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Outline

Whats, hows and whys of Functional Logic Programming.

Constructor-based rewrite systems as programs.

The role of strategies.

The classes of rewrite systems.

A strategy for each class.
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What is FLP

FLP studies programming languages that integrate functional and logic
programming.

A program in these languages is a constructor-based, possibly condi-
tional, rewrite system.

A computation is a rewrite or narrowing derivation of a term to a construc-
tor term.

A strategy is the most critical component of a FLP language.
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FLP Features

• Logic variables (partial structures)

• Inversion of computations

• Non-determinism

• Infinite structures

• Functional nesting

• Strategies
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FLP Advantages

• Expressiveness (compute more with less code)

• Transparency (code is not cryptic/opaque)

• Economy (save code)

• ⇒ Improved entire software cycle
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Example
N-queens puzzle

queens X -> Y :- Y=permute X, void (capture Y)

permute [] -> []

permute [X|Xs] -> U++[X]++V :- U++V=permute Xs

capture Y :- -++[Y1]++K++[Y2]++-=Y, abs(Y1-Y2)=length K+1

This program is (for the most part) a constructor-based conditional rewrite
system (with several liberties concerning the traditional notation).

queens [1,2,3,4] evaluates (among others) to [2,4,1,3]
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Execution

The execution of an FLP program is by narrowing and/or residuation .

Ground (sub)terms are simply rewritten .

Non-ground (sub)terms are either instantiated enough to be rewritten or
suspended until they become instantiated enough.

A strategy schedules the (sub)terms to evaluate, decides whether to sus-
pend or to instantiate and if the latter, computes the instantiation.

Different classes of rewrite systems are better executed by different strate-
gies.
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Strategies

A strategy is a mapping from terms to set of steps.

When it is applied to a term it computes both a reduct (computed value)
and an instantiation (computed answer) of some variables of the term.

A useful strategy must have a number of desirable properties that are
better explained when the term is an equation with free variables.

Soundness: every computed answer is a solution of the equation.

Completeness: every solution of the equation is computed.

Efficiency: computational resources are not wasted.
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Classes of Rewrite Systems

WO

OIS
CB

IS
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Inductively Sequential TRSs

• Constructor-based subclass of the strongly sequential TRSs

take 0 - -> []

take (s N) [] -> []

take (s N) [X|Xs] -> [X | take N Xs]

• The left-hand sides of the rules of each operation can be organized a
in hierarchical structure called a definitional tree

take N X

tttttttttttt

JJJJJJJJJ

take 0 X take (s N1) X

rrrrrrrrrr

LLLLLLLLLL

take (s N1) [] take (s N1) [X1|Xs]
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Needed Narrowing

The strategy for the inductively sequential TRSs is needed narrowing.

Needed narrowing is easily implemented using a definitional tree as an
automaton to compute steps.

Needed narrowing satisfies two important optimality criteria.

Only needed steps are computed: derivations have minimal length.

Only needed derivations are computed: substitutions are disjoint.
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Compute a Needed Step

The task is to evaluate t = take N u, where N is an unbound variable
and u is some operation-rooted term.

Unify t with a maximal (lowest) element of the definitional tree. There are
two such elements: take 0 X (a leaf) and take (s N1) X (a branch).

Because the first is a leaf, instantiate t with {N 7→ 0} and narrow . The
result is []

Because the second is a branch, instantiate t with {N 7→ (s N1)} and
recursively evaluate the match of the inductive variable. An instance of u
is evaluated.
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Weakly Orthogonal TRSs

• Rewrite rules’s lhs may overlap, but only if critical pairs are trivial.

• Interesting TRSs because they capture parallelism.

true ∨ - -> true

- ∨ true -> true

false ∨ false -> false

• There is no definitional tree of operation “∨”.

• There are terms that have no needed redex.

• In practice, to evaluate a term of the form u ∨ v both u and v must be
evaluated concurrently.
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Parallel Narrowing

The strategy for the weakly orthogonal TRSs is parallel narrowing.

The rules of a weakly orthogonal operation can be partioned into subsets
so that every subset has a definitional tree.

The set of steps obtained by computing a step for each subset of the par-
tition is a necessary set of steps.

One step of a necessary set of a term t is executed in any computation of
t to a constructor term.

Parallel narrowing is a conservative extension of both needed narrowing
and weakly needed rewriting.
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Overlapping Inductively Sequential TRSs

• Rewrite rules’s lhs may overlap, but only if they are equal modulo a
renaming of variables.

• Interesting TRSs because they capture non-determinism.

regexp X -> X

| "(" ++ regexp X ++ ")"

| regexp X ++ regexp X

| regexp X ++ "*"

| regexp X ++ "|" ++ regexp X

• To recognize whether a string s is a well-formed regular expression
over {0,1} one evaluates regex (”0”|”1”) = s.
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INS

The strategy for the overlapping inductively sequential TRSs is INS.

Overlapping inductively sequential operations have a definitional tree.

INS steps are computed as needed steps, except that several alternative
replacements may be available for a narrex.

The optimality results of needed narrowing holds for INS, but only modulo
non-deterministic choices.

Needed and possibly non-needed steps and/or derivations are computed
by INS.
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Constructor-Based TRSs

• No specific restrictions on the rewrite rules except for the constructor
discipline and left linearity .

• Greatest expressive power:

permute [] -> []

permute [X|Xs] -> insert X (permute Xs)

insert X Ys -> [X|Ys]

insert X [Y|Ys] -> [Y|insert X Ys]

• No accepted notion of “need.” Known strategies are demand-driven
and their properties are poorly understood.

• There exists a semantics-preserving transformation into the overlap-
ping inductively sequential TRSs.
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Transforming Conditions

• The conditional part of a rule is a sequence of equational constraints:

l→ r ⇐ u1 = v1, . . . , un = vn

expressed by ordinary operations: conjunction, strict equality, ...

• A new conditional operation is added to the signature:

if success then X→ X

• Rules are deconditionalized by moving the condition to the rhs in the
form of a conditional expression:

l→ if u1 = v1, . . . , un = vn then r

18



Transforming Overlapping

• The set of rules of an operation f is partitioned into overlapping in-
ductively sequential subsets.

• Each subset of a partition defines a new overlapping inductively se-
quential operation, say f1, f2, . . . , fn.

• Operation f is replaced by

f(X̄)→ f1(X̄) | · · · | fn(X̄)

• The choice to evaluate an argument of an operation is transformed
into a choice of one of several rhs’s.
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Transformation Example

The following operation:

insert X Ys -> [X|Ys]

insert X [Y|Ys] -> [Y|insert X Ys]

is transformed into:

insert X Ys -> insert1 X Ys | insert2 X Ys

insert1 X Ys -> [X|Ys]

insert2 X [Y|Ys] -> [Y | insert X Ys]

Some optimizations are possible, e.g., insert1 can be eliminated.
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Transformation Properties

• Let R be a left-linear constructor-based TRS and S the transformed
TRS.

• S is an overlapping inductively sequential TRS.

• The constructor terms of R and S are the same.

• For each computation t ∗→ v in R there exists a computation t ∗→ v in
S.

Conclusion: all the computations ofR are simulated by computations of S.
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Summary

Narrowing and rewriting strategies for the constructor-based TRSs have

been extensively investigated and are well understood.

Four subclasses are emerging for functional logic programming.
Each class has at least one effective strategy.

Inductively Sequential : functional computations, needed narrowing.

Weakly Orthogonal : parallel computations, parallel narrowing.

Overlapping Inductively Sequential : non-deterministic computations,
INS.

Left-Linear : transform into overlapping inductively sequential.
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