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Introduction 
 
This paper describes the design of a computer that I built out of relays.  The computer, which 
was completed in 2005, is documented at 
 

www.cecs.pdx.edu/~harry/Relay 
   

which contains a number of photos and videos. 
 
 
What is a Relay? 
 
Inside every relay is an electromagnet.  An electromagnet is simply a coil of wire, wound around 
an iron core.  When electricity passes through the coil, a magnetic field is created and when the 
electricity is disconnected, the magnetic field collapses. 

 

 
In every relay, there is a small switch situated next to the electromagnet.  When electricity passes 
through the coil, the magnetic field moves the switch into one position.  When the electricity is 
removed, a spring pulls the switch back into the other position.  A relay consists of an 
electromagnet that operates a nearby switch. 
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A double-throw switch has three contacts.  In one position the movable contact makes a 
connection with a second contact, while in the other position the movable contact makes a 
connection with the third contact.  Double-throw switches are also called on-on switches. 
 
The relays used in this computer have, not one, but four identical switches located next to the 
electromagnet.  When on, the electromagnet operates all four switches in unison.  Each switch is 
a double-throw switch.  For this reason, the relay is called a four-pole, double-throw relay. 
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All the relays used in this computer are the identical part, which is pictured below.  The relays 
are 12 volt relays and the computer is powered with 12 volts DC.  (Relays do not work with AC 
current.) 
 

 
Incidentally, the term “computer bug” originated when a program failure was found to be caused 
by a moth, which had gotten caught between two contacts in an early relay-based computer.  As 
you can see, these relays have a plastic cover, which makes this computer completely immune to 
“bugs.” 

A Four-Pole, Double-Throw Relay
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In designing the circuits used in the computer, I invented the following schematic diagram to 
represent a relay. 
 

 
Normally, relays are drawn in the “off” position, but sometimes it helps in understanding a 
circuit to portray some relays in the “on” position. 
 
Notice that only one connection to the coil is shown.  The assumption is that the second 
connection is to ground.  For all the relays in this computer, one terminal of the coil is always 
connected to ground. 
 
Here are some other schematic representations.  The diagram on the left is the traditional 
notation.  The diagram on the right is convenient since it shows the positions of the external 
connections. 
 

 
 

Other Schematic Diagrams
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Representing Binary Values 
 
We represent a logical “1” with a connection to 12 volt power, symbolized as +V.  A logical “0” 
is represented with “no connection to power.”  Note that this is different than saying “0” is a 
connection to ground. 
 
A wire that is not connected to power will essentially be at zero volts.  If such a wire is 
connected to another relay coil or to a light, then any voltage charge on the wire will quickly fall 
to zero as the electricity bleeds out through the relay or light.  And if the wire is truly 
unconnected to anything else, then we really don’t care what voltage charge it carries. 
 
The relay is a robust, resilient device when compared to transistors or integrated circuits.  In the 
design of this computer, concepts like charge, current, capacitance, resistance and inductance can 
be pretty much ignored.  This is an electric computer, not an electronic computer.  All that 
matters is whether there is a path to +V or not.  It is very much a “logical” design, not an 
electronic circuit. 
 
 
 
The “NOT” Circuit 
 
Here is a circuit implementing the logical “NOT” function with a single relay. 
 

 
With an input of “0”, the relay will be off, as shown, and the output will be connected to power, 
which means the output will be “1.”  An input of “1” will cause the relay to turn on, which will 
break the connection to power and cause the output to be “0”. 
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The “OR” Circuit 
 
Here is a circuit implementing the logical “OR” function, using two relays: 

 
 
You might suggest the following “optimized” version of the “OR” circuit, which I call the 
“wired-OR” circuit.  Since each input is either connected to power or unconnected, tying them 
together will mean that the output is connected to power if either of the inputs is. 
 
 

 
The wired-OR circuit will work in some situations, but will not work properly in every situation.  
Below is an example where the wired-OR circuit will produce the wrong result. 
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To see the problem, imagine that inputs “b” and “c” are “0” and input “d” is “1”.  The “b or c” 
output should be “0” and the “c or d” output should be “1”.  Unfortunately, there is a path from 
power (coming in through “d”) to the “b or c” output.  Therefore, the “b or c” output will be “1”, 
which is incorrect. 
 
The problem is that a signal can travel both directions along a wire.  In this case, the “c or d” 
circuit is driving its “c” input high, and this has repercussions in the “b or c” circuit.  Whenever a 
wire is meant to carry a signal in one direction, but some circuit can send a signal in the reverse 
direction, I say that “backfeed” or “backflow” can occur along the wire. 
 
In some cases, backfeed will not cause any problems; in other situations it will cause other 
circuits to malfunction.  The wired-OR is much simpler than using relays, so I prefer to 
implement the “OR” function by tying wires together, whenever it can be done without backfeed 
causing another circuit to malfunction. 
 
Below is a circuit that solves this problem and implements the desired functionality. 
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This circuit will work, but when using it we must remember that backfeed along the “b or c” 
output will cause backfeed along the “b” input.  Also, backfeed along the “c or d” output will 
cause backfeed on the “d” input. 
 
 
 
An “AND” Circuit 
 
Here is an implementation of the logical “AND” gate, using two relays. This circuit is not 
affected by backfeed. 
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Below is another implementation of “AND”, but backfeed can occur in this circuit.  In particular, 
backfeed on the output can cause backfeed on the “b” input. 

 
 
 
 
A 1-Bit Logic Block 
 
The “1-Bit Logic Block” implements four logic functions at once.  It produces four outputs, 
providing the logical AND, OR, NOT, and XOR functions. 
 

 
The following circuit implements these functions in such a way that backfeed cannot occur. 
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The Aritmetic Logic Unit (ALU) 
 
Using the 1-bit logic circuit shown above, we can start to construct an Arithmetic Logic Unit 
(ALU).  This computer is an 8-bit computer, and works most easily with byte-sized quantities.  
Consequently, the ALU takes as inputs, two 8-bit values and produces an 8-bit result.  The ALU 
is capable of computing several different operations on the two inputs, so another input controls 
what operation is performed by the ALU. 
 
In this computer, the two inputs to the ALU are called “B” and “C.”  Both inputs are 8 bits.  The 
output of the ALU is called the “Result” and is also 8 bits.  Within a byte, the bits are numbered 
from 0 to 7, with bit 0 being the least significant. 
 
Thus, the inputs to the ALU are: 
  

B  =  b7  b6  b5  b4  b3  b2  b1  b0 
 
and 
 

C  =   c7  c6  c5  c4  c3  c2  c1  c0 
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The most basic functions that can be computed are logical AND, OR, XOR, and NOT.  For 
example to compute AND, each of the 8 bits of one input is ANDed with the corresponding bit 
from the other input to produce a single bit of the output.  Note that the NOT function depends 
only on the B input. 
 
The ALU contains eight 1-bit logic blocks (as described above), which compute logical AND, 
OR, XOR, and NOT on all 8 bits, as shown in the 8-bit logic circuit below. 
 

 
The logic circuit computes 
 
 B  AND  C 
 B  OR  C 
 B  XOR  C 
 NOT B 
 
This ALU can also compute 
 
 B + C  (addition) 
 B + 1  (increment) 
  B << 1  (shift left) 
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Addition 
 
The ALU is capable of adding two 8-bit numbers.  Each bit is added using a “full adder” circuit.  
Eight full adders are chained together to form an 8-bit adder. 
 
Recall that a full adder takes two bits, adds them and produces a 1 bit result.  Furthermore, a full-
adder takes a “carry input” from the previous stage to the right and produces a “carry output” to 
the next stage to the left. 
 

 
By connecting 8 full adders together, feeding the “carry output” from one into the “carry input” 
of the next, we can build an 8-bit adder.  We feed a “0” into the “carry input” of the least 
significant bit.  When adding two 8-bit numbers, the result will sometimes overflow into the 9th 
bit; this bit is simply the carry out from the most significant full adder. 
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Konrad Zuse’s Full Adder Circuit 
 
The full adder circuit used in my computer was invented by Konrad Zuse for his Z3 computer.  
The Z3 was built out of relays and completed in 1941, in wartime Berlin.  This was no small feat, 
since money for such pure research projects was hard to come by in the middle of World War II.  
It is reasonable to refer to Zuse’s machine as the first functional computer, since all previous 
“computers” were mechanical calculators. 
 
Except for the full adder, I designed all circuits used in my computer.  
 
The full adder circuit uses two wires, instead of one, for each carry.  This “dual rail” design 
sends the carry along in both negated and non-negated form.  [For an interesting online 
simulation, see http://tams-www.informatik.uni-hamburg.de/applets/hades/webdemos/05-
switched/20-relays/zuseadd.html ] 
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We can summarize the 8-bit adder circuit with the following block diagram. 
 

The diagonal marks on the “B” and “C” inputs and on the “Sum” output indicate that there are 8 
parallel lines, one for each bit.  We also see the “carry output” from the leftmost (i.e., most 
significant) stage of the adder. 
 
 
 
The Increment Circuit 
 
For normal addition, we supply two 8-bit operands to the adder and we supply a “0” for the carry 
input to the rightmost (i.e., least significant) stage.  Using the dual rail carry design of Konrad 
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Zuse, this means we must supply a “1” for the negated carry input to the least significant first 
stage. 
 
The ALU is also capable of incrementing B. 
 
Incrementing can be implemented very easily, using the adder, as follows:  ignore C and supply a 
“1” as the carry input to the least significant stage.  Since we use the dual rail carry design, we 
must supply “0” as the negated carry input to the rightmost stage. 
 
 
 
The Zero-Detect Circuit 
 
The ALU is also capable of detecting when the result is all zeros.  The following circuit samples 
the 8 bit result.  When the value on the result is 00000000, all 8 relays will be off and the zero 
detect output will be “1”.  However, if any bit in the result is “1”, then the corresponding relay 
will turn on, and the path from “V” to the output will be broken. 

 
 
 
 
The Sign Bit 
 
Computers represent negative integers using two’s complement representation.  Whenever a 
number is negative, the most significant bit will be “1”.    The ALU can detect the sign of the 
result by simply pulling off the sign bit.  No relays are necessary. 
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The Data and Address Busses 
 
A single wire can carry a single bit.  A “bus” is simply a set of several parallel wires which can 
carry several bits at once.  This computer contains two important busses, the “data” bus and the 
“address” bus. 
 
The data bus is 8-bits wide, so the data bus transfers a byte at a time. 
 
DATA BUS  =  d7  d6  d5  d4  d3  d2  d1  d0 
 
The rightmost bit (d0) is the least significant bit. 
 
The address bus is 16-bits wide, so the address bus transfers two bytes at a time. 
 
ADDR BUS  =  a15  a14  a13  a12  a11  a10  a9  a8  a7  a6  a5  a4  a3  a2  a1  a0 
 
The rightmost bit (a0) is the least significant bit. 
 
The data bus is used to transfer data and instructions between main memory, registers, and the 
ALU.  The address bus is used primarily to deliver addresses to the main memory. 
 
 
 
The Enable Circuit 
 
From time to time it is necessary to connect a group of 8 wires to another group of 8 wires.  For 
example, we have an 8-bit “data bus” and we may wish to gate some particular value onto the 
bus.  We can perform this gating operation with the “enable circuit.” 
 
The enable circuit is controlled by a single line.  When high, it connects the 8 wires to the bus.  
When low, the 8 wires are isolated. 
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For example, the 8-bit logic block produces the following values: 
 
 B  AND  C 
 B  OR  C 
 B  XOR  C 
 NOT B 
 
At times, we are interested in the XOR value, so we’ll need to be able to gate it onto the result 
ALU result bus. 
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LEDs 
 
The enable circuit diagram also shows eight lights.  This computer employees a number of lights 
to visibly monitor its operation.  In the above diagram, the lights always reflect the XOR result, 
regardless of whether that value is subsequently gated onto the result bus. 
 
For simplicity, I use the schematic symbol for a light in the diagrams instead of the symbol for a 
LED (light emitting diode).  The computer actually contains red LEDs.  Normally, an LED is 
used in series with a resistor.  The LEDs used in this computer each contain a small built-in 
resistor, so they can be connected directly between power and ground, like any normal light bulb.  
(Details about the part numbers and costs of the components is given later in this document.) 
 
The LEDs are all connected in the same way: one terminal is connected to ground and the other 
is connected to some wire of interest. 
 
Obviously, the LEDs have no impact on computation: they simply make visible the state of some 
wire without changing anything.  The computer would work identically with no LEDs.  
However, the LEDs form the only output of the computer: without LEDs, it would be impossible 
to retrieve any result. 
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Typical programs for this computer work as follows: some input values are preloaded into 
registers and then the computer begins executing.  Upon completion of a computation, the 
program leaves the result(s) in some register(s).  The state of the register(s) can be seen from the 
LEDs. 
 
LEDs are also used to monitor the state of various control connections.  The LEDs were critical 
in debugging the wiring during construction; without these LEDs, it would have been virtually 
impossible to find errors and understand what was happening. 
 
The LEDs also make the computer interesting to watch while it is computing, although it is 
pretty much impossible to interpret the flashing lights.  One exception is the “program counter”; 
you can follow the instruction execution walking through memory and occasionally branching by 
watching the value in the program counter (PC) register. 
 
 
 
The Shift-Left Operation 
 
Our ALU is also capable of shifting the 8-bit value “B” left by one bit.  The shift is circular, 
which means that the most significant bit is shifted into the rightmost (i.e., least significant) 
position. 
 
In the following diagram, we show how B can be shifted left and placed on the Result Bus.  
Whenever the enable control is low, B is isolated from the result.  When high, the bits of B are 
connected to the result, after begin shifted. 
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Sometimes a circular shift is called “rotate”.  This computer can only shift by one bit and cannot 
shift right, but notice that you can achieve the effect of shifting right by one bit by shifting left 7 
times.  Therefore, a single “shift left” instruction is included in the instruction set, since any 
other shift amount can be achieved with up to 7 repetitions of the instruction. 
 
Also, it is sometimes the case that one would like to shift in zero, rather perform a rotate.  This 
too is possible but requires extra instructions.  For example, to shift left (bringing a “0” into the 
rightmost position, instead of rotating), you could first perform the rotation and then clear the 
least significant bit using the logical AND operation with the value 11111110. 
 
This reveals an important principal behind the design of this computer: I have included enough 
to make it fully programmable and even reasonably usable, at the cost of requiring a few extra 
instructions.  For example, any desired shifting or rotating can be accomplished with the single 
shift operation provided, along with the logical operations.  As another example, the ability to 
subtract was not included directly, but it is straightforward to perform subtraction using addition.  
The algorithm is to simply negate the second value first, and then add.  While there is no 
negation operation, negating an integer can be done by first complementing it (i.e., performing 
the logical NOT) and then incrementing it.  Since both NOT and INCREMENT are instructions, 
subtraction can be done using NOT, INCREMENT, and ADD operations. 
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3-to-8 Decoder 
 
A 3-to-8 decoder takes 3 bits of input and produces 8 bits of output.  With 3 inputs, there are 23, 
or 8, possible input values.  The output is “1 hot”.  In other words, all output are low except for a 
single line, and the inputs are used to select which output line is to be high. 
 

 
Other computers also use 2-to-4 decoders, 4-to-16 decoders, and so on.  In general, with N 
inputs, a decoder will have 2N outputs. 
 
Here is a simple circuit implementing a 3-to-8 decoder. 
 

 
The ALU takes 3 control lines telling which operation to perform, according to this table: 
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 f0 f1 f2 
 0 0 0 ADD 
 0 0 1 INCREMENT 
 0 1 0 AND 
 0 1 1 OR 
 1 0 0 XOR 
 1 0 1 NOT 
 1 1 0 SHIFT LEFT 
 1 1 1 < not used > 

 
These 3 lines are labeled with “f” since they are called the ALU “function code”.  The ALU 
function code inputs enter the ALU and go straight into a 3-to-8 decoder to determiner which 
operation is selected. 

 
 
The last function code value (111), which is labeled <not used>, is supplied when the ALU is not 
being used.  When 111 is supplied, the ALU result output will be all zeros, i.e., unconnected.  
Since the output result from the ALU is connected directly to the computer’s data bus, the <not 
used> function code is necessary to ensure that the ALU does not put some value onto the data 
bus when the data bus is being used for some other purpose. 
 
[In retrospect, it was a mistake to assign the function code 111 to <not used>; it would have been 
a better decision to assign 000 to <not used>.  The reason is that it is convenient at times to turn 
off portions of the computer’s control circuitry, which causes the ALU function control to be 
000.  Unfortunately, this causes the data bus to be driven by the ADD circuitry in the ALU, 
rather than to be quiescent.  If 000 had been the <not used> function code instead, then whenever 
the control circuitry was not driving the ALU function inputs, the ALU result would be 
unconnected to the data bus.] 
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The Structure of the ALU 
 
The next figure shows the complete design of the arithmetic logic unit (ALU). 

 
 
The 3 function code control lines go into a 3-to-8 decoder.  The <not used> output is not 
connected, but the other 7 outputs from the decoder are each attached to an enable circuit.  Each 
enable circuit can gate its output directly onto the 8-bit result bus.  For example, when the 
function control input is 011, the output of the ALU is required to be “B OR C”.  The enable 
circuit connected to the OR output from the 8-bit Logic Circuit is turned on, which gates the OR 
value onto the result bus, as required. 
 
When all of the 7 enable circuits are inactive (i.e., when the function code is 111 <not used>), 
the result bus is unconnected. 
 
The ALU also takes two inputs of 8-bits each, called “B” and “C”.  The B and C inputs are fed 
into the 8-bit logic circuit and the AND, OR, XOR, and NOT values are all computed.  The shift 
left (SHL) output is included in the 8-bit logic circuit but recall that it does not include any relays 
and is really nothing more than a routing of the B lines, with the one-bit rotation. 
 
The B and C inputs are also directed into the 8-bit adder circuit.  In this diagram, we show the 
adder as producing the sum (for ADD) and the B+1 (for INC), although this is not exactly right.  
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There is a little circuitry not discussed here that uses the single 8-bit adder to perform either B+C 
or B+1. 
 
The ALU also produces “sign”, “carry”, and “zero” outputs. 
 
We can summarize the computer’s ALU with the following block diagram. 

 
 
 
 
Register Storage 
 
Next, take a look at the following circuit. 
 

 
If line “A” should ever go high, this relay will turn on.  However, if “A” is subsequently 
disconnected to whatever was driving it, the relay will stay on, due to the feedback loop from 
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power through the relay’s switch to its coil.  So this relay forms a simple memory, capable of 
latching a single bit.   Once turned on, it stays on. 
 
This circuit forms the basis of the design of the registers used in this computer.  We’ll call it a 
“bit relay”, since it can store a single bit. 
 
As this circuit is drawn, the bit relay will stay on forever, until the power is cut off.  To hold the 
value, we’ll keep supplying power; to clear the bit, we’ll cut the power. 
 
Next, let’s put eight bit relays together to create an 8-bit register. 
 

 
The relays in the register are numbered from 0 (on the right) to 7 (on the left).  Bit 0 is the least 
significant bit and 7 is the most significant bit, which follows the “big endian” bit ordering. 
 
For now, the “hold line” is connected to power, so that once loaded, the register will retain its 
value.  To clear the register, we’ll cut the power to the hold line. 
 
The next step is to get the data out of the register and onto the data bus. 
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The control line labeled SELECT is used to “read out” the register’s value.  When SELECT is 
high, the value stored in the register will be gated onto the bus.  In other words, when a register 
is selected, it drives the bus, and the 8-bit value stored in the register is made available to other 
parts of the computer by being placed on the bus.  When not selected, the register is isolated 
from other parts of the computer. 
 
Now let’s ask how a value can be loaded into the register from the bus.  Notice that when the 
register is selected, each bit is connected to the corresponding line of the bus.  If nothing else is 
driving that bus line, then the relay, if on, will drive the bus line.  But also notice that if the bit 
relay happens to have been off, but something else is driving the bus line, the bit relay will get 
turned on.  And once on, the bit relay will latch and remain on until power to the hold line is 
removed. 
 
To store a value into a register, we want to first cut the power to the hold line, thereby clearing 
the register to all zeros, and then we want to turn the enable circuit on, which will load the 
register with whatever value is on the bus. 
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To understand this circuit, imagine that initially both LOAD and SELECT control lines are low.  
Therefore the enable circuit is off and the register is not connected to the bus.  The output of the 
first NOT gate is HIGH, so power is supplied to all the bit relays, via the hold line.  Since power 
is delivered to all the bit relays, the register will retain whatever value it already contains. 
 
Now, imagine that the LOAD control line transitions to high.  As the signal propagates through 
the first NOT gate, the power to all the bit relays will be cut and all the bit relays will turn off.  
Also the second NOT gate will change and the output from it to the enable circuit will go high.  
Next, the enable circuit will turn on and the bit relays will each be connected to the bus.  Next, 
some of the bit relays will turn on, depending on whatever value is on the bus. 
 
Next, imagine that the LOAD control line goes back to low.  As the change propagates through 
the first NOT gate, the hold power to the bit relays will be restored.  This will cause the bit relays 
to latch and retain whatever value was on the bus.  It will also cause the second NOT gate to 
change, which will subsequently cut power to the enable circuit.  This will, in turn, disconnect 
the bit relays from the bus. 
 
To recapitulate, when LOAD goes high, the register is momentarily cleared and then 
subsequently, the register is loaded from the bus.  Then, on the falling edge of LOAD (when 
LOAD returns to low), the value in the register is latched, as the register is disconnected from the 
bus. 
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Note that there are some subtleties related to timing.  The register circuit is the only circuit in the 
computer that is “edge sensitive”, so we need to discuss it in more detail. 
 
First, imagine that the LOAD line is low.  Recall that a NOT circuit consists of a single relay.  If 
the input is low, the relay is off; if the input is high, the relay is on.  The relay in the first NOT 
circuit is initially off.  The relay in the second NOT circuit is initially on, since its input is high. 
 
When LOAD goes high, the relay in the first NOT will turn on.  After this happens, the relay in 
the second NOT circuit will begin to turn off.  At the same time, any bit relays which were 
previously on, will also begin to turn off.  It will take some time for all these relays to turn off, 
but they will all turn off at roughly the same time.  Only after the relay in the second NOT has 
turned off, will the enable circuit begin to turn on.  As the enable circuit turns on, the relays in 
the enable circuit will be switched on.  This will also take some additional time, which will allow 
all the bit relays to finish turning off, in case any one was a little slower than the others.  By the 
time the enable circuit relays have turned on, all the bit relays will have been given enough time 
to turn off. 
 
Then, some of the bit relays will turn back on. 
 
Next, imagine what happens when the LOAD line goes back to low.  The relay in the first NOT 
circuit will turn off.  Once this is complete, the power to the bit relays will be restored and 
whatever value they contain will be latched.  Then the relay in the second NOT circuit will turn 
back on, which will take a little time.  Once on, the relays in the enable circuit will turn off.  So 
you can see that the enable circuit can not disconnect the bit relays from the bus until after the 
hold power to the bit relays is restored. 
 
There is one error in this design, as presented so far.  Imagine that register Y is being loaded 
from the bus and that Y’s LOAD line has just gone high.  First, power to the hold line is cut.  
Then the enable circuit turns on and some of the bit relays in Y are switched on.  Unfortunately, 
power can flow back from whatever bit relay comes on, along the hold line, and change the input 
to the second NOT circuit.  The second NOT gate will then switch and power to the enable 
circuit will immediately be cut.  After the enable circuit turns off, the bit relays will be 
disconnected from the bus and, without any power to drive the hold line, the bit relays will all 
switch off.  Furthermore, the second NOT gate will again switch. 
 
 
 
Feedback and Oscillation 
 
At this point, the register circuit (as designed) will begin oscillating, with relays flipping on and 
off as fast as they can.  This is bad and will cause the relays to act like buzzers.  Here is the 
simplest circuit with oscillating feedback. 
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When this relay is off (as shown), power will be supplied to the coil, causing it to turn on.  When 
the relay is on, power will be disconnected from the coil, causing it to switch off.  The relay will 
oscillate as fast as it can, making a buzzing sound.  The relays used here are rated for a 
maximum switching speed (5 cycles per second) and when buzzing, they will overheat and fail. 
 
 
 
Fixing the Register Circuit 
 
When I first designed the register circuit, I came up with the design presented above.  I believed 
it would work but fortunately I built a 3-bit prototype to test the design, before building more.  It 
was at this point that I discovered the possibility of feedback and oscillation, as discussed above. 
 
It is important to build prototypes, but it is a matter of experience and wisdom to know when it is 
wise to bother with a prototype and when it is more practical to go ahead and build the final 
version without prototyping first. 
 
The fix to the circuit is simple; we just need to make sure that power coming back through the 
hold line can’t act as input to the second NOT gate.  In the basic design of a NOT gate, only one 
switch in the relay is used; in the following modification, we are using two switches in the relay, 
in order to isolate the hold line from the second NOT gate. 
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Register Timing 
 
When loading a register, we assume that the value on the bus is stable and unchanging before the 
LOAD line goes high and that the bus remains unchanging until well after the LOAD line goes 
low. 
 
Imagine that we have several registers connected to the data bus, each with its own LOAD and 
SELECT lines.  Using the bus, we can transfer data from one register to another.  For example, 
to transfer a value from register X to register Y, we should raise X’s SELECT line and raise Y’s 
LOAD line. 
 
In the following timing diagram, we see the SELECT line to register X and the LOAD line to 
register Y going high on the same clock edge.  The LOAD line goes low on the next edge, but 
the SELECT line stays high for 2 units of time, to ensure that the bus remains stable until well 
after Y’s LOAD line goes low. 
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We can raise X’s SELECT line and Y’s LOAD line on the same clock edge, since we don’t care 
what order these control lines go high.  If X’s select line goes high first, then X’s value will be 
out on the bus early.  Later, Y will cleared to all zeros and then connected to the bus.  Y will load 
the correct value.  On the other hand, if Y’s LOAD line goes high first, then Y will be cleared 
and then connected to the bus, which is still all zeros.  Then, when X’s SELECT line goes high 
sometime later, its value will be gated onto the bus.  This will cause the bit relays in Y to change 
at that later time, but Y will still be loaded with the correct value. 
 
However, we must make sure that X’s SELECT line stays high during the trailing edge of Y’s 
LOAD line.  If we were to drop both X’s SELECT and Y’s LOAD on the same clock edge, we 
could have a race problem in which X’s enable circuit disconnected X’s value from the bus 
before power was restored to Y’s bit relays.  If this occurred, some bit relay in Y might turn off 
in the instant before power was restored and a bit might not get latched. 
 
Also note that in our register design, we must never have two registers simultaneously selected 
onto the bus.  Imagine that some register—say register X—is selected onto the bus and imagine 
that for some reason, some bit which is low in X suddenly goes high on the bus, perhaps because 
some other register is simultaneously selected.  This high value from the bus line will flow back 
through X’s enable circuit and will turn the corresponding bit relay in X on.  Thus, the value in X 
would be changed, even though X’s LOAD line never went high.  So in our design, a register is 
somewhat “vulnerable” when selected. 
 
To make sure this doesn’t happen, we will always leave a full clock cycle as a “safety interval” 
between any two SELECT lines going high.  This ensures that we can never have two different 
values simultaneously gated onto the bus, risking data corruption. 
 
The next diagram shows how closely we can space two distinct register transfers. 
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Differences With the “As-Built” Register Circuit 
 
In the register design presented here, each register uses a single enable circuit.  This enable 
circuit is active both when the register is selected and when the register is loaded. 
 
If, for any reason, two registers should be simultaneously selected, then bits would be turned on 
erroneously.  In fact, whenever two registers are selected at the same time, their values will be 
modified by turning on bits, until both registers contain the same value, namely the logical OR of 
the two original values. 
 
In the computer as actually constructed, I used a slightly more complex design.  In the design 
actually constructed, a register will not be changed while selected.  For each bit relay, I actually  
used two switches, instead of one, and I also used two enable circuits.  One enable circuit was 
used for SELECT and the other was used for LOAD.  Thus, in the design actually built, a 
register’s value cannot be changed when it is selected. 
 
This additional work was unnecessary for the very simple reason that it is never the case that two 
registers are simultaneously selected.  There is no reason to select two registers at once.  [To 
compute the logical OR of two values, the ALU would be used, and the ALU is designed in such 
as way that there is never backfeed along the B and C input lines.] 
 
 
 
Register Control 
 
In the design of a register, we can separate out the control circuitry from the storage of the bits.  
The control circuitry sits between the bit relays and the bus.  It has inputs LOAD and SELECT 
and is used to connect the register to bus. 
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We can simplify the diagram of a register, as follows. 

 
 
This computer has a number of registers connected to a single bus.  Next we show two registers 
connected to the same bus. 
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The Address Bus 
 
In addition to the 8-bit data bus, this computer also contains a 16-bit bus, called the “address 
bus”. 
 
Each of the registers contains 8 bits.  However, two registers can be combined to form a single 
16-bit register.  Whenever two 8-bit registers are combined into 16-bits, the value can be selected 
or loaded onto the 16-bit address bus. 
 
To achieve this, we duplicate the LOAD/SELECT control circuitry, once for the 8-bit data bus 
and once for the 16-bit address bus. 
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As an example, the computer contains two registers, named “X” and “Y”, which can be 
combined into a 16-bit register, which is called “XY”.  Some instructions deal with the 8-bit 
registers, including X and Y, and these instructions use the data bus.  There are other instructions 
that deal with 16-bit registers, like XY, and these instructions use the address bus. 
 
 
 
Overall System Architecture 
 
The next diagram shows the complete system architecture. 
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The 8-bit data bus is shown as a single heavy line, although there are of course 8 parallel wires.  
Likewise, the address bus is shown as a single line, instead of showing all 16 wires. 
 
Each register is characterized as a rectangle.  The “general purpose” registers are all 8 bits.  They 
are: 
 
 A 
 B 
 C 
 D 
 M1 
 M2 
 X 
 Y 
 
Each of the general purpose registers can be LOADed or SELECTed onto the data bus, as 
indicated with the double-ended arrows. 
 
The X and Y registers can be combined into a 16-bit register, called “XY:”.  The 16-bit value can 
be SELECTed or LOADed from the address bus. 
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The M1 and M2 registers can be combined into a 16-bit register, called “M”.  The 16-bit value 
can be placed on the address bus, however, the combined 16-bit register cannot be loaded from 
the address bus.  This is indicated by the direction of the arrow, which shows that M can be 
SELECTed but not LOADed from the address bus. 
 
In addition, there are several other registers, which have specific uses. 
 
The J register is a 16-bit register used during BRANCH and CALL instructions.  It is loaded 
byte-by-byte, and so is divided into registers called J1 and J2, each 8 bits in width.  These are 
LOADed from the data bus. 
 
The INST register is 8 bits.  During instruction execution, INST contains the current instruction 
being executed.  The INST is only loaded from the data bus.  Its value is used by the control 
circuitry (not shown here) and its value cannot be SELECTed onto either bus. 
 
The PC (i.e., Program Counter) is a 16-bit register.  The PC contains the address of the next 
instruction to be executed.  In some computers, this register is called the “Instruction Pointer”. 
 
The INC register is a 16-bit register which is used in conjunction with a 16-bit increment unit. 
 
The 16-bit increment unit consists of 16 half-adders circuits.  It takes, as input a 16-bit value and 
produces, as output, a 16-bit result, which is its input, plus one.  The 16-bit increment unit takes 
its input from the address bus.  Thus, it is always adding one to the value on the address bus; 
whenever the address bus changes, the output of the 16-bit increment changes. 
 
The INC register takes as its input, the output of the 16-bit increment unit.  When the LOAD 
control line to the INC register is asserted, the INC register will be loaded with the address bus’s 
value, plus one. 
 
Also shown is the ALU.  The ALU takes, as input, the current values in the B and C registers.  
The ALU also takes 3 control inputs, but this diagram does not show control lines.  The ALU 
produces an 8 bit result which is connected directly to the data bus.  Whatever value the ALU is 
producing is placed on the data bus.  Normally, the ALU control input is 111, the <not used> 
function code, so the ALU is effectively disconnected from the data bus. 
 
The ALU also produces three additional bits of output: 
 
 Z – Zero 
 Cy – Carry Out 
 S – Sign 
 
There is a 3-bit register called the “Condition Code Register”, which is shown in this diagram.  
When the condition code register is loaded, the 3 bits are set to reflect the Zero/Carry/Sign of the 
ALU result.  The value stored in the condition code register is used by the control circuitry, in 
particular, by the CONDITIONAL BRANCH instructions. 
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Finally, the diagram shows the computer’s main memory.  The memory takes, as an address, the 
16-bit value on the address bus.  During a memory LOAD operation, data is moved from the 
memory onto the data bus, and then into one of the registers.  During a memory STORE 
operation, data is moved from a register, onto the data bus, and into the memory. 
 
 
 
Physical Organization of Major Functional Units 
 
The computer is housed in four cabinets (called “units”) and each is meant to be positioned in the 
following order. 

 
 
The cabinets are normally hung on the wall, but they have rubber feet and can be placed side-by-
side on a table.  The power supply is meant to sit on the floor, out of the way. 
 
There are a number of connections between the four cabinets.  For example, the 8 bit data bus is 
routed all the way through from the Sequencer Unit to the ALU, since all units contain 
connections to the data bus.  There are also control line connections from the Sequencer Unit to 
the each of the three other units. 
 
All the cables between the cabinets use connectors so that the cabinets can be disconnected from 
one another and moved independently. 
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The Arithmetic Logic Unit 
 
The rightmost cabinet houses the Arithmetic Logic Unit (ALU).  It has the following external 
connections: 
 
 B Input (8 lines) 
 C Input (8 lines) 
 Result / Data Bus (8 lines) 
 Function Code (3 lines) 
 Condition Code Outputs: Z, Cy, S (3 lines) 
 Power and Ground (2 lines) 
 
The ALU contains a row of 8 LEDs and 8 switches for the B input and another row of 8 LEDs 
and 8 switches for the C input.  If connected to the register unit, the ALU takes its input from the 
B and C registers.  If not connected, the B and C inputs can be entered directly using the 
switches. 
 
The ALU also contains a row of 3 LEDs and 3 switches for the function code.  If connected to 
the Sequencer Unit, the function is controlled by the Sequencer Unit.  If not connected, the 
function code can be entered directly. 
 
The importance of being able to enter the function code and the B and C inputs directly using 
switches is that the ALU can be thoroughly and efficiently tested independently of the other 
units. 
 
The ALU also contains a row of 8 LEDs for the result.  In addition, the ALU contains a row of 
LEDs for each of the partial results: 
 
 Output of the 8-bit adder 
 AND 
 OR 
 XOR 
 NOT 
 SHL 
 
The LEDs of the partial results will change whenever the B or C inputs change, even though the 
partial results may not be enabled onto the result bus. 
 
There are also LEDs for the CARRY and ZERO outputs.  (There is no LED for the SIGN, since 
it is nothing more than the most significant bit of the result.) 
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The Register Unit 
 
One of the four cabinets in the computer is called the “Register Unit”.  It contains the eight 
general purpose registers: A, B, C, D, M1, M2, X, and Y. 
 
Each of the eight registers was constructed as a separate module.  In addition to the relays, each 
register module contains eight LEDs, which monitor the state of the bit relays in the register.  
Thus, you can see clearly what value is stored in each register.  To the right of each register 
module are the LOAD and SELECT switches for that register. 
 
Each control line has an associated switch.  The switch allows you to manually manipulate the 
control line.  Each switch is connected between power and the control line.  In the “OFF” 
position, the control line is not connected to power; in the “ON”  position, the switch connects 
the control line directly to power.  The switches are toggle switches, installed so that they are ON 
when up, and OFF when down, as you’d expect. 
 
During normal operation, when the computer is running, all switches should be in the down 
(OFF) position.  The control lines are routed back to the sequencer unit and are driven by the 
state sequencer and control circuitry.  However, for purposes of testing and demonstration, the 
control lines can be manually driven high by the switches. 
 
The Register Unit contains switches for the following control lines, which allows for full control 
of the registers.  In other words, all LOAD and SELECT lines can be manipulated individually. 
 
 Ld-A Sel-A 
 Ld-B Sel-B 
 Ld-C Sel-C 
 Ld-D Sel-D 
 Ld-M1 Sel-M1 
 Ld-M2 Sel-M2  Sel-M 
 Ld-X Sel-X 
 Ld-Y Sel-Y LD-XY Sel-XY 
 
The 8 wires of the data bus are routed more-or-less vertically through the cabinet.  At the bottom 
of the register unit are 8 LEDs and 8 switches which allow the data bus itself to be observed and 
to be driven directly. 
 
To manually load a value into the D register, for example, take the following actions: 
 
 1.  Set the 8 data bus switches to reflect the value to be loaded 
  (0 = switch down; 1 = switch up) 
 2.  Turn the LOAD switch for the D register ON. 
 3.  Turn the LOAD switch OFF. 
 
To manually transfer a value from the D register to the X register, for example, take the 
following actions: 



 Harry Porter’s Relay Computer 

 Page 44 

 
 1.  Turn the SELECT switch for the source register (e.g., D) ON. 
 2.  You should see the value from D displayed on the data bus. 
  (0 = LED is off; 1 = LED is on) 
 3.  Turn the LOAD switch for the target register (e.g., X) ON. 
 4.  Turn the LOAD switch for the target register back OFF. 
 5.  Turn the SELECT switch for the source register back OFF. 
 
The 16-wires of the address bus are also routed more-or-less vertically through the register unit.  
You can, for example, load a 16-bit value into M (by loading M1 and then loading M2).  Then 
you can select all 16-bits of the combined M register and, using the address bus, LOAD the XY 
register in one step. 
 
Since the address bus is used, instead of the data bus, the data bus LEDs will not come on during 
a 16-bit move.  In fact, the data bus can be used simultaneously to move 8-bits between two 
other registers while M is moved into XY. 
 
The Register Unit has the following external connections: 
 
 Data Bus (8 lines) 
 Address But (16 lines) 
 Control Lines (19 lines) 
 B Register (8 lines, to ALU B input) 
 C Register (8 lines, to ALU C input) 
 Power and Ground (2 wires) 
 
The four units of the computer are meant to be placed in side-by-side in a particular order, so 
some of the connections above are duplicated.  For example, the 8 lines of the data bus come into 
the left side of the cabinet, from the Program Control Unit, and go out the right side of the 
cabinet, on to the Arithmetic Logic Unit. 
 
 
 
The Program Control Unit 
 
The Program Control Unit contains the following modules: 
 
 J1 
 J2 
 INST 
 PC-1 
 PC-2 
 INC-1 
 INC-2 
 16-bit Increment Unit 
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For ease of construction, the PC and INC registers were each broken into two 8-bit register 
modules, even though they are only used as 16-bit registers. 
 
The Program Control Unit contains switches for the following control lines. 
 
 Ld-J1 
 Ld-J2 
 Sel-J 
 Ld-Inst 
 Ld-PC 
 Sel-PC 
 Ld-INC 
 Sel-INC 
 
The 8 wires of the data bus and the 16-wires of the address bus are routed more-or-less vertically 
through the cabinet. 
 
There are 16 LEDs and 16 switches for the address bus at the bottom of the Program Control 
Unit. 
 
The Program Control Unit has the following external connections to the Sequencer Unit to the 
left: 
 
 Data Bus (8 lines) 
 Address But (16 lines) 
 Control Lines (8 lines) 
 Inst Register (8 lines, to the Sequencer Unit) 
 Power and Ground (2 wires) 
 
In addition, the Data Bus, the Address Bus, and the Power and Ground lines are also connected 
to the Register Unit to the right. 
 
 
Main Memory 
 
The main memory is implemented with a 32K byte static RAM chip, which is located in the 
lower left corner of the Sequencer unit. 
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In order to address 32K bytes, only 15-bits are needed.  The memory sub-circuit ignores the most 
significant bit of the address bus.  
 
 
 
An Example of Instruction Execution 
 
In the next series of figures, we show the steps involved in the execution of an instruction.  As an 
example, we’ll show each step in the execution of an “ADD” instruction.  This is one of the 
“ALU instructions” (ADD, INC, AND, OR, XOR, NOT, and SHL) which are all quite similar.  
The ALU instructions take their inputs from registers B and C and place their result in register A.  
All ALU instructions are executed identically, and differ only in the operation (ADD, INC, etc.) 
actually performed. 
 
In the first step, the Sel-PC (“select PC register”) control line goes high, which causes the 
program counter to be gated onto the 16-bit address bus.  In the next few diagrams, the control 
lines are shown with red arrows to indicate that they are asserted, i.e., driven high.  The green 
arrows show data flow on and off the buses. 
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At the same time, the Mem-Read control line goes high.  This  gates the output of the static 
RAM onto the 8-bit data bus. 
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In the next step, the Load-Inst control line goes high, which causes the 8 bit instruction register 
to be loaded. 
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The Program Counter is always incremented at the beginning of each instruction.  This takes two 
steps: first the “Inc Register” is loaded with the old value of the PC, plus one; then the new value 
is copied from the Inc Register back to the PC register.  The first step can be overlapped with the 
fetching of the instruction from memory. 
 
The Increment Unit is always taking whatever value is on the address bus and adding 1 to it.  The 
incremented value is directed toward the “Inc Register”.  So the first step is simply to load the 
Inc Register with this value. 
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The second part of incrementing the PC is to copy the new value from the Inc register back to the 
PC.  First the Inc register is gated onto the address bus.  Then the Load-PC control line is 
asserted to load the PC register. 
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The above steps are done at the beginning of each instruction.  Only at this point, after the Inst 
register is loaded, do we know what instruction is being executed.  Only after this point can we 
take action that is different from instruction to instruction. 
 
All ALU instructions contain a 3-bit field containing the function code, which tells whether the 
instruction is an ADD, INC, etc.  In the next step, after seeing that this is a ALU instruction, the 
function code is gated from the instruction register to the ALU Function Code control lines. 
 
The 8-bit result of the ALU will only be gated onto the data bus when a valid function code is 
supplied.  For all other instructions, the control unit will supply the <NOT USED> function code 
to the ALU. 
 



 Harry Porter’s Relay Computer 

 Page 52 

 
The computer also contains a 3 bit register containing the condition codes.  There is a bit for 
ZERO, CARRY, and SIGN.  The ALU produces these 3-bits, which are routed to the Condition 
Code register. 
 
In the final step, the control unit asserts the Load-A control line and the Load-Cond control line.  
This loads the A register with the result from the ALU, via the data bus and loads the 3-bit 
condition code register with appropriate values from the ALU. 
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The Clock Circuit 
 
Before we can discuss how the control unit operates and how it sends out the control signals, we 
need to discuss the clock circuitry.  The “Clock Circuit” has, as its goal, providing a single 
steady square wave to the rest of the computer.  This is essentially the heartbeat of the computer, 
which regulates the speed and timing of the control signals. 

 
 
The clock circuit uses capacitors and we will develop it in stages. 
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A capacitor is a little like a battery: when connected to power it is charged up.  When 
unconnected from the power, it is capable of providing power for a short time to drive some 
other load. 
 
Consider the following circuit, which contains a relay, a switch, and a capacitor. 
 

 
When the switch is closed, the capacitor will be charged up.  In addition, the relay will be turned 
on and the output will go high. 
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If the switch is then opened, the capacitor will begin discharging.  Notice that the relay will stay 
on because the capacitor is providing power to the relay.  Thus, even after the switch is opened, 
the output will stay high. 
 

 
In a short time, the capacitor’s charge will be depleted and the relay will finally turn off.  The 
output will then go low. 
 
The capacitor is introducing a small delay.  When the switch is closed, the output goes high.  
When the switch is opened, the output will go low, after a short delay.  The length of the delay is 
determined by the size (i.e., the rating) of the capacitor. 
 
In this computer, a value of 0.5 farad (which is quite large, for a capacitor) will keep the relay on 
for approx 1/5 second. 
 
Some readers familiar with electronic circuits will note that this circuit involves a capacitor and a 
coil connected together.  These readers may spot an “LC” oscillator circuit here.  However this 
circuit does not operate like a conventional LC circuit.  While superficially similar, this circuit 
will not operate as an effective LC oscillator because the coil involved is a bit different than in an 
LC circuit.  In an LC oscillator, the idea is that the coil stores energy during part of the cycle.  
The coils used in such circuits are presumably designed to optimize their ability to store energy.  
On the other hand, the coil in a relay is designed with exactly the opposite goal: the relay coil is 
designed to emit at much energy as possible, in order to move the switches.  While relay coils do 
have some inductance, this effect has been completely ignored in this computer’s design. 
 
Next consider the following circuit, which is a chain of relays, each wired identically.  Each 
relay has its own capacitor. 
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To understand the circuit, assume that relays “A” and “B” happen to be on initially. 

 
 
The coil of relay “B” is not connected to power, so the only way it could be on is for its capacitor 
to be discharging.  Meanwhile, the coil of relay “C” is connected to power, so that it will be on 
and its capacitor will be charging. 
 
After a short time, relay B’s capacitor will finish discharging and relay B will then turn off.  This 
results in the next state: 
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When B turns off, this will disconnect relay C from power.  However, C’s capacitor will take 
over and keep C turned on while it discharges.  Also, relay D is now connected to power.  Note 
that relay D has come on and its relay has begun charging. 
 
In the next figure, we have connected relay D back to relay A in the same way, creating a cyclic 
chain. 
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Once started, this circuit will keep clicking away forever in a regular pulsing beat. 
 
One way to understand this circuit is to look at a timing diagram, which shows the values of 
certain signals over time.  In the following timing diagram, we look at the 4 relays in the clock 
circuit, showing when each turns on and when each turns off.  
 

 
Note that each relay stays on for 2 units of time.  During the first time interval, power is supplied 
to it and its capacitor is charging.  During the second interval, power has been cut (by the 
transition of the relay directly above it) and it stays on while its capacitor discharges. 
 
To get the desired square wave from this circuit, note that the logical formula 
 

Clock = (A and D) or (B and C) 
 
results in the wave shown at the bottom, labeled “clock”. 
 
In the clock circuit, as shown, we only used 2 of the 4 switches in each relay.  The “Clock” 
signal can be created using the remaining switches.  Also note that the Clock signal can also be 
derived with the following formula using “exclusive-or”, which is slightly easier to wire: 
 

Clock = C xor D 
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The circuit, as described so far, is still not good enough.  Recall that I said “once started, this 
circuit will keep clicking away...”  We need to ensure that when the power is turned on, the clock 
circuit will start up on its own. 
 
We’d also like to be able to “single step” the computer.  In other words, we’d like to be able to 
disable the clock circuit and generate the clock signal manually by flipping a switch up and 
down.  By controlling the clock transitions manually, we can walk the computer through 
interesting operations at a speed that allows us to observe the computer’s operation.  The 
frequency of the pulse generated by the clock circuit is much too fast to follow. 
 
In addition, we need to be able to freeze the clock, i.e., make it stop ticking.  It turns out that this 
is very useful when operating the computer.  You can run it continuously up to some point of 
interest and then single step it.  The idea is that while the clock circuit is generating regular 
pulses, the human can, at any time, flip a switch to freeze the clock.  From then on, the human 
can flip another switch to perform the single-stepping. 
 
The problem is that the freeze switch can be thrown at any time.  In particular it could be thrown 
just after the Clock signal went high.  If the Clock signal doesn’t stay high for a full unit of time, 
then the last operation may be incompletely performed and the computer may be left in an 
inconsistent or unpredictable state.  This would be unacceptable. 
 
To control the clock circuit, there are three switches, which are labeled: 
 
  Oscillator Power 
 Run / Stop 
 Single Step 
 
In addition, there is a single light, labeled “Clock”, which monitors the output of the entire 
circuit to the rest of the computer.  It is this signal which drives the Finite State Machine, which 
will be described later in this document. 
 
Normally, the Oscillator Power is turned on at all times.  The Run/Stop switch should be 
positioned in the Stop position when the computer is powered on.  The Single-Step switch should 
be down. 
 
After loading some registers, the computer can be started by moving the Run/Stop switch to the 
Run position.  Instruction execution will commence and relays will begin clicking.  At any point, 
the switch may be moved back to the Stop position.  Then, the Single Step switch may be 
toggled up and down, up and down, as many times as necessary to slowly walk the computer 
through instruction execution. 
 
A final design consideration is the HALT instruction.  When this instruction is executed, the 
computer must stop executing instructions.  This should be accomplished by freezing the clock 
circuit, as if the Run / Stop switch were moved into the Stop position. 
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Next, let’s turn to the problem of making sure the clock begins when the power is initially turned 
on. 
 
Looking back at the clock circuit, we see that power will be supplied to relay D when B is off 
and C is on.  Something similar is true of all other relays and we can express it like this: 
 
 A = ~C and D 
 B = ~D and A 
 C = ~A and B 
 D = ~B and C 
 
If any one relay could somehow be turned on, then some other relay would be switched on and 
the circuit would being operating.  Unfortunately, when the power is turned on, all relays will be 
off.  If we can just get one relay to come on, the cycle will begin. 
 
The secret is to alter the formula for relay A.  Relay A must have its power supplied at exactly 
the same time as before, but we want to achieve this in a different way.  Looking at the timing 
diagram, the idea is to detect the time interval during which power should be supplied to relay A.  
As designed previously, power is supplied to relay whenever C is off and D is on; this happens 
exactly when power should be supplied to relay A. 

 
 
Instead of relay A depending on D being on (which is a problem), the modification is to make 
relay A depend on B being off. In other words, we will alter the equation for A to: 
 
 A = ~C and ~B 
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This will still supply power to A at the same times as before, but in addition, it will also turn 
relay A on when the power is initially applied and all relays are off. 
 
In this computer, the clock circuit has a power supply that is switched.  In other words, there is a 
switch (labeled “Oscillator Power”) which provides power to the entire clock circuit.  This 
switch allows the power to the circuit to be cut.  Normally, this switch is always left on and the 
switch labeled “Run / Stop” is used to freeze the clock circuit for single stepping. 
 
The Run/Stop switch works as follows:  When the switch is moved into the Stop position, power 
is supplied to a line called “freeze”.  (The Run/Stop switch happens to be mounted in the 
opposite orientation from all the other switches, since the closed position (“Stop”) is with the 
lever down, instead of up.) 
 
Notice that if relay A were to come on and then, for some reason, stay on even after its capacitor 
fully discharged, relay B would continue to stay on and relay C would never come on.  The clock 
circuit would freeze, and it would freeze in a state in which the output (the “Clock” line) was 
low. 
 
So by using another switch in relay A, we can arrange that whenever it comes on, it will latch on 
and stay on, whenever the Freeze line is high.  This is just a simple latch circuit like we saw with 
the registers, in which power is routed to the coil of a relay through one of the switches in the 
relay.  Once on, the relay stays on.  The only difference here is that instead of using unswitched 
power to keep the relay on, we use the Freeze line.  When Freeze is high and the relay turns on, it 
will stick and stay on.  When Freeze is low, it will have no effect and the clock circuit will 
continue to cycle as before. 
 
Likewise, we can arrange that relay C will latch and stay on, whenever the Freeze line is high. 
 
The benefit of this approach to implement freezing by latching relays A and C is that the 
computer will not freeze the instant the Run/Stop switch is moved to Stop.  Instead, the clock 
circuit will continue until it gets to a state where the Clock output is low.  Only then will the 
relays stop changing and the Clock output will remain low forever. 
 
Consider what happens when the Run/Stop switch is moved to Stop when the clock is high (for 
example, while relays A and D are on).  Since the Freeze line is now high, relay A will latch and 
stay on.  Relay D’s capacitor will continue to discharge until D turns off.  The Clock output will 
then go low and relay B will turn on.  Nothing further will happen. 
 
The Single Step switch works by simply driving the Clock output line high directly.  The normal 
procedure is to first freeze the clock circuit by turning the Run/Stop switch to Stop and then 
manually operating the Single Step switch. 
 
The last problem to be addressed by the clock circuit is the handling of the HALT instruction. 
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When the HALT instruction is executed, it will turn on a relay which will latch on and stay on.  
This relay is called the “Halt Relay” and is numbered R40.  When on, the Halt relay will also 
cause the Freeze line to be asserted.  Once on, this clock circuit will freeze, as just described. 
 
The Halt relay is latched using the switched power to the clock circuit.   Once it turns on, the 
Halt relay will stay on until the switch labeled “Oscillator Power” is cycled.  The single step 
switch also goes through the Halt relay so that single stepping cannot be done after the HALT 
instruction is executed. 
 
In this computer, the Clock line changes 5.6 times per second (i.e., every .17708 seconds).  I 
prefer not to say "cycles per second" (which would be 2.8 cps), because some actions happen on 
clock-up and others on clock-down.  The instructions take between 8 and 24 clock transitions 
(i.e., between 1.4 seconds and 4.25 seconds). 
 
  
 
The Finite State Machine 
 
A finite state machine has number of “states” which are connected with “transition edges”.  
Sometimes they are called “finite state automata” and we’ll use the abbreviation “FSA”.  The 
following FSA has 8 states, connected in a simple cycle.  In this example, there are no choices 
about which state to go to next, but we’ll see a more complex FSA soon. 
 

 
At any one time, the FSA is in one of the states and, as time goes on, the FSA moves from one 
state to the next. In this computer, the FSA circuit is driven by the output of the Clock Circuit.  
Each tick causes the FSA to follow the next edge to the next state.  In particular, each clock 
transition causes the FSA to move from one state to the next. 
 
We can construct a circuit to implement an FSA using a chain of relays, using logic similar to the 
Clock Circuit. 
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The next step is to pull timing signals off the FSA.  For each state, there is a corresponding 
output line.  When the FSA is in a state, such as the state labeled “3”, we get a pulse along the 
corresponding line.  This line remains high as long as the FSA is in state 3. 
 

 
Let’s label the outputs from the FSA with names t1, t2, t3, etc. 
 
In the timing diagram shown next, we can see that each timing line stays high for a complete 
clock tick and that these lines are activated in a repeating cycle. 
 



 Harry Porter’s Relay Computer 

 Page 64 

 
These timing signals are used to sequence the computer through the execution of an instruction.  
Many instructions, such as the ADD instruction, take 8 time units.  (Other instructions take more 
time units to complete, but we’ll deal with this complication later.)  Each time the FSA makes 
one cycle through all its states, a single instruction is executed. 
 
 
 
The Timing of an Instruction 
 
Next, let’s look at the execution of the ADD instruction.  In particular, we’ll look at the 
following control lines: 
 
 Select PC 
 Memory Read 
 Load Instr 
 Load Inc 
 Select Inc 
 Load PC 
 ALU Function (f0, f1, f2) 
 Load A Reg 
 Load Cond. Code Reg 
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These control lines will need to go high during some portion of the execution of the ADD 
instruction.  The other control lines will not be needed and will remain low during this 
instruction. 
 
[Warning: In this paper, the naming of the control lines is not consistent.  For example, the 
“Select PC” line is also called “Sel-PC”.] 
 
Here is a diagram showing the exact sequencing of the control lines to achieve the execution of 
the ADD instruction. 
 

 
Each of these control lines has a switch on the front panel of the computer. Thus, you could 
manually execute the actions of an ADD instruction by flipping these control lines in exactly the 
order shown in this diagram. 
 
[Note: If you want to do this, you’ll need to make sure the FSA and associated control circuitry 
is not active.  This can be done by turning off the switches labeled “Oscillator Power” and “FSA 
Power.”   You may also want to go through the steps to load the B and C registers with some 
values to be added, before you start.] 
 
Next, let’s look at this timing diagram in more detail.  The basic model of instruction execution 
in any computer involves the so-called “fetch-increment-execute” loop, which means that the 
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execution of every instruction involves these three steps.  The first is to fetch the instruction from 
memory; the second is to increment the Program Counter so that the next instruction will be 
fetched from the next sequential location; and finally to execute the instruction. 
 
The “fetch” and the “increment” operations are the same for every instruction.  The “execute” 
portion is different for each kind of instruction and exactly what happens will be determined by 
the nature of the instruction actually retrieved from memory during the “fetch”. 
 
The next diagram highlights in red the “fetch” portion of the instruction.  We can see that we are 
gating the PC onto the address bus (Select PC) and are asking the memory to read a byte and 
place it on the data bus (Memory Read).  Then the Load Instr control line is asserted to load the 
8-bit instruction register from the data bus. 
 
 

In the next timing diagram, the control signals associated with incrementing the PC are 
highlighted in red. 
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In the first step, we are gating the PC onto the address bus (Select PC) and loading the Increment 
Register (Load Inc).  The Increment Register is loaded with the value on the bus, plus one.  In 
the second step, we are gating the Increment Register onto the address bus (Select Inc) and 
loading the PC (Load PC). 
 
Note that the fetching and incrementing overlap in time.  The PC is put onto the address bus and 
used by two things at once: the memory and the increment circuitry. 
 
All instructions begin with this same sequence of timing signals.  After the instruction register 
has been loaded, however, the control signals particular to the individual instruction can begin. 
 
In the next diagram, we show the control signals associated with any ALU instruction.  In our 
example, we are looking at an ADD instruction, but the INC, AND, OR, XOR, NOT, and SHL 
instructions have the same control signals and differ only in the particular function code. 
 



 Harry Porter’s Relay Computer 

 Page 68 

 
The B and C registers are always supplied to the ALU, so the ALU only needs the 3-bit function 
code, telling which operation is selected, to output the correct result onto the data bus. 
 
The ALU instructions all have the following bit pattern: 
 
 1 0 0 0 R F F F 
 
The first 4 bits indicate that this is an ALU instruction.  The 3 bits marked FFF contain the 3-bit 
function code and determine which operation is required.  (The function code for ADD is 000, 
the function code for INC is 001, etc.)  The ALU can load its result into either the A register or 
the D register; the bit marked R determines which register will be loaded. 
 
For example, to add B and C and put the result in A, the instruction op-code would be: 
 
 1 0 0 0 0 0 0 0 
 
As the timing diagram shows, the function code is supplied to the ALU during time periods 4, 5, 
and 6.  During time period 5, if the “R” bit is 0 then the Load-A control line is asserted.  
However, if the “R” bit is 1 then the Load-D control line is asserted. 
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The ALU operations also save the condition codes, so in period 5, the control line called “Load 
Cond. Code Reg.” is asserted.  This will save the status of the “zero”, “carry”, and “sign” bits 
associated with the operation performed by the ALU. 
 
The “Condition Code Register” is located in the Sequencer Unit near the relays marked 
“Instruction Decoding”.  This register is somewhat unusual since it is not “on” any bus.  Instead, 
it takes its input from only one source (the ALU) and is used only during the execution of 
conditional branch instructions.  For example, after an ADD instruction, the program may 
contain an instruction to test whether the result was zero, i.e., to branch if and only if the “zero” 
bit in the condition code register is set. 
 
 
 
Instruction Decoding 
 
The next thing to understand is how control signals, such as those shown for the ADD 
instruction, are generated.  This is the task of the module labeled “Instruction Decoding”. 
 
We’ve seen how the finite state machine (the FSA) provides signals telling which period of time 
it is currently.  For example, the control line to load the PC must go high during time period 5, 
i.e., when the line called “t5” is high.  The outputs from the FSA provide inputs to the Instruction 
Decoder. 
 
Also, after time period t3, the Instruction Register has been loaded.  After this point, the 
execution of the instruction can depend on which instruction is being executed.  Therefore, the 
Instruction Register also provides inputs to the Instruction Decoder, with the proviso that the 
Instruction Register must not used as input before time t3. 
 
The outputs of the Instruction Decoder are simply the control lines.  There are 34 outputs from 
the Instruction Decoder. 
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Connecting the inputs to the outputs, we have some “combinational logic”.  Combinational logic 
is functional, in the sense that the outputs depend only on the inputs.  There is no state.  Any 
combinational logic can be constructed using simple logic gates such as AND, OR, and NOT and 
we know even how to design and optimize combinational circuitry automatically. 
 
One place where care must be taken is with transitions.  Consider the Select-PC control line, 
which must be high during time t1, t2, and t3.  You might be tempted to derive the Select-PC with 
this equation: 
 
 Select-PC   =   t1   OR   t2   OR   t3   OR   <other terms> 
 
The Select-PC line will needed to be asserted in other times, for example during branch 
instructions, and the <other terms> allude to this. 
 
The problem is that the select-PC line must stay high continuously during t1, t2, and t3.  We must 
guarantee that the output from the FSA will not go low momentarily between say t1 and t2.  If so, 
we might have a “glitch”, which could affect the correct operation of the computer. 
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Glitches can also happen in the opposite direction, in which a line goes high for a short time, 
when it should stay low.  If a control line erroneously goes high for long enough, it would be a 
disaster, perhaps causing a random register to be loaded incorrectly. 
 
Glitches like this can occur in combinational logic, if not carefully designed.  In combinational 
logic, you are traditionally guaranteed that the output will be correct some time after the inputs 
have stabilized.  (This is the delay of the circuit which, in electronic designs, we often want to 
minimize.)  What can happen is that, when an input changes, the output can go through some 
incorrect outputs before it settles on the correct output. 
 
In modern electronic circuit design, unlike this relay computer, all registers are loaded on the 
leading, rising edge of a clock signal, while their outputs become valid on the trailing, falling 
edge.  The circuit’s combinational logic works between then falling clock edge and the next 
rising clock edge.  Any glitches that occur are ignored, since the output of the combinational 
circuits is not used until the next rising clock edge. 
 
My solution to the problem of glitches is to create a intermediate set of “timing signals”.  There 
are 19 timing signals.  The FSA outputs the timing signals and they are supplied as input to the 
combinational logic of the Instruction Decoding.  
 
The timing signals are like the FSA outputs t1, t2, t3, etc., except that some of them last 2 or 3 
time periods, instead of just one period.  However, many of the timing signals last only one 
period and are, in fact, nothing more than the outputs of the FSA. 
 
 
 
Longer Instructions 
 
As mentioned above, some instructions take more than 8 clock periods.  For example, one 
instruction can move data from one 16-bit register to another.  Since this instruction uses the 
address bus to move the data, it cannot perform its “execute” phase until the address bus is free. 
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This instruction takes 10 clock periods.  Actually, it could be done in 9 periods, but due to the 
nature of the up-down cylce of the Clock Circuit, all instructions take an even number of clock 
periods. 
 
The longest instruction takes 24 clock periods to execute.  Other instructions take 8, 10, 12, and 
14 clock periods.  So here is the complete finite state machine, with 24 states. 
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We can view the FSA as a machine that cycles from state 1 to state 24, with the exception that 
some instructions are “aborted” earlier, sending the FSA back to state 1 prematurely.  Perhaps 
“abort” is not the best term, since there should be no negative connotation for an instruction that 
executes in only 8 or 10 clock periods.   
 
To implement this, we must modify the FSA to make conditional transitions after states 8, 10, 
12, and 14.  Now, the FSA gets a little more complex, taking inputs from the combinational 
logic. 
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The Sequencer Unit contains the Clock Circuit at the top.  Below that is the module labeled 
“Finite State Control” which is the FSA.  There is an LED for each of its 24 states and as 
instruction execution occurs, the state lights illuminate in sequence.  By watching these, you can 
see when each instruction begin execution.  You can also see which instructions last only 8 states 
and which go all the way to state 24. 
 
Below the FSA is a row of 19 LEDs, with one for each of the 19 timing signals.  To the right of 
that is a row of 8 switches and LEDs for the instruction register.  The 8 LEDs show the 
instruction being executed and the switches allow an instruction to be entered directly, which 
was useful during testing of the combinational Instruction Decoding logic. 
 
Both the timing signals and the Instruction Register form the inputs to the Instruction Decoding 
logic, which lies just below.  Below the Instruction Decoding, you’ll see 34 LEDs, one for each 
control line.  Thus, the inputs to the Instruction Decoding are above it, and the outputs are below 
it. 
 
Each of these 34 LEDs is connected to the corresponding control line and is routed to other parts 
of the computer.  For example, one output of the Instruction Decoding is Select-PC.  Thus, there 
is an LED with that label, which will go high during t1, t2, and t3 of each instruction’s execution. 
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There are also 8 LEDs below the Instruction Decoding showing the instruction class, which is 
derived as part of the Instruction Decoding logic.  These LEDs are labeled with the following 
instruction classes: 
 
 MOV-8 
 SETAB 
 ALU 
 LOAD 
 STORE 
 MOV-16 
 INC-XY 
 GOTO 
 
 
The Instruction Set 
 
Each instruction is one byte long.  Furthermore, several instructions also include two additional 
bytes, making these instructions three bytes in total.  The second and third bytes form a 16-bit 
value, which is usually used as a memory address. 
 
In the next few sections, we discuss each individual instruction. 
 
The 3 bits of the condition code register (Zero, Carry, Sign) are modified by only the ALU 
instruction. 
 
 
 
MOV-8: The 8-Bit Move Instruction 

 
 
This instruction moves the contents of one of the 8-bit registers to any other register. 
 
If the “source” and “destination”  register happen to be the same, this instruction will set that 
register to zero.  In many computers, this function is called the “CLEAR” instruction. 
 
Register Codes (ddd and sss): 
 000 = A 
 001 = B 
 010 = C 
 011 = D 
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 100 = M1 
 101 = M2 
 110 = X 
 111 = Y 
 
This instruction takes 8 clock periods. 
 
 
 
ALU: The ALU Instructions 

 
 
This instruction takes, as its input, the current values of the B register and the C register.  The 
result is placed in either the A register or the D register.  A single bit in the instruction (called 
“r”) indicates whether to put the result in A or D.  The function to be performed is encoded in the 
3-bits called “fff”. 
 
Destination Register Code (r) 
 0 = A 
 1 = D 
 
Function Codes (fff) 
 000 = ADD 
 001 = INC (increment B by 1) 
 010 = AND 
 011 = OR 
 100 = XOR 
 101 = NOT 
 110 = SHL (shift B left circular 1 bit) 
 111 = <not used> 
 
The INC, NOT, and SHL functions use only B and ignore C.  If the function code fff is 111 (i.e., 
<not used>), then zero will be loaded into the destination register.  All 3 bits of the condition 
code register (Zero, Carry, and Sign) will always be updated, regardless of what function code is 
used. 
 
This instruction takes 8 clock periods. 
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SETAB: The Load Immediate Instruction 
 

 
This instruction can load any value between –16 and +15 into either the A register or the B 
register. 
 
Destination Register Code (r) 
 0 = A 
 1 = B 
 
The 5-bit value (ddddd) is first sign-extended to 8 bits, which allows negative numbers to be 
specified. 
 
This instruction takes 8 clock periods. 
 
 
 
INC-XY: The 16-Bit Increment Instruction 

 
 
This instruction increments the XY register. 
 
This instruction takes 14 clock periods. 
 
 
 
LOAD: The Load Instruction 

 
 
This instruction reads a byte from the SRAM memory and moves it into one of 4 possible 
registers.  The memory address is taken from the 16-bit M Register. 
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Destination Register Code (rr) 
 00 = A 
 01 = B 
 10 = C 
 11 = D 
 
This instruction takes 12 clock periods. 
 
 
 
STORE: The Store Instruction 
 

 
This instruction writes a byte from one of 4 possible registers into the SRAM memory.  The 
memory address is taken from the 16-bit M Register. 
 
Source Register Code (rr) 
 00 = A 
 01 = B 
 10 = C 
 11 = D 
 
This instruction takes 12 clock periods. 
 
 
 
MOV-16: The 16-Bit Move Instruction – General Form 
 

 
Destination Register Code (d) 
 0 = XY 
 1 = PC 
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Source Register Code (ss) 
 00 = M 
 01 = XY 
 10 = J 
 11 = zero <and halt> 
 
This instruction copies 16 bits from one register to another.  Either the XY register or the 
Program Counter (PC) may be loaded.  If the PC is selected as the destination, this will cause a 
branch in program execution. 
 
If the source register code is 11, then the value zero will be moved and furthermore, instruction 
execution will be suspended. 
 
The CALL instruction (discussed below) will branch and save the return address in XY.  Thus, 
by moving XY back to the PC, this instruction can be used as a RETURN instruction. 
 
This instruction takes 12 clock periods. 
 
 
 
MOV-16: The Halt Instruction 
 
This instruction is a special case of the more general 16-bit move instruction. 

 
 
Execution will halt at the completion of this instruction.  Furthermore, the PC will be loaded with 
zero, which is often handy if you want to rerun the program from the beginning (and the program 
starts at location zero). 
 
 
 
MOV-16: The Return / Branch-Indirect Instruction 
 
This instruction is a special case of the more general 16-bit move instruction. 
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This instruction will copy the 16-bit value in the XY register to the Program Counter (PC), 
which will cause a branch (i.e., a “jump”) immediately thereafter. 
 
The CALL instruction (which is discussed below) will jump to a subroutine and will also save 
the “return address” in the XY register.  The subroutine, after completing execution, can return 
by moving the address in XY back into the PC with this instruction. 
 
[Most computers save return addresses on some sort of stack, which permits subroutines to call 
other subroutines, and even to call themselves recursively.  This computer does not directly 
support a stack.  Instead, this computer uses a simpler approach of saving the return address in a 
register.  This approach supports subroutines—an important programming abstraction—as long 
as they don’t call other subroutines.  If you wish to call one subroutine within another subroutine, 
then your program will need to save the return address before calling the second subroutine.  A 
simple STORE and LOAD will suffice if the subroutine is not recursive.  By the way, the MIPS 
microprocessor also uses this approach because of its efficiency; many subroutines don’t call 
other subroutines and would be slowed down by having to access memory.] 
 
This form of the 16-bit move instruction can also be used to branch to an arbitrary computed 
memory address.  This would be useful, for example, in implementing jump tables, switch 
statements, or threaded execution models. 
 
 
 
GOTO: The Goto Instruction – General Form 
 
The final instruction class is rather unusual and encompasses several different instruction 
variants.  In the sections following this one, we’ll show specific useful examples. 
 

 
Instruction Codes 
 d: destination (0=M, 1=J) 
 s: 1=load PC if “sign” bit is set (if negative); 0=ignore sign bit. 
 c: 1=load PC if “carry” bit is clear (if no carry); 0=ignore carry bit. 
 z: 1=load PC if “zero” bit is set (if result is zero); 0=ignore if “zero” bit is clear. 
 n: 1=load PC if “zero” bit is clear (if result is not zero); 0=ignore if “zero” bit is set. 
 x: 1=copy PC to XY; 0=do not copy. 
 
This instruction is followed by 2 additional bytes, which contain a 16-bit address value.  This 
value will be loaded into either the M register or the J register.  If loaded into the J register, this 
instruction will branch to the given address.  This is useful for its “CALL” and “GOTO” 
variants.  Alternately, the M register can be loaded with a literal 16-bit value, which is especially 
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handy if the next instruction is a LOAD or STORE instruction, which use the M register as a 
memory address. 
 
This instruction takes 24 clock periods.  During the execution of the instruction, the PC is 
incremented 3 times.  The first is the increment that is done for every instruction.  The second 
and third increments are done in conjunction with loading the second and third bytes of the 
instruction.  Afterward, the PC will be left pointing to the instruction following the 16-bit 
address portion of the instruction. 
 
In the last step of the instruction, the PC will be loaded from the J register, and this load can be 
done either conditionally or unconditionally.  Normally, this instruction is used either (1) to load 
the M register (in which case the PC is not loaded and no branching occurs) or (2) to branch (in 
which case the J register is loaded and then the PC is loaded from J). 
 
The purpose of the J register is solely to support branching instructions where the 16-bit target 
address follows the 8-bit instruction op-code.  Memory is always read one byte at a time.  During 
instruction execution, the PC is used to provide sequential addresses while fetching the 16-bit 
target address.  This target address is fetched and placed into the 16-bit J register.  Only after the 
address is complete is the target address moved from J into the PC, causing the jump in the flow-
of-control.  Furthermore, this final modification of the PC is conditional.  Thus, this instruction 
can be used to implement conditional branching. 
 
The instruction is also capable of copying the PC register to the XY register.  This is controlled 
by the “x” bit in the instruction.  If the x bit is set, then the PC will be copied to the XY register 
at the end of the instruction, thereby setting XY to point to the next instruction following this 
instruction.  This is useful in the CALL variant of the instruction, when a subroutine is invoked.  
The instruction following the CALL is the return address. 
 
Here is a summary of the actions this instruction may take, in the order they are executed: 
 
 Instr = (PC++) 
 M1 or J1 = (PC++) 
 M2 or J2 = (PC++) 
 XY = PC 
 PC = J (this step is conditional) 
 
The following chart shows the common variants of this instruction.  The SETM instruction 
moves 16-bits into the M Register; the GOTO (also called JUMP) instruction branches 
unconditionally; Bcond represents several instructions which branch conditionally (as discussed 
below); the CALL instruction is used to save a return address and jump to a subroutine. 
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 SETM GOTO Bcond CALL ACTION 
 √ √ √ √ Instr = (PC++) 
 √ √ √ √ M1 or J1 = (PC++) 
 √ √ √ √ M2 or J2 = (PC++) 
    √ XY = PC 
  √ ? √ PC = J 
 
The final load (from J into the PC) is conditional, based on the values of the condition code 
register and several tests selected by the instruction. There are four possible tests, corresponding 
to four bits in the instruction.  The bits in the instructions are called s, c, z, and n.  If a bit in the 
instruction is set to 1, the corresponding test of the condition codes is done.  If the test is true, the 
PC is loaded.  If the test is false, or if the test is not selected (i.e., the bit in the instruction is 0), 
then the PC is not necessarily loaded.  If any of the tests is true, then the PC is loaded and a 
branch occurs.  If all the tests are either false or not done, then the PC is not loaded. 
 
Here are the 4 bits from the instruction and their meanings: 
 
    s (Sign) 
        1:   load PC if the “sign” bit is set (i.e., if result of last ALU instruction was negative) 
        0:   do not test the “sign” bit. 
    c (Carry)  
        1:   load PC if the “carry” bit is clear (i.e., if no carry after an ADD or INC instruction)  
        0:   do not test the “carry” bit. 
    z (Zero) 
        1:   load PC if the “zero” bit is set (i.e., if result is equal to zero)  
        0:   do not test whether the “zero” bit is set. 
    n (Not Zero) 
        1:   load PC if the “zero” bit is clear (i.e., if result is not zero)  
        0:   do not test whether the “zero” bit is clear. 
 
For example, if only the “s” bit is set, the branch will occur only if the result is negative.  
Otherwise, the next sequential instruction will be executed.  We call this variant “BNEG”, for 
“branch if negative”. 
 
Here are some common test combinations: 
 
s c z n 
0 0 0 0 Never – Used to load the M register with no branching 
0 0 1 1 Always – Used for unconditional branching (i.e., the GOTO instruction) 
0 0 1 0 BZ/BE – Branch if result zero; Branch if B==C after XOR instruction 
0 0 0 1 BNZ/BNE – Branch if result not zero; Branch if B!=C after XOR instruction 
0 1 0 0 BNC – Branch if no carry (useful after ADD or INC) 
1 0 0 0 BNEG – Branch if result if negative 
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GOTO Variant: The SETM Instruction 
 
This instruction is a special case of the more general form of the GOTO instruction. 

 
 
This instruction will load a 16-bit value into the M register (i.e., into the M1-M2 register pair).  
This instruction is especially useful in conjunction with the LOAD and STORE instructions 
which expect the M register to contain an address. 
 
 
 
GOTO Variant: The JUMP Instruction 
 
This instruction is a special case of the more general form of the GOTO instruction. 

 
 
This instruction will branch unconditionally to the address given in the instruction.  Sometimes 
this variant is called the GOTO instruction, but the term “GOTO” is used here to refer to the 
more general form, which includes other variants. 
 
 
 
GOTO Variant: The CALL Instruction 
 
This instruction is a special case of the more general form of the GOTO instruction. 
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This instruction is used to call a subroutine.  It will branch unconditionally to the address given 
in the instruction.  In addition, this instruction will save the address of the next instruction in the 
XY register.  Thus, after completing the subroutine, execution can return to the instruction 
following the Call instruction. 
 
 
 
GOTO Variant: The BNEG (Branch-If-Neg) Instruction 
 
This instruction is a special case of the more general form of the GOTO instruction. 

 
 
This instruction will branch to the address given in the instruction if the “sign” condition code bit 
is set to 1.  In other words, it will jump if the last ALU instruction (i.e., ADD, INC, AND, OR, 
XOR, NOT, or SHL) produced a negative result, and not jump otherwise. 
 
 
 
GOTO Variant: The BNC (Branch-If-No-Carry) Instruction 
 
This instruction is a special case of the more general form of the GOTO instruction. 

 
 
This instruction will branch to the address given in the instruction if the “carry” condition code 
bit is clear (i.e., zero).  In other words, it will jump if the last ADD or INC instruction did not 
result in a carry, and will not jump if the instruction did carry.  [Note that the “carry” bit, like the 
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“sign” and “zero” bits, is modified after every ALU instruction, including AND, OR, XOR, 
NOT, and SHL.  The carry bit will always be set from the 8-bit adder circuit, reflecting whether 
there would have been a carry if B and C had been added, even if the result selected was not 
from the 8-bit adder circuit.  This is not a nuisance since the programmer would normally test the 
carry bit only after an ADD or INC instruction.] 
 
 
 
GOTO Variant: The BZ (Branch-If-Zero) Instruction 
 
This instruction is a special case of the more general form of the GOTO instruction. 

 
 
This instruction will branch to the address given in the instruction if the “zero” condition code bit 
is set to 1.  In other words, it will jump if the last ALU instruction (i.e., ADD, INC, AND, OR, 
XOR, NOT, or SHL) produced a result of zero, and not jump otherwise. 
 
Note that this instruction and the next instruction can be used to test equality.  If two values are 
combined using the XOR instruction, the result will be zero if and only if they are exactly equal.  
Thus, this instruction is sometimes called the “BE” (i.e., Branch-If-Equal) instruction. 
 
 
 
GOTO Variant: The BNZ (Branch-If-Not-Zero) Instruction 
 
This instruction is a special case of the more general form of the GOTO instruction. 
 

 
This instruction will branch to the address given in the instruction if the “zero” condition code bit 
is clear (i.e., is zero).  In other words, it will jump if the last ALU instruction (i.e., ADD, INC, 
AND, OR, XOR, NOT, or SHL) produced a result that was not zero, and not jump otherwise. 
 
Since this instruction can be used in equality tests, it is sometimes called the “BNE” (i.e., 
Branch-If-Not-Equal) instruction. 
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Assembly Language / Assembler 
 
There is no official assembler or assembly language for this computer, although several people 
have created some.  Instead, the programs I’ve written have been written in an informal assembly 
language and have then been hand-assembled into machine code. 
 
 
 
An Example Program 
 
This computer does not contain a subtract instruction.  Below is a program that subtracts two 
numbers: 
 
  Address   Instruction 
 0000 0000   1000 0101      A = NOT B 
 0000 0001   0000 1000      B = A 
 0000 0010   1000 0001      A = B+1 
 0000 0011   0000 1000      B = A 
 0000 0100   1000 0000      A = B+C 
 0000 0101   1010 1110      HALT 
 
This program assumes the two numbers to be subtracted have been pre-loaded into the B and C 
registers.  This program sets 
 
 A = C - B 
 
For example: 
 
 C:  1001 1101    157 
 B:  0101 1001   - 89 
 A:  0100 0100     68 
 
For more complex programs, I’ve adopted a slightly different form in which to express the code.  
On each line you’ll see the instruction expressed (1) in machine code, (2) in assembly-like code, 
and (3) in higher-level pseudo-code.  For example: 
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  Address   Instruction 
 ...         ...         ...        ... 
 0010 0001   0000 1111   B=Y        if sign(Y)=1 
 0010 0010   1000 0101   A=¬B       . 
 0010 0011   1111 0000   BNEG Lab2  . 
 0010 0100   0000 0000   .          . 
 0010 0101   0011 0000   .          . 
 0010 0110   0000 1101   B=M2         M2 = M2 + X 
 0010 0111   0001 0110   C=X          . 
 0010 1000   1000 0000   A=B+C        . 
 0010 1001   0010 1000   M2=A         . 
 0010 1010   1110 1000   BNC Lab2     if carry 
 0010 1011   0000 0000   .            . 
 0010 1100   0011 0000   .            . 
 0010 1101   0000 1100   B=M1           M1 = M1 + 1 
 0010 1110   1000 0001   A=B+1          . 
 0010 1111   0010 0000   M1=A           . 
 0011 0000   0000 1011 Lab2: B=D    D = D + 1 
 0011 0001   1000 1001   D=B+1      . 
 ...         ...         ...        ... 
 
Other example programs are available on the website.  These programs have been typed into 
simple text files.  They have been hand-assembled, which means the machine code bits have 
been produced manually, when pencil, paper, and care. 
 
Each program has been run and tested.  A program is loaded into memory bit-by-bit, by flipping 
switches on the computer’s front panel. 
 
 
 
Physical Organization of the Computer 
 
The computer consists of four major functional units: 
 
 The Arithmetic Logic Unit (ALU) 
 The Register Unit 
 The Program Control Unit 
 The Sequencer Unit 
 
Each unit is housed in a separate mahogany cabinet.  Each cabinet has a clear acrylic front panel, 
which is 26” wide by 38” high. 
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Each cabinet consists of 4 mahogany boards mitered at the corners, with a routed grove to accept 
the acrylic front panel.  The back of each unit consists of a 1/4” white melamine board and there 
is another routed grove in the mahogany boards to accept the backboard.  The side boards are 
fastened permanently to the bottom board, but the top board is held in place by removable 
screws.  Therefore, the top of each unit can be removed and the acyclic front panel can be slid 
into (or out of) the cabinet.  Also, the backboard can also be slid into (or out of) place. 
 
Each acrylic front panel has a number of pre-drilled holes, to accept switches, LEDs, and bolts.  
All external wires exit the cabinet through holes drilled in the mahogany sides.  Nothing is 
attached to the backboards, except a small thermometer.  The computer consumes quite a bit of 
power, which is converted to heat trapped within the cabinets and the thermometers monitor the 
temperature near the top of the cabinets. 
 
Each cabinet also has a small fan mounted inside, on the bottom board.  There are two vents in 
each cabinet: one directly below the fan and one on the cabinet top.  Air is sucked in the bottom 
by the fan and exits through the top vent.  The vents are trimmed out with chrome plates, which 
hold filter fabric in place to prevent dust / insect accumulation inside the cabinets. 
 
The benefit of allowing the front panel to slide into place is that it can be assembled in isolation 
and, when completed, it can be slid into the cabinet.  When loaded with relays, wire and 
switches, the front panels are heavy enough to be quite awkward.  Also, after the fan wires and 
external wires have been connected, removal of the front panels is a hassle.  The benefit of 
allowing the back panel to slide out is that the back panel can be easily removed to install / 
debug / repair the circuitry. 
 
The ALU was constructed by first gluing the relays directly to the acrylic front panel, and then 
soldering the wires into place.  Unfortunately, the size of the acrylic (26” by 38”) was large 
enough to make soldering and testing inconvenient.  A lot of soldering was involved and you 
don’t want to do this with your arms stretched over such a large area. 
 
The other three units each utilize smaller “modules.”  Each module is also made of clear acrylic.  
The relays were glued directly onto the smaller acrylic modules and then most of the wires were 
soldered into place.  Then, the module was screwed to the front panel, using nuts and bolts and 
plastic spacers. 
 
For example, each register module uses of a piece of acrylic 3.5” high by 18” wide.  After being 
completed, each of the acrylic modules was secured to the front panel.  Each module has 4 holes 
for mounting bolts in each of the 4 corners, inset by 1/2”.  Each register module has between 12 
and 16 relays and 8 LEDs.  This module size worked well in practice. 
 
When complete, each module was bolted to a front panel and the wires from the module were 
connected with other wires from other modules using “butt splices.” 
 
A butt splice is a simple, inexpensive and reliable solution to connecting 2 or more wires.  A butt 
splice is basically a tube of soft metal, covered with a tough insulating plastic.  To use a butt 
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splice, you insert the end of a stripped wire into one end and, using a crimping tool, crush the 
metal tube around the wire.  Then you insert another wire into the other end and crimp it. 
 
The butt splices were quick to attach.  Also, circuits could be altered easily, if mistakes were 
made.  To repair a mis-wired circuit, you simply cut the wires at the bad splice, discard the used 
splice, re-strip the wires, and install another butt splice.  If a wire turns out to be too short, which 
happened a couple of times, I used an extra butt splice to add an extension wire. 
 
To attach more than two wires to each other, you can strip 2 or 3 wires, twist them together, then 
insert them into one end of a butt splice and crimp them all together.  With three wires going into 
one end of a butt splice and three wires in the other end, you can connect up to 6 wires.  For the 
cases requiring more connections, you’ll need to break it into multiple butt splices. 
 
Each of the register modules contains a single LED for each of the 8 bits in the register, showing 
the value stored in the register.  The LEDs I used are inserted into a 9/32” hole from the outside 
and secured using a nut from the inside. 
 
The acrylic of each module is kept about 1/4” from the front panel acrylic by small plastic 
spacers.  The corner of each module is secured to the front panel with a nut, bolt, spacer, and a 
couple of washers. 
 
One problem with this approach is that it is impossible to replace an LED without unbolting and 
removing the module.  Unfortunately, once the module has been installed, and all the wires to 
other modules have been connected, it is very difficult to pull the module out far enough to 
extract a faulty LED.  Consequently, I tested all LEDs before installing the module. 
 
The only LED failures I encountered were caused by physical destruction from over-tightening 
the nut, although a couple LEDs were dim enough to merit replacement. 
 
 
 
Parts List and Costs 
 
Relays.  The computer contains 415 relays, although I used a several more for prototyping and 
testing.  Each relay is the identical part and each is a 4-pole, double throw relay, rated at 12 volts.  
[Details: All Electronics Corp; 1-888-826-5432;  http://www.allelectronics.com;  4PDT 12 volts 
DC KH Style;  Omron # MY4 DC12, 160 ohm coil. 4PDT contacts rated 5 Amps @ 240 Vac/ 28 
Vdc. Solder or socket mount terminals;  UL, CSA; Catalog number 4PRLY-12; Price: $3.75 
each in quantities of 10 to 99 ($3.40 each in larger quantities); in stock, ships within 24-48 hours.  
(I used solder terminals.  I considered using sockets, but sockets would have added additional 
cost, more work, and more potential failure points.)] 
 
Switches.  The computer contains 111 single-pole, double-throw ON-ON mini toggle switches, 
although more were used in prototyping, test harnesses, and lost to failure.   [Details: All 
Electronics, catalog number MTS-4, solder terminals, $0.90 in quantities of 10-90.]  If I had it to 
do again, I would order a better switch.  I have had several switches fall apart from physical 
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stress.  Also, I would choose a switch with a wider paddle, since the little things can cut into your 
fingers after extended periods of toggling in program code! 
 
LEDs.  The computer contains 350 LEDs, although more were used in prototyping, test 
harnesses, and lost to failure.  The part I selected does not require a separate resistor and is meant 
as a indicator light so they are fairly bright.  [Details: Radio Shack; 1-800-THE-SHACK (1-800-
843-7422); Part number 276-270; $1.49 each; 12mA.] 
 
Acrylic Boards.  The computer contains 4 front panel acrylic boards and several smaller pieces 
of acrylic for the modules.  Here is a break down of the individual pieces of acrylic along with 
their sizes.  All are 1/4” thick. 
 
 ALU Unit: 38” high by 26” wide 
 Register Unit: 38” high by 26” wide 
 Program Control Unit: 38” high by 26” wide 
 Sequencer Unit: 38” high by 26” wide 
 
 (16) Registers: 3.5” high by 18” wide 
 Clock: 3.5” high by 13” wide (4 relays, 4 LEDs) 
 State Sequencing: 6.5” high by 18” wide (31 relays, 28 LEDs) 
 Instruction Decoding: 10” high by 22” wide (approx 50 relays, 42 LEDs) 
 Main Memory: 9” high by 22” wide (37 relays, no LEDs) 
 
The module boards have holes for LEDs and mounting bolts.  The front panels have holes for 
LEDs, mounting bolts, and switches. 
  
The acrylic was special-ordered from a local plastics fabricator.  All pieces were cut to order and 
all holes were predrilled.  The total cost of acrylic was about $1,095, or about $275 for each of 
the 4 units. 
 
12 Volt Power.  The main power is supplied by two 10 Amp, 12 volt regulated power supplies.  
These are wired in parallel.  [Details: Radio Shack; Part  number: 22-506; $79.99 each.] 
 
Wire.  Most of the wire in the computer is 22-guage solid copper wire with black insulation.  I 
estimate approximately 2000 feet were used.  [Details: Radio Shack; $4.49 per 100 foot spool.]  
In addition, 18 gauge was used for power and ground within each unit. 
 
Inter-Unit Cables.  Between the units there are several cables.  Each cable has 8 conductors.  The 
cable is sold as CAT-5e cabling (for Ethernet use) and consists of 4 twisted pairs of 24-guage 
solid core.  [Details: 1 spool of 328 feet at $42.00 is more than you’ll ever need.] 
 
Cable Connectors.  Each unit can be disconnected from the rest of the computer, which is 
essential for moving the computer.  The cables are connected using DB-9 sub-miniature 
connectors.  There are 32 male plugs ($1.59 each), 32 female receptacles  ($1.79 each) and 64 
connector hood cases ($0.45 each).  These were somewhat tedious to assemble and I think there 
must be a better solution. 
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Fans.  Each unit contains a 12 volt cooling fan.  [Details: Radio Shack, part number 273-239; 
110mA; 14.5 CFM (cubic feet/minute); $10 each.] 
 
Capacitors.  The clock circuit utilizes 4 capacitor groups of 500UF each.  Each capacitor group 
contains 5 capacitors of 100 UF each, wired in parallel.  Thus, are 20 capacitors total.  [Details: 
100UF, 100 volts, non-polar, $1.55 each; All Electronics, 800-826-5432; 
www.allelectronics.com; part number NC-100.]  The static memory chip also uses a smaller 
capacitor across its power and ground.  The relays generate a lot of electrical noise and the 
memory chip was totally unreliable without this capacitor. 
 
Memory Board.  The memory board contains 1 SRAM chip, 1 eight-channel FET driver, 3 eight-
channel LEDs, all mounted on a 5” by 7” prototyping board.  In addition there is a small 5 volt 
power supply for the chip. 
 
SRAM Chip.  The memory is implemented with one static RAM chip providing 32K by 8 bits of 
storage.  [Details: Jameco Electronics; 650-592-8097;  catalog number  82472CA, Other part 
number: 62256LP-70; price: $5.49).] 
 
FET Driver Module.  The SRAM chip is not powerful enough to drive a relay; therefore a single 
eight-channel FET driver module provides 8 amplifiers that will convert from TTL levels to 
drive the relays.  [Details: NCD, www.controlanything.com, part number: 8-FET; price: $49.00.] 
 
Micro-sized LED Arrays.  Mounted next to the SRAM chip are 3 eight-channel LED arrays.  
One monitors the 8 data lines to/from the chip.  The other two arrays monitor the 15 address 
lines to the chip.  [Details: NCD, www.controlanything.com, part number: IOTEST-L; price: 
$10.00.] 
 
5 Volt Power.  In addition to the 12 volt power supply, there is a small power supply for the 
memory chip and associated circuitry.  [Details: 5V, 4 Amp, 20 Watt, Jameco  catalog number: 
213583CA, price: $26.95.] 
 
Power Switch.  There is also a power switch, which switches 110 volt line current.  The power 
switch is mounted in the sequencer unit.  An external line cord with a plug on one end is routed 
into the sequencer unit to the power switch.  From there, one branch goes back out of the 
sequencer unit to a receptacle, which was actually the female end of a utility extension cord.  The 
two 12 volt power supplies are plugged into this receptacle, allowing the power supplies to be 
disconnected for transportation.  The other branch from the power switch goes to the small 5 volt 
power supply, which is inside the sequencer unit. 
 
Cabinetry.  The computer is housed in 4 mahogany cabinets, with dark stain and varnish.  These 
were made by a cabinet maker for about $300 each.  Each cabinet has 4 rubber feet on the 
bottom, so that the computer can stand on a long table.  In addition, each cabinet has very sturdy 
picture hanging hardware secured to the back of the side boards, so that the computer can be 
hung on a wall.  The attachment from the cabinet bottom to the cabinet side is reinforced with a 
metal L-brace so that the weight of the acrylic doesn’t cause the bottom board to separate from 
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the side boards, when the unit is hanging on the wall.  Currently, the computer hangs on the wall 
in my office, with power supply on the floor underneath. 
 
Total Cost.  Here is a rough breakdown of the cost of building the computer. 
 

1,411 Relays 
521 LEDs 
100 Switches 

1,095 Acrylic Boards 
1,200 Cabinets 

160 Power Supplies 
117 SRAM Memory 
148 Capacitors 
138 Connectors 
132 Wire 
20 Fans 

100 Misc. Hardware 
 
The grand total comes to about $5,142, which is about $1,285 per unit. 
 
 
 
Concluding Remarks 
 
Building this computer was a tremendously rewarding project for me.  I have, in my life, written 
some very complex software which, in terms of complexity of design and effort of construction, 
dwarfs this computer.  But my friends and family can look at this physical object and see 
something that seem understandable, accessible, or at least interesting and attractive.  This has 
been very satisfying. 
 
As a young boy, I dreamt of building a computer out of relays after my father brought home 
some old, worn-out relays from a decommissioned telephone switching station.  I made a few 
attempts at the time, but soon gave up.  After finally realizing this dream many years later, I felt 
as if I had completed an unfinished task that had been in the back of my mind all my life, like 
something on your to-do list that never gets done but keeps nagging at your subconscious.  I felt 
joy at crossing this life-goal off my list! 
 
Building complex machines is an excellent way to learn about how things work.  You always 
want to attempt to build something that seems right at the edge of—or just beyond—your 
capabilities.  You always want to risk failure, because that is when you can learn and grow.  
When you succeed at getting something to work that you weren’t sure of, you’ll be proud indeed. 
 
I heartily encourage you to build your own relay computer.  I hope that this description has given 
you some ideas that you can use in your design. 
 


