma to denote the separation of string elements, we have f(x) = dotf(x),

barf(x). We will use dottau and bartau to define tau algorithmically.

First consider how tau processes a rewrite rule argument. In the simplest case, where

the argument is a variable, tau returns that variable. That is,

26

tau(X) = X, if X is a variable.

Thus, bartau of a variable is empty and dottau of a variable is the variable itself.

If the argument is a constructor term, tau returns a list of elements consisting of

bartau of each constructor term argument and the constructor term itself with new

arguments dottau of each of its old arguments:

tau(c(t1,...,tk)) = bartau(t1),...,bartau(tk), c(dottau(t1),...,dottau(tk))
where c is a constructor.

bartau is empty for constructor term arguments which are variables, so nothing is

extracted from the constructor term. dottau of a variable constructor term argument is

the variable itself, so the constructor term argument remains unchanged. If the

constructor term argument is itself a constructor term, it produces an empty bartau

and itself as dottau, with the proviso that its arguments will be recursively processed.

If the constructor term argument is a functional term, it will be extracted and

processed further, and a simple, new variable left in its place, thus accomplishing

flattening.

A functional term argument must itself be given a predicate ‘look’. This means an

extra variable (denoted as T below) must be created and every functional term

argument processed. Thus:

tau(f(t1,...,tk)) = bartau(t1),...,bartau(tk), f(dottau(t1),...,dottau(tk),T), T
where f is a function.

Now consider how tau behaves when first invoked. tau invoked on a rewrite rule

returns one of two possible values. If the right side of the rule--that is, the value of the

27

function--is a simple variable or constructor term, it becomes the new variable in the

predicate clause being created. This predicate clause will have only a head. Otherwise,

the right side must be further processed, and the predicate clause will have a head and

a body:

tau(f(t1,...,tk) --> t) = f(t1,...,tk, dottau(t))
if bartau(t) is null.

tau(f(t1,...,tk) --> t) = f(t1,...,tk, dottau(t)) :- bartau(t)
otherwise.

4.3 Function detection

Since the Gödel parser does not differentiate between functions and constructors,

functional expressions used as predicate arguments must be detected by the compiler

in order to be compiled correctly. The standard Gödel compiler detects pre-defined

functions such as arithmetic functions. But this ability needs to be greatly augmented

in order to handle user-defined functions.

Function detection is accomplished by furnishing a list of names of rules, both local

and imported, to any predicate which needs to do such detection. This list is contained

in a file created by the parser. It includes the names of all rules declared in the local

module and in modules imported by the local module. The names are the parsed name

structures of the rules. They include the module name and arity of the rule, thereby

guaranteeing uniqueness.

28

5 Implementation Overview

The parser hands the compiler a fully parsed Gödel program. The extended Gödel

parser also creates a rule file, <module_name>.ef, which contains a list of names of

rewrite rules.

The standard Gödel compiler extracts a body of code containing predicate clauses

from this parsed program. It then processes the clauses one-by-one, compiling them

into equivalent Prolog clauses and writing them out to a Prolog code

file,<module_name>.pl, as a side effect. This Prolog file is further processed to create

a compiled Prolog file, <module_name>.ql, used by the Gödel loader to quickly load

the module. In addition, a language, or symbol table file, <module_name>.lng, is

created.

The extended compiler also extracts the body of code from the parsed program. The

code contains predicate clauses, among which are the rewrite rules parsed as

predicates. The compiler separates the predicate clauses and the rewrite rules into two

structures known as the statement code and the rule code.

Predicate compilation does not differ from standard Gödel to extended Gödel. The

rules are compiled analogously to the predicate clauses, with one major exception:

each rule is converted from a functional form into a predicate form which can be

compiled in standard Gödel fashion into a Prolog clause.

29

The compiler comprises rule, statement (predicate), and goal compilation. Goal

compilation follows the statement compilation path; it will not be described

separately.

The compiler’s work consists of two main functions. The first is to dissect the

complex parsed program structure to obtain the statement or rule to be compiled. The

second is to compile (or build, as it is termed by the Gödel compiler) the rule,

statement, or goal into a Prolog predicate or goal. The build process includes rule

translation and function detection and evaluation. The narrowing process which we

have implemented is initiated during the build process.

5.1 Parsed Program Structure

The parsed program is a complex bundle of multiply-nested structures. The compiler

must unravel this complex structure and extract the desired parts in order to

accomplish its tasks. Since the parsed program is a Prolog object, the structures are

not typed. They do, however, have a functor-like composition consisting of a name

and arguments. The name contains three parts. The first part indicates the meta-type

of the object. The second part is the name of the structure. The third part is a letter-

number combination. The letter F stands for FUNCTION, which is best understood in

the Gödel sense; that is, as a constructor. The number indicates the arity of the

structure.

30

Program

The program handed to the Gödel compiler by the parser is structured as follows:

 ProgDefs.Program.F4(module name, module definition tree, language tree, code).

Its four arguments are: the name of the main module in string form; the module

structure (the main module and imported modules) in tree form (all trees in the

program are AVL trees); the language (symbol table) of the program in tree form; the

program code in tree form.

Code

The program code is the program structure of most interest to the compiler:

ProgDefs.Code.F2(integer, code tree).

The first argument is an integer, used as a version number, which is not significant for

our purpose. The second argument is the code itself in tree form.

Code tree

AVLTrees.Node.F5(left tree -- predicates and rules,
predicate name (the name => indicates a rule),
list of predicate definitions,
balance state of tree,
right tree -- predicates and rules

)

31

Each node of the tree contains, in standard Gödel, a list of predicate definitions. The

list contains all predicate definitions for a given predicate name. Each element of the

list is itself a list containing all the definitions for a given predicate name and arity. In

extended Gödel, the node may alternatively contain all the definitions for the predicate

=>; i.e., a list of all rewrite rule definitions for the module undergoing compilation.

Predicate Definition

ProgDefs.PredDef.F4(arity, definition list, import delays, export delays)

The structure of the predicate definition is as follows. Its first argument is its arity. Its

second argument is a list of the predicate clauses comprising its definitions. The third

and fourth arguments are delay declarations which affect when the predicate is

evaluated.

If the predicate definition contains rewrite rules, its arity is always two, its two

arguments being the left and right sides of the rule. Delay declarations are not allowed

in rule definitions, so they will always be empty, or a compile error will occur.

Predicate

MetaDefs.<-.F2(head, body)

32

The individual elements of the predicate definition list are identified as MetaDefs.<-

.F2. Each one is one predicate clause. The two arguments represent the head and the

body of a predicate. The predicate head is an atom identified as MetaDefs.Atom.F2,

and the body is labeled a term, MetaDefs.Term.F2. The head is a two-part structure

consisting of the predicate name and a list of terms representing its arguments. The

body term is a list of terms comprising the body. It is referred to by the compiler as a

formula.

If the predicate clause is a rewrite rule definition, its predicate head name always is

=>. The head contains two arguments, the left hand side and the right hand side of the

rule. The name of the first argument is the actual rule name. The arguments of the first

argument are the arguments of the left hand side of the rule. The second head

argument is the right hand side of the rule. If the rule has a conditional clause, it is

represented as the clause body.

Name

The standard Gödel symbol name is a four-part structure:

MetaDefs.Name.F4(module name, symbol name, symbol type, symbol arity)

Its arguments are: the name of the module in which the symbol is declared; the name

of the symbol itself; the type of the symbol; its arity. The type is identified as

MetaDefs.<X>.C0. X is Predicate for a predicate, Function for a Gödel FUNCTION

or rewrite rule, Constant for a constant, etc. The only symbol which does not use this

33

name form is a variable. A variable is identified as MetaDefs.Var.F2, where the first

argument is the variable identifier (e.g., ‘x’), and the second argument an integer

index for generating unique variables.

To illustrate the use of these structures, here is an example of a parsed rule:

Example rule: Plus(Succ(x), y) => Succ(Plus(x, y)).

MetaDefs.<-.F2(% predicate
 MetaDefs.Atom.F2(% head
 MetaDefs.Name.F4(“,
 “=>, % rule
 MetaDefs.Predicate.C0.,
 2),
 [MetaDefs.Term.F2(% rule lhs
 MetaDefs.Name.F4(“Nov7,
 “Plus, % rule name
 MetaDefs.Function.C0,
 2),
 [MetaDefs.Term.F2(% rule args
 MetaDefs.Name.F4(“Nov7,
 ”Succ, % 1st arg
 MetaDefs.Function.C0,
 1),
 [MetaDefs.Var.F2(“x, 0)]), % 1st arg’s

arg
 MetaDefs.Var.F2(“y, 0)]), % 2nd arg
 MetaDefs.Term.F2(% rule rhs
 MetaDefs.Name.F4(“Nov7,
 “Succ, % rhs name
 MetaDefs.Function.C0,
 1),
 [MetaDefs.Term.F2(% rhs args
 MetaDefs.Name.F4(“Nov7,
 “Plus, % arg name
 MetaDefs.Function.C0,
 2),
 [MetaDefs.Var.F2(“x, 0), % arg’s 1st

 arg
 MetaDefs.Var.F2(“y, 0)])])]), % arg’s 2nd

 arg
 MetaDefs.Empty.C0) % no condition

34

To clarify the predicate structure of a rule as shown above: a rule such as

Plus(Succ(x), y) => Succ(Plus(x, y)).

is parsed as the bodyless predicate clause

=>(Plus(Succ(x), y), Succ(Plus(x, y)).

To get to the rule itself, it is necessary to extract the predicate => head arguments,

which represent the left and right hand sides of the rule.

If the rule contains a condition; for example

Plus(x, y) => y <- IsZero(x).

It is parsed as the predicate

=>(Plus(x, y), y) <- IsZero(x).

where the parsed condition becomes the predicate body.

5.2 Build Process

Once the compiler has extracted a rule or predicate from its enclosing structure, the

essence of the compile process is to convert the rule or predicate to a Prolog predicate

clause. The compiler terms this process the build process. Each rule or predicate is

converted to a flat form; i.e., changed from a complex to a single-level structure

which can be used as a Prolog identifier. The rule or predicate name is converted from

a Gödel structure to a flat form. Then each term (argument) of the rule or predicate is

built.

35

How this is done depends on the type of the term. Variables are added to a variable

dictionary, so that they will be recognized if they re-occur in the clause. The values of

primitive system types such as integers, floats, and strings are extracted from their

Gödel structural representation; e.g., the integer 1 is represented ‘1’. Constants are

also converted from the Gödel structure to a flattened form. Finally, terms which are

functors (functions or constructors) are built recursively: the functor name is flattened,

and each argument is built.

Here is an example of the build process, using the predicate clause

IsZero(Zero).

from the example module Iz shown previously. The parsed Gödel predicate clause

structure extracted by the compiler for input into the build process is

MetaDefs.Atom.F2(
 MetaDefs.Name.F4(“Iz, “IsZero, MetaDefs.Predicate.C0,

1),
 [MetaDefs.CTerm.F1(
 MetaDefs.Name.F4(“Iz, “Zero, MetaDefs.Constant.C0,

0))]).

The built predicate clause looks like this:

‘Iz.IsZero.P1’(‘Iz.Zero.C0’)

Each symbol has been given a flat form. The meta-type of the symbol (e.g.,

MetaDefs.Atom.F2 or MetaDefs.Name.F4) has been discarded. The symbol’s flat

Prolog identifier contains three parts: the module name, the symbol name, and a one-

letter, one-number combination in which the letter represents the symbol type (P for

predicate and C for constant in this example), and the number represents the symbol

arity. For example, the Gödel structure for the symbol Zero:

36

MetaDefs.CTerm.F1(
 MetaDefs.Name.F4(“Iz, “Zero, MetaDefs.Constant.C0, 0))

is converted to the Prolog:

Iz.Zero.C0.

The head and the body of a predicate clause are built separately and then combined

into a Prolog clause. Any functions in the head and/or body are transformed into what

are known as constraints. Constraints also undergo a build process and are then

inserted into the Prolog clause as part of the body. The constraint-building process is

described later in detail.

5.3 Rule translation by tau

Rule building is the same as for predicates, except that the rule must first be translated

into predicate form before being built. This is accomplished by the tau predicate. tau

translates rewrite rules into predicate clauses to begin the narrowing process that is

finished by the Prolog compiler. Conceptually, tau works by flattening. The rule

representing a function definition is converted into predicate form by adding an extra

variable argument to the function’s argument list. This new argument receives the

value that results from applying the function to its original arguments. Functional

expressions found as arguments in the right hand side of the rewrite rule are lifted

from the argument list and replaced by the extra argument. They are placed back

down, in predicate form, as part of the body of the clause being created.

37

Let’s look at some examples. Consider the rewrite rule

Plus(Succ(x), y) => Succ(Plus(x,y))

Since Plus is binary, a third, extra argument is created for it. Now calls to Plus will be

of the form

Plus(x, y, z)

where z takes on the value of the function call Plus(x, y).

Calls to the function Plus must be removed from any argument lists it appears in--in

this case, the argument list of Succ on the right hand side of the rule--and placed back

down in predicate form as part of the predicate body. So the Plus predicate takes the

form

Plus(Succ(x), y, n) <- Plus(x, y, z) & n = Succ(z).

But Succ is a constructor, hence unevaluable, so there is no reason to represent it with

the extra variable n. In practice, the above intermediate step never occurs. Instead, we

represent Plus directly as:

Plus(Succ(x), y, (Succ(z)) <- Plus(x, y, z).

Consider, for a second example, the rewrite rule for summing a list of numbers

Sumlist([a|b]) => Plus(a, Sumlist(b)).

Create a second argument, z, for Sumlist. Lift Sumlist from the argument list of Plus

and place it back down in predicate form in the predicate body. Since Plus is also a

function, create a third argument for it. The result is

Sumlist([a|b], z) <- Sumlist(b, n) & Plus(a, n, z).

38

6 Implementation Details

6.1 Compiler invocation

The predicates compile_program and compile_program_aux are called to invoke

the compiler. The program received from the parser is the four-part structure

containing the module name and the tree structures representing the module structure,

the language (symbol table), and the code. The standard Gödel compiler code contains

only predicate definitions, whereas the extended Gödel code also contains all rewrite

rules.

The compiler at this point also dumps the language tree into a language file for use

during program loading. Here we also read the rule list from the rule list file.

Just prior to initiating the compilation of the statements and rules, the two are

separated by a call to separate_statements_and_rules, a new predicate. This

predicate steps through the program code examining each node to determine whether

it contains a rule or a statement (predicate). The two are distinguished by the predicate

name, which in the case of a rule is =>. Two new structures, one containing only rule

code, and one containing only statement code, are created. These two structures are

handed to general_compile_module, which calls a series of predicates which effect

the compilation of each predicate clause and rewrite rule.

6.2 Predicate compilation

39

The series of predicate calls responsible for predicate compilation is essentially

unchanged from standard Gödel to new. general_compile_module calls

outer_compile_module, a new predicate created to split predicate compilation from

rule compilation, which in turn calls the newly-named p_compile_module (formerly

compile_module) to compile the predicates. This predicate calls compile_predicates

to extract all the statements for one predicate and pass them to

compile_statement_list, which extracts one statement and passes it to

compile_statement.

compile_statement is the workhorse predicate. It compiles each predicate statement

into Prolog which is written to the Prolog code file. Each Gödel statement is divided

into a head and a body, which are processed separately. The predicate build_head is

called to convert the predicate name and arguments found in the head into Prolog

names. Each argument must be checked to see whether or not it contains functions,

which must be converted into constraints. After this is done, each argument is built as

described previously. The built head is returned along with a (possibly empty) list of

constraints. The latter are built into Prolog by build_constraints and its auxiliary

predicates. These constraints will be merged with the built body when the final Prolog

clause is created.

Analogous processing is done on the body by compile_formula. compile_formula,

like build_head, checks for functions in the body terms’ arguments and replaces them

with constraints. It then builds all term names and arguments into Prolog equivalents

and combines them into a Prolog predicate formula. build_constraints is called, and

40

any built constraints are concatenated with the built predicate formula into a comma-

separated sequence of goals which is the Prolog clause body. If the original Gödel

body is a compound clause, each clause functor is compiled separately by

compile_formula, and the results are sequenced.

When the head, head constraints, and body have all been built, they are combined into

a Prolog clause as follows:

BuiltHead :- BuiltConstraints, BuiltBody.

The built constraints and/or body may be empty. Alternatively, either or both may be

comma-separated sequences.

As an example of a built predicate, consider this predicate from the Sumlist module

which sums a list of integers:

PREDICATE SumList : List(Integer) * Integer.
SumList([], 0).
SumList([x|xs], x + y) <- SumList(xs, y).

The pre-defined function + is converted to a constraint and prepended to the body.

The built Prolog equivalent clauses are

‘Sumlist.SumList.P2’([], 0).
‘Sumlist.SumList.P2’([A|B], C) :-

‘Integers’:plus(A, D, C),
‘Sumlist.SumList.P2’(B, D).

6.3 Rule compilation

41

The rule compilation path, modeled after predicate compilation, is entirely new code.

outer_compile_module calls r_compile_module, handing to it the tree structure

which contains the module’s rule code. r_compile_module hands compile_rules a

node containing a list of PredDef structures defining the => predicate. compile_rules

extracts an element of this list. compile_rules passes it to compile_rule_list, which in

turn extracts one rule from the list and passes it to compile_rule. The rule is extracted

from the head arguments of the => predicate. The optional rule conditional clause is

extracted from the => predicate body. The rule and condition are passed as separate

arguments to compile_rule.

compile_rule performs the actual rule compilation. It is very similar to

compile_statement, with one notable difference and one huge difference.

Compilation of conditional clauses

The first difference between compile_statement and compile_rule is the compilation

of conditional clauses. Rewrite rules may contain a conditional clause. For example,

in the conditional rewrite rule

Plus(x, y) => y <- x = 0.

if x has been instantiated to 0, then Plus(x, y) rewrites to y.

In the general conditional rewrite rule

X => Y <- Z.

Z , the conditional clause, may be any legitimate Gödel clause, although confluence of

rules can only be guaranteed when the conditional clause contains only equations.

42

This conditional rewrite rule is compiled as follows: X and Y are treated as the left

and right hand sides, respectively, of the rewrite rule. Z is compiled separately by

compile_formula, just as would be done for the body of a Gödel predicate. The

output of compile_formula is then prepended to the sequence of compiled right hand

side terms to form the complete Prolog predicate body.

Consider, for example, the recursive rule for factorial from the SFact module:

FUNCTION Fact : Nat -> Nat.
Fact(x) => Mul(x, Fact(y)) <- x = Succ(y).

The condition x = Succ(y) is prepended to the body of the built Prolog clause. The

Fact(y) argument to the multiplication function and Mul itself are also processed as

described in the next section, yielding the built Prolog clause

‘SFact.Fact.F2’(A, B) :-
A = ‘SFact.Succ.F1’(C),
SFact.Fact.F2’(C, D),
SFact.Mul.F3’(A, D, B).

tau implementation details

The major distinction between compile_rule and compile_statement is the former’s

use of tau to translate rules into predicate form. tau is implemented as follows. If tau

is called on a variable or a non-evaluable constant, it will return that variable or non-

evaluable constant unchanged as a one-element list.

43

tau called on a constructor term invokes tau_loop on the constructor term’s

arguments. tau_loop calls tau recursively on each of the arguments and returns the

processed arguments in a list which becomes the new argument list for the

constructor.

If tau is working on a functional term, it calls tau_loop to construct a new argument

list. Then, the function’s arity is increased, and a new variable appended to the new

argument list to give the function the predicate ‘look’. tau checks the rule list to

detect a function. Thus, it only detects user-defined functions. Pre-defined functions

are treated like constructors.

During its work, tau_loop has employed tau recursively to flatten the arguments.

This means that the new argument list contains no functional terms. Any such terms

have been lifted from inside the argument list and placed down in predicate form in

the body of the clause being created. The whole sequence of new predicates and new

‘predicate-style’ functions is now returned by tau.

tau called on a CONSTANT function acts similarly to tau called on a function. The

main difference is that the constant function has no arguments on which to recurse.

In its initial invocation, tau called on a rewrite rule, the left hand and right hand sides

of the rewrite rule are passed into tau as a two-element list. tau is called recursively

on the right hand side of the rule, resulting in one of the cases described above. This

recursive call returns, first of all, the new variable which is the new argument placed

in the left hand side of the rewrite rule, now become the clause head. The recursive

44

call also returns a list of statements. This list is converted to a conjunctive clause

which becomes the clause body.

Completion of rule compilation

When tau has finished its processing, the result looks comparable to a Gödel

statement. Since tau treats pre-defined functions (e.g., +) like constructors, it places

these functions in the head arguments of the clause it returns. Consequently, when

build_head is called on the translated left hand side, it may return constraints, and

build_constraints must be called.

Subsequently, compile_rule completes its work similarly to compile_statement.

6.4 Function detection

The decision to use the list of rule names to detect functions leads to the necessity of

passing the rule list all over the compiler code. It is passed throughout the predicates

responsible for the compilation of predicates, rules and goals. It is also passed

throughout Gödel’s top-level command-execution sequence to enable program makes

and loading of the rule list for goal compilation. This passing of the rule list

throughout the compiler is fairly primitive, but straightforward to implement.

45

compile_program passes the rule list through all the predicates responsible for

compilation. For rule compilation, the rule list used by tau to differentiate between

functions and constructors. Elsewhere, it is used by the building predicates. These

predicates include build_head, where it is used for detecting functions within a clause

head or rewrite rule left hand side; compile_formula, where it is used for detecting

functions within a clause body or rewrite rule right hand side or condition;

build_constraints, where it is used for detecting functions found as arguments to

another function.

The method used to detect user-defined functions follows from the method used for

pre-defined functions. The predicate replace_evaluatable is called by every predicate

that needs to do function detection. replace_evaluatable checks every functor

argument. If the argument is not a Gödel FUNCTION or CONSTANT, the argument

is not modified. If an argument is declared as a Gödel FUNCTION or CONSTANT,

evaluatable_functor is called to determine whether it is evaluable (a function) or not.

A FUNCTION is evaluable under both standard and extended Gödel if it is a member

of one of the following modules: Integers, Rationals, Sets, Strings. Standard Gödel

provides hard-coded Prolog predicates to replace functions of these modules. In

extended Gödel, evaluatable_functor also checks the rule list to see whether the

FUNCTION or CONSTANT in question is a member of the list. If it is a member, it

is evaluable.

Once replace_evaluatable has determined it is dealing with an evaluable function, it

creates a new variable which is returned to the caller as the built term. This variable

represents the ‘result’ of the function-soon-to-be-predicate. It also creates a pair

46

consisting of the variable and the function. This pair is called a constraint and is also

returned to the calling predicate.

If the FUNCTION or CONSTANT is not evaluable, it is returned untouched as the

evaluated term, and any arguments are recursively checked for evaluable functions by

replace_evaluatable.

6.5 Building constraints

When a functional argument is detected during compilation, it is reported out as a

constraint pair as described above. This constraint must be built into a Prolog clause

just as is done to the predicate.

The narrowing technique used to build constraints is a simple, recursive flattening

technique similar in concept to that performed by tau. Essentially, the functional

argument is made to look like a predicate. This is done by adding one more argument

to it. This extra argument represents the value of the erstwhile function. Then the

functional argument is removed from the argument list in which it is embedded and

promoted to become one more predicate in the clause. It is replaced in the argument

list by the extra argument.

For example, the clause

IsOne(Plus(Succ(Zero), Zero)).

where Plus is a function is flattened to

47

Plus(Succ(Zero), Zero, a) & IsOne(a).

where a is the extra argument and Plus is no longer a function, but is now a predicate.

The flattening of functional terms is done recursively, in case one of the function’s

arguments is itself a function.

build_constraints and several auxiliary predicates of varying arities accomplish

constraint building. build_constraints extracts the first constraint from a list of

constraints and breaks the variable/function constraint pair into separate arguments

which it hands to build_constraints_aux. build_constraints then calls itself

recursively on any remaining constraints in the list.

build_constraints_aux breaks the evaluable function structure into a functor name

and arguments and passes these components to build_constraints_aux of a higher

arity. In the case of pre-defined binary Gödel functions (e.g., +, -; ++ for strings;

etc.), there is a hard-coded build_constraints_aux clause for it. All of these clauses

are alike. replace_evaluatable is called on each of the arguments to detect nested

functions. Both evaluated arguments are then built. The new argument, the variable

obtained from the constraint pair, is also built. These three arguments form the

argument list for the Prolog clause being created. The new Prolog functor name is

hard-coded in the clause (e.g., plus for +, minus for -, etc.).

If replace_evaluatable detected any nested functions and returned them as

constraints, build_constraints is recursively called to build them. The original call to

build_constraints sequences the clause it creates with any created recursively to form

the final clause.

48

User-defined evaluable FUNCTIONs are handled by a new build_constraints_aux

clause. Its operation is very similar to the already-existing clauses. In contrast to those

clauses, however, the new clause does not know the arity of the function it will be

processing, so it calls build_term on an argument list, rather than on each of two

arguments separately. Also, the predicate make_flat_name is called to create a new

Prolog predicate name which reflects the increased arity of the former function.

User-defined functions defined as CONSTANT are also handled by a new

build_constraints_aux clause. Since a constant function has no arguments, the extra

constraint variable is built and becomes the sole argument to the built constraint. The

arity of the constant function is incremented to one.

6.6 Making

Making a multi-module program necessitates access not only to the rewrite rules

defined within the module being compiled, but also to the rules in modules imported

by the module being compiled, since local predicates may have imported functions

among their arguments. The rule list contains the names of all needed rules, both local

and imported. Loading the rule list file at the beginning of the make procedure allows

all modules to avail themselves of the rule list.

A program consisting of multiple modules is created using the Gödel make, rather

than the Gödel compile command. This invokes the predicate make_program. In

49

standard Gödel, this predicate breaks the code tree out of the program and hands it,

along with the whole program structure, to make_program_aux.

make_program_aux parallels the actions of compile_program on the head of the

code tree, extracting the module language and module definition from the program,

and then calling compile_program_aux to compile the module. make_program_aux

subsequently calls itself recursively on the left and right sub-trees of the code in order

to compile the code of the imported modules.

As mentioned above, the problem faced in extended Gödel when making a multiple

module program is one of having access to a list of all rules. This is done by loading

the rule list, which does contain all the needed rules, at the beginning of the make

process and passing it to make_program_aux, which passes it to the module compile

process via compile_program_aux, and to subsequent modules via recursive calls to

itself.

6.7 Loading

The command-processing sequence of Gödel is a loop of reading, parsing, interpreting

and executing the command entered, then returning to the top of the loop for the next

command. In particular, the command-processing sequence must keep track of which

program, if any, is loaded, and which symbol table (language), if any, is being

accessed. These arguments are passed down through the entire sequence of command-

processing predicates.

50

In order to enable the detection of functions during the compilation of goals under

extended Gödel, the rule list for an extended Gödel program must be loaded at the

same time the program and its language are loaded. Subsequently, the command-

processing sequence must keep track of the loaded rule list.

This is accomplished as for the language and the program. top_loop is initially called

with an empty rule list argument. It will be filled by an eventual load command, as

explained below. top_loop calls next_command, which calls process_command,

which calls build_command, which calls command_execution, which finally calls

the predicate which will execute the desired command. The rule list is passed down

through each predicate. If the command does not involve loading a new module, the

rule list is passed unchanged all the way back up to next_command. If the command

involves loading, the load procedure will modify the rule list. The modified rule list

will be returned up to next_command, which will re-start the command-processing

sequence with a call to top_loop using the modified rule list.

load_cmd and two auxiliary predicates are responsible for loading. load_cmd passes

the parsed program to the initial invocation of load_cmd_aux. This predicate loads

the language, Prolog, and compiled Prolog files into memory. It also builds a list of

imported modules which will be recursively loaded using load_cmd_aux2, which

calls load_cmd_aux to load the first of a list of imported modules, and then calls

itself recursively to load the rest of the list of modules. The extended Gödel load_cmd

predicate also loads the rule list file into memory for subsequent use by goal

evaluation.

51

7 Conclusion

7.1 Feasibility of functional-logic programming
language

This thesis demonstrates the feasibility of creating an integrated functional-logic

programming language. The language is usable. Given the slightness of the syntax

change to accommodate functions, a knowledgeable Gödel programmer can learn in it

minimal time. The addition of functional compilation to the Gödel compiler was

accomplished in a reasonable amount of time.

7.2 Narrowing

Leftmost-innermost narrowing is a simplistic narrowing implementation, and deficient

in comparison to needed narrowing. Since it converts functions into predicates, the

code it generates is no different than that which would be generated were the

functions written as standard Gödel predicates. It precludes the use of lazy evaluation,

which, as previously shown, allows the execution of many programs which do not

terminate when arguments are eagerly evaluated. The main benefit of this functional-

logic implementation is the expressiveness gained from the use of functional

arguments.

52

Nevertheless, this implementation creates a code framework in which to create a

functional-logic Gödel which employs needed narrowing. The isolation of rules and

the detection of function calls, as well as the creation of predicates to implement

narrowing, have all been done. While it remains to be seen how much help this will be

to the implementor of needed narrowing, it certainly should serve as a guide.

7.3 Compiler Design

Function Evaluation

The method for function evaluation is a generalization of the method already used by

Gödel for its pre-defined functions. It is a straightforward implementation of leftmost-

innermost narrowing. No other method was considered.

Rule translation

The tau predicate is a concise translation algorithm to flatten rules into predicates. Its

implementation is terse, yet not intuitive nor easy to comprehend. On the other hand,

given the flattening technique we are using to narrow functional arguments, this type

of translation is required for rules. A different narrowing implementation might avoid

the need for rule translation as done in this thesis.

53

Function detection

As stated before, passing a list of rules throughout the code is a primitive yet simple

and effective way of facilitating function detection. That the parser furnishes a

complete list of local and imported rules only increases its simplicity.

There are alternative methods of function detection. The most obvious would be to

declare user-defined functions differently from constructors; i.e., not in the

FUNCTION category. (Or better yet, re-name CONSTRUCTOR category items,

move standard Gödel FUNCTION items to the CONSTRUCTOR category, and

reserve the FUNCTION category for functions.) From a programming language point

of view, this makes eminent sense. It would obviate the need for function detection by

the compiler. However, we deemed it desirable to make as few changes as possible to

the standard Gödel syntax. (For further discussion on this syntax change, see [JV].)

Another alternative would be to flag evaluable functions in the language file. This

would avoid creation of the rule list file. But it would entail altering the structure of

the language, which has already been created by code generation time. Nor does this

address the question of how to use the language file for detection purposes. The rule

information contained therein would still have to be passed throughout the code.

7.4 Versions

Version 1

54

Two versions of the extended Gödel parser and compiler were implemented. The

version described in this paper is the second implementation. The ways in which the

first version differs are described below.

In the first version, the parsed structure of a rule differs from that of a predicate. More

precisely, the two structures are analogous, but a rule definition structure is labeled a

RuleDef, whereas a predicate definition structure is labeled a PredDef. As a result,

several parsed structures are different:

Code tree

AVLTrees.Node.F5(left tree -- predicates and rules,
predicate or rule name in string form,
list of predicate or rule definitions,
balance state of tree,
right tree -- predicates and rules

)

In extended Gödel version 1, a node containing a list of rewrite rules defines one

function only.

Rule Definition

ProgDefs.RuleDef.F4(arity, definition list, import delays, export delays)

The rule definition exists only in version 1. Other than its name, it is identical in

structure to a predicate definition.

55

Rule

MetaDefs.=>.F2(left hand side, right hand side)

The version 1 compiler contains a rule formula, MetaDefs.=>.F2. The two arguments

represent the left and right hand sides of a rule. The structure of the rule and predicate

clauses are almost identical, the only difference being that predicate heads are atoms

identified as MetaDefs.Atom.F2, whereas the left hand side of a rule is labeled a term,

MetaDefs.Term.F2. The two-part left side structure consists of the rule name and a list

of terms representing its arguments.

The version 1 parser does not create a rule list file. The version 1 compiler saves the

local module rule code by writing it to a rule code file, <module_name>.rc. This is

done after the parsed code has been separated into statement code and rule code. An

imported module’s rule code may be accessed by reading in its rule code file. The rule

code is used instead of the rule list to detect functions. A new predicate,

function_has_rules, is called by evaluatable_functor to search through the rule code

for a rule matching the term being tested for evaluability.

In version 1, r_compile_module hands compile_rules a node containing a list of

RuleDef, not PredDef, structures. The series of predicate calls down to compile_rule

is as for version 2. However, the structure passed to compile_rule is a single rule

structure, declared as MetaDefs.=>.F2. No extraction of the rule from the head

arguments as described for version 2 need take place. This rule structure is passed by

compile_rule to tau.

56

compile_rule’s call to build_constraints to build pre-defined functions does not exist

due to a version 1 parsing problem with numerical types. The numerical types Integer,

Rational, and Float are the types for which Gödel pre-defined functions exist; i.e., the

types for which constraints exist. In version 1, they are all parsed as type Num, for

reasons which remain a mystery to this day. No operations (constraints) are defined

for type Num. Consequently, no numerical operations can be used in rules in version

1.

As stated before, making a multi-module program necessitates access not only to the

rewrite rules defined within the module being compiled, but also to those in modules

imported by the module being compiled, since local predicates may have imported

functions among their arguments. The version 1 solution is to join the rule code of the

module undergoing compilation with that of modules which have already been

compiled during the make and pass that throughout the make process.

This is done by passing the rule code of already-compiled modules into each

invocation of make_program_aux, and by adding the local module’s rule code to it

for subsequent recursive invocations. make_program calls make_program_aux

initially with an empty tree for the rule code. make_program_aux, like

compile_program, calls separate_statements_and_rules to divide the code into its

two parts. The newly-separated rule code is joined with the existing rule code tree

(which is empty during the first pass through make_program_aux). Both the local

rule code and the combined rule code are passed to compile_program_aux, and

through it, to the series of predicates responsible for statement and rule compilation.

Recursive calls to make_program_aux will be passed the combined rule code, and

join it with the rule code of the next module to be compiled, and so on.

57

A problem created by this solution is that a multi-module program must be made; its

component modules cannot be separately compiled. In the latter case, modules will

not have access to the rule code of imported modules. Detection of imported functions

will fail. This is a bug.

At the time of goal compilation, the rule code retained during program compilation is

no longer in memory. It must be re-obtained during the load process or goals

containing functional arguments will be incorrectly compiled. In version 1, the rule

code is obtained by reading in all rule code files from the local and imported modules.

An empty tree for the rule code is passed to the initial invocation of load_cmd_aux.

load_cmd_aux reads into memory the rule code of the module being loaded, and then

joins this rule code with the rule code passed into this predicate, which represents the

already-read rule code. It calls load_cmd_aux2 and passes the augmented rule code to

the latter predicate, which in turn adds to the loaded rule code during its execution and

returns the again-augmented rule code to its caller.

Version 1 does not accept CONSTANT functions.

Comparison between versions

In both versions, rule code and statement code are separated at the top level of the

compiler. While this seemed an obvious step in version 1, since rules and predicates

are different structures, it was not a necessity in version 2, since rules are parsed as

predicates. Rules could conceivably be sent down the same compilation path as

58

predicates. However, since rules require extra processing before they can be compiled,

it is desirable to separate them from standard predicates before compilation. Several

advantages are reaped from this decision. First, the rule-processing code created in

version 1 can be re-used in version 2 with slight modification. Second, the standard

Gödel predicate-processing code may be used unchanged in both version 1 and

version 2.

Separating the rule and statement code is comparable in version 1 and version 2.

Version 1 keys on the RuleDef structure to distinguish a rule, while version 2 keys on

the predicate name =>.

The fact that rules are parsed as predicates in version 2 makes dissecting the rule

structure prior to building somewhat more difficult than in version 1. In addition, all

rules in version 2 are mingled in one PredDef structure. In version 1, each RuleDef

contains all rules for one function only. This does not have an effect on this compiler,

but may have an impact on future implementations.

Version 2 function detection employs the list of rule names, which is a much smaller

structure than the parsed rule code which is used in version 1. This undoubtedly saves

memory. Detection may be faster with the smaller version 2 list, although this has not

been tested.

The most significant advantage of version 2 over version 1 is the existence of the rule

list file, which contains the names of all local and imported rules, prior to compilation.

Loading the rule list from the rule list file is a one-step process. Obtaining the rule

code for version 1 module making and loading is a much more complex process. In

59

addition, there exists the version 1 make bug when compiling modules separately, as

mentioned previously.

In addition, version 2 permits the definition of CONSTANT functions, whereas

version 1 does not.

8 Other functional-logic
programming languages

Two other currently existing functional-logic languages are briefly examined as a

contrast to extended Gödel. The languages are ALF and K-LEAF (Kernel-LEAF).

8.1 ALF

ALF (Algebraic Logic Functional programming language) [ALF] combines a clause-

based logic programming language with functions. Its overall design is in many ways

similar to our implementation of extended Gödel. It employs leftmost-innermost

narrowing to evaluate functional expressions. It attempts to simplify terms as much as

possible through rewriting before narrowing is applied. Like the Prolog system

underlying Gödel, it uses resolution to solve goals. Also like Gödel and the underlying

Prolog, it uses a backtracking strategy to evaluate queries.

60

ALF uses a module system, like Gödel, which allows both the importation of other

modules and the exportation of the local module. ALF has a renaming feature, not

found in Gödel, which allows imported objects to be renamed in order to prevent

clashes with local object names. For example, if importing a function f from module

m when a function f already exists locally, the declaration

use m with fm for f.

associates the name fm with the function f imported from module m.

The program structure of ALF is slightly different from Gödel in that the goals to be

proved are included in the main module, as opposed to the Gödel interactive method.

The execution methods also differ. ALF is not based on Prolog. Rather, it compiles

programs into instructions for an abstract machine based on the Warren Abstract

Machine which is currently implemented by an emulator written in C.

ALF avoids the major syntactic pitfall encountered when extending Gödel; that is, the

conflict between constructors and functions. ALF constructors are declared along with

the type. Functions are declared separately. For example,

datatype nat = { 0 ; s(nat) }.
func + : nat, nat -> nat infixleft 500.

defines two constructors of type nat and one operation on nat.

Like Gödel, ALF supports polymorphic parameters. For example, a type stack can be

defined to take elements of any sort.

61

Semantic restrictions placed on ALF evince some similarities and some differences

with Gödel. Rewrite rules, as in Gödel, must be confluent and terminating. Unlike

Gödel, ALF does not allow functional arguments in the head of a predicate. Like

Gödel, ALF permits extra-variables (variables appearing in the right side or condition

but not the left side of a rule), but disregards the confluence of the system if they

exist.

In general, ALF’s computation method is like this implementation of extended Gödel.

But ALF goes a bit further by trying to evaluate terms which include partial functions

(functions not reducible on all ground terms). Such functions are evaluated using

innermost reflection. This is essentially a lazy evaluation method, where evaluation of

the partial function is avoided unless necessary to the evaluation of the whole term.

ALF also permits specifying that certain equations should be used only for narrowing

or only for rewriting. For example, the declaration

N * 0 = 0.
0 * N = 0 onlyrewrite.

allows for the computation of terms where N is unevaluable, while avoiding re-

computation of the same value in the case that a term can unify with both rewrite

rules.

8.2 K-LEAF

62

The salient features of the K-LEAF [KLEAF] logic and functional programming

language are: 1) the use of flattening rather than narrowing; 2) its ability to handle

non-terminating functions; 3) its acceptance of weakly orthogonal (or weakly non-

ambiguous) rewrite systems.

Its computation technique is to flatten K-LEAF programs into an intermediate

language called Flat-LEAF, and then apply resolution to the resulting Flat-LEAF

program. The concept of flattening and resolving is similar to that used in this

implementation of extended Gödel, save the lack of an explicit intermediate language

in Gödel.

Where K-LEAF’s computation technique differs from Gödel is in its handling of

partially-defined functions and non-strict functions, those functions which terminate

on input from non-terminating functions. In order to handle such functions, K-LEAF

uses an outermost computation method, similar to lazy evaluation of functions. K-

LEAF first attempts to resolve goals essential for computation. It delays evaluation of

non-terminating functions until absolutely necessary.

For example, a function

nats(x) = cons(x, nats(s(x)))

which generates a list of the natural numbers beginning from x is a non-terminating

function. The function

first(cons(x, l)) = x

is defined as a non-strict function which returns the first element of a list. To solve the

goal

63

first(nats(2))

K-LEAF first tries to evaluate the outermost function, first. To do so, it must evaluate

nats, yielding

first(cons(2, nats(3))).

K-LEAF now attempts once again to compute the value of first, and succeeds with the

value 2. At this point, the overall computation is finished, even though the evaluation

of nats has barely begun.

K-LEAF has some of the usual restrictions on function definitions--left linearity and

constructor-based functions. In addition, it allows for weak non-ambiguity in its

rewrite rules. A term may unify with more than one rule left side so long as

confluence is maintained.

That is, two rules may have similar left-side structures such that applying some

substitution to both left sides unifies them. The resulting apparent ambiguity is not a

problem if applying the substitution to the rules’ right sides (known as a critical pair)

makes them equal. The existence of such trivial critical pairs in a rewrite system

renders it weakly orthogonal.

For example, the rewrite system

N + 0 = N
0 + N = N

is weakly non-ambiguous, since 0 + 0 unifies with both rules’ left sides, but rewrites

to the same value regardless of which rule is applied.

K-LEAF, like ALF, is implemented on the Warren Abstract Machine.

64

Bibliography

[AEH] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In
Proceedings 21st ACM Symposium on Principles of Programming Languages, pages
268-279, Portland, OR, 1994.

[AFM] S. Antoy, P. Forcher, and M. Molfino. Specification-based code generation.
In Proceedings of the 23rd Annual Hawaii International Conference on Systems
Sciences, pages 165-173, Kailua-Kona, 1990.

[ALF] M. Hanus and A. Schwab. ALF User’s Manual. F. B. Informatik, University
of Dortmund, 1991.

[ASV] S. Antoy, D. Shapiro, and J. Vorvick, Gödel with user-defined evaluable
functions. Visions for the Future of Logic Programming, pages 37-46, Portland, OR,
December 1995.

[Antoy] S. Antoy. Lazy Evaluation in Logic. In J. Maluszynski and M. Wirsing,
editors, Programming Language Implementation and Logic Programming, 3rd
International Symposium Proceedings, pages 371-382, Passau, Germany, August,
1991.

[Art] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 2nd edition, 1994.

[Bowers] A. Bowers. Representing Gödel object programs in Gödel. Technical
Report CSTR-92-31, University of Bristol, Dept. of Computer Science, 1992.

[Curry] M. Hanus, H. Kuchen, and J. Moreno-Navarro. Curry: a truly functional logic
language. Visions for the Future of Logic Programming, pages 95-107, Portland, OR,
December 1995.

[DJ] N. Dershowitz and J. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science B: Formal Methods and Semantics,
chapter 6, pages 243-320. North Holland, Amsterdam, 1990.

[DP] N. Dershowitz and D. Plaisted. Equational programming. In J. Hayes, D.
Mitchie, and J. Richards, editors, Machine Intelligence 11, chapter 2, pages 21-56.
Clarendon Press, Oxford, 1988.

65

[Escher] J. Lloyd. Declarative programming in Escher. Technical Report CSTR-95-
013, University of Bristol, Dept. of Computer Science, 1995.

[Gödel] P. Hill and J. Lloyd. The Gödel Programming Language. MIT Press, 1993.

[Hanus] M. Hanus. The integration of functions into logic programming: from theory
to practice. Journal of Logic Programming, 19&20:583-628, 1994.

[KLEAF] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: a
logic plus functional language, The Journal of Computer and System Sciences,
42:139-185, 1991.

[Klop] J.W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and T.
Maibaum, editors, Handbook of Logic in Computer Science, Vol. II, pages 1-112.
Oxford University Press, 1992.

[SMI] T. Suzuki, A. Middledorp, and T. Ida. Level-confluence of conditional rewrite
systems with extra variables in right-hand sides. In RTA ‘95, pages 179-193, 1995.
LNCS 914.

[vEY] M. van Emden and K. Yukawa. Logic programming with equations. The
Journal of Logic Programming, 4:265-288, 1987.

66

Appendices

67

Appendix A

Differences between version 1 and version 2

Issue Version 1 Version 2
code contains RuleDefs and

PredDefs
contains PredDefs only

basis for rule and predicate
differentiation

RuleDef structure PredDef name =>

where rule and predicate
separation occurs

compiler top level compiler top level

predicate structure <-(head, body) <-(head, body)
rule structure =>(lhs term, rhs term) <-(headAtom(=>,[lhs,rhs]),

condition)
rule file .rc contains parsed rule code-

-created by compiler
.ef contains list of rule name--
created by parser

detector function_has_rules(f,
RuleCode)

member(f, RuleList)

rule structure passed to tau =>(lhs, rhs) [lhs, rhs]
tau’s handling of pre-defined
functions

not applicable handled as constructors.
caller must call
build_constraints

function detection in make join rule code module-by-
module. Doesn’t permit
single module compile of
multi-module program

use rule list from rule list file

function detection in load read rule code module-by-
module

read rule list from rule list
file

CONSTANT functions no yes

68

Appendix B

Sample extended Gödel module

This module demonstrates the clarity of expression gained by adding a functional

component to Gödel. It contains functional declarations and definitions for many of

the Gödel built-in List predicates. Most of these predicates are more naturally

conceived of as functions, as shown here.

Where a functional implementation is not possible, the reason is noted.

EXPORT Mylists.

IMPORT Integers.

CONSTRUCTOR MyList/1.

CONSTANT MyNil : MyList(a).

% Constructor Cons
FUNCTION MyCons : a * MyList(a) -> MyList(a).

% Member cannot be implemented as a function due to lack of Boolean type.

% Permutation implemented using functions
PREDICATE MyPermutation : MyList(a) * MyList(a).

FUNCTION MyAppend : MyList(a) * MyList(a) -> MyList(a).

% Delete one occurrence of the first argument from the second argument.
FUNCTION MyDelete : a * MyList(a) -> MyList(a).

FUNCTION MyReverse : MyList(a) -> MyList(a).

% Return the first N elements of a list.
FUNCTION MyPrefix : MyList(a) * Integer -> MyList(a).

69

% Return the last N elements of a list.
FUNCTION MySuffix : MyList(a) * Integer -> MyList(a).

% FUNCTION MyLength : MyList(a) -> Integer
% Length function cannot be implemented because it is not transparent
% [Gödel, p. 21]; i.e., every parameter in the domain types must appear in the
% range type. ‘a’ does not appear in range.

% Sorted cannot be implemented as a function due to lack of Boolean type.

FUNCTION MySort : MyList(Integer) -> MyList(Integer).

FUNCTION MyMerge : MyList(Integer) * MyList(Integer) -> MyList(Integer).

LOCAL MyLists.

% Permutation predicate implemented with functions
MyPermutation(MyNil, MyNil).
MyPermutation(xs, MyCons(z, zs)) <- MyPermutation(MyDelete(z, xs), zs).

% Append function
MyAppend(MyNil, ys) => ys.
MyAppend(MyCons(x,xs), ys) => MyCons(x, MyAppend(xs, ys)).

% Delete function
MyDelete(_, MyNil) => MyNil.
MyDelete(x, MyCons(x, xs)) => xs.
MyDelete(x, MyCons(y, ys)) => MyCons(y, MyDelete(x, ys)).

% Reverse function
MyReverse(MyNil) => MyNil.
MyReverse(MyCons(x, xs)) => MyRev(MyCons(x, xs), MyNil).

% A niftier reverse implementation
FUNCTION MyRev : MyList(a) * MyList(a) -> MyList(a).
MyRev(MyNil, ys) => ys.
MyRev(MyCons(x, xs), ys) => MyRev(xs, MyCons(x, ys)).

% Prefix function
MyPrefix(MyNil, _) => MyNil.
MyPrefix(_,0) => MyNil.
MyPrefix(MyCons(x, xs), n) => MyCons(x, MyPrefix(xs, n - 1)).

% Suffix function
% Inefficient?, but effortless implementation

70

MySuffix(xs, n) => MyReverse(MyPrefix(MyReverse(xs), n)).

% Sort function
MySort(MyNil) => MyNil.
MySort(MyCons(x, xs)) => MyInsert(x, MySort(xs)).

% Insert function
FUNCTION MyInsert : Integer * MyList(Integer) -> MyList(Integer).
MyInsert(x, MyNil) => MyCons(x, MyNil).
MyInsert(x, MyCons(y, ys)) => MyCons(x, MyCons(y, ys)) <- x =< y.
MyInsert(x, MyCons(y, ys)) => MyCons(y, MyInsert(x, ys)) <- x > y.

% Merge function
MyMerge(xs, MyNil) => xs.
MyMerge(MyNil, ys) => ys.
MyMerge(MyCons(x, xs), MyCons(y, ys)) =>

 MyCons(x, MyMerge(xs, MyCons(y, ys))) <- x =< y.
MyMerge(MyCons(x, xs), MyCons(y, ys)) =>

 MyCons(y, MyMerge(MyCons(x, xs), ys)) <- x > y.

71

