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Chapter	1:	Introduction	

Introduction	

An	Instruction	Set	Architecture	(ISA)	de2ines,	describes,	and	speci2ies	how	a	
particular	computer	processor	core	works.	The	ISA	describes	the	registers	and	
describes	each	machine-level	instruction.	The	ISA	tells	exactly	what	each	instruction	
does	and	how	it	is	encoded	into	bits.	

The	ISA	forms	the	interface	between	hardware	and	software.	Hardware	engineers	
design	digital	circuits	to	implement	a	given	ISA	speci2ication.	Software	engineers	
write	code	(operating	systems,	compilers,	etc.)	based	on	a	given	ISA	speci2ication.	

There	are	a	number	of	Instruction	Set	Architectures	in	widespread	use,	for	example:	

	 x86-64	(AMD,	Intel)	
	 ARM	(ARM	Holdings)	
	 SPARC	(Sun/Oracle)	

Each	of	these	ISAs	is	proprietary	and	very	complex.	The	details	are	often	obscured	in	
lengthy	manuals	and	some	details	of	the	ISA	are	not	made	public	at	all.	Furthermore,	
the	widely	used	ISAs	have	been	around	for	years	and	their	designs	carry	baggage	as	
a	result,	e.g.,	for	backward	compatibility.	Since	these	legacy	designs	were	2irst	
created,	we’ve	learned	more	about	how	to	design	computers.	Changes	in	silicon	
hardware	technology	have	also	had	an	impact	on	which	design	choices	are	now	
optimal.	

The	RISC-V	project	came	out	of	UC	Berkeley	to	address	some	of	these	issues.	RISC-V	
is	pronounced	“RISC-2ive”.	

One	goal	was	to	create	a	modern	ISA	incorporating	the	best	current	ideas	in	
processor	design.	They	strove	to	create	an	ISA	that	was	much	simpler	than	the	
legacy	ISAs,	but	at	the	same	time,	was	also	practical	and	intended	to	accommodate	
really	fast	hardware	implementations.	

RISC-V	Architecture	Summary	/	Porter	 Page	� 	of	�11 323



Chapter	1:	Introduction	

Another	goal	was	to	create	a	pure	Reduced	Instruction	Set	(RISC)	architecture.	The	
goal	is	to	be	able	to	execute	one	instruction	per	clock	cycle	and	to	achieve	this,	each	
instruction	needs	to	be	simple	and	limited.	

Another	goal	was	to	create	an	open-source	ISA.	Existing	ISAs	are	proprietary.	They	
are	owned,	managed,	and	controlled	by	corporate	entities	like	Intel,	Sun	
Microsystems,	and	ARM	Holdings.	The	open-source	approach	taken	by	RISC-V	
means	that	many	different	companies	can	provide	hardware	implementations	of	the	
RISC-V	architecture.	Creating	an	ecosystem	in	which	multiple	vendors	can	compete	
in	implementing	a	single	ISA	should	result	in	many	of	the	bene2its	seen	in	other	
open-source	projects.	

The	RISC-V	design	is	not	a	single,	fully	speci2ied,	concrete	ISA.	Instead,	RISC-V	is	a	
somewhat	generalized	speci2ication	which	can	be	instantiated	or	2leshed-out	to	
describe	an	actual	silicon	part.	

The	designers	understood	that	there	are	many	different	markets,	many	different	
application	areas	for	computers,	many	different	design	constraints,	and	so	on.	For	
example,	an	embedded	computer	for	a	dishwasher	needs	to	be	cheap,	reliable,	and	
simple,	but	doesn’t	require	speed,	support	for	an	operating	system,	multiple	cores,	
or	support	for	64-bit	operations.	On	the	other	hand,	other	computers	will	have	
multiple	cores,	64-bit	operations,	etc.	

The	RISC-V	project	approaches	this	plethora	of	design	choices	by	introducing	a	
number	of	options	into	the	ISA.	In	this	respect,	RISC-V	is	really	a	single	Instruction	
Set	Architecture;	it	is	a	collection	of	related	ISAs.	Perhaps	it	can	be	viewed	as	a	
menu,	from	which	a	particular	implementation	will	choose	some	items,	but	not	
others.	The	documentation	provided	by	RISC-V	is	incomplete;	an	actual	processor	
core	will	presumably	come	with	documentation	saying	exactly	how	and	which	parts	
of	the	RISC-V	speci2ication	it	implements.	

For	example,	the	RISC-V	speci2ication	does	not	answer	these	questions:	

	 How	wide	are	the	registers?	
Options	are:	32	bits,	64	bits,	and	128	bits	

	 How	many	registers	are	there?	
	 	 Options	are:	16	or	32	
	 How	long	are	instructions?	
	 	 32	bit	instructions	are	mandatory;	16	bit	forms	are	optional	
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	 Is	hardware	multiply/divide	included?	
	 Is	9loating	point	supported?		

Options	are:	not	supported,	single,	or	double	precision	
	 Is	support	for	an	operating	system	(i.e.,	Supervisor	Mode)	included?	
	 Are	page	tables	supported	and,	if	so,	which	option	is	selected?	

As	a	result	of	all	this	parameterization,	the	RISC-V	speci2ication	is	dif2icult	to	read.	
For	example,	the	length	of	registers	is	given	as	a	variable	XLEN.	So	instead	of	saying	
something	like	

“…loads	a	32	bit	value	into	bits	[31:0]”	
the	documentation	says	

“…loads	an	XLEN	bit	value	into	bits	[XLEN-1:0]”.	

This	document	is	an	attempt	to	describe	RISC-V	using	a	more	traditional	approach.	
We	proceed	by	choosing	a	particular	ISA	that	meets	the	RISC-V	speci2ications	and	
describe	that.	To	make	things	more	concrete,	we	will	describe	the	32	bit	RISC-V	
variant,	but	make	additional	comments	about	the	64-bit	and	128-bit	variants.	

The	RISC-V	Naming	Conventions	

As	previously	described,	the	RISC-V	speci2ication	is	not	a	single	ISA.	Instead,	it	is	a	
collection	of	ISA	options.	A	naming	convention	is	used	in	which	a	particular	ISA	
variation	is	given	a	coded	name	telling	which	ISA	options	are	present	and	supported.	
A	particular	hardware	(chip)	can	be	described	or	summarized	with	such	a	coded	
name,	indicating	which	RISC-V	features	are	implemented	by	the	chip.	

For	example,	consider	the	following	RISC-V	name:	

	 RV32IMAFD	

The	“RV”	stands	for	“RISC-V”	and	all	coded	names	begin	with	“RV”.	

The	“32”	indicates	that	registers	are	32	bits	wide.	Other	options	are	64	bits	and	128	
bits:	

	 RV32	 32-bit	machines	
	 RV64	 64-bit	machines	
	 RV128	 128-bit	machines	
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The	remaining	letters	have	these	meanings:	

	 I	–	Basic	integer	arithmetic	is	supported	
	 M	–	Multiply	and	divide	are	supported	in	hardware	
	 A	–	The	instructions	implementing	atomic	synchronization	are	supported	
	 F	–	Single	precision	(32	bit)	2loating	point	is	supported	
	 D	–	Double	precision	(64	bit)	2loating	point	is	supported	

Each	of	these	is	considered	to	be	an	“extension”	of	the	base	ISA,	except	for	the	
“I”	(basic	integer	instructions),	which	is	always	required.	

The	letter	“G”	is	used	as	an	abbreviation	for	“IMAFD”:	

	 RV32G	=	RV32IMAFD	

In	addition,	there	are	additional	variants	and	extensions:	

	 S	–	Supervisor	mode	is	implemented	
	 Q	–	Quad-precision	(128	bit)	2loating	point	is	supported	
	 C	–	Compressed	(i.e.,	16	bit)	instructions	are	supported	
	 E	–	Embedded	microprocessors,	with	only	16	registers	

The	RISC-V	documentation	also	mentions	several	additional	ISA	design	extensions,	
but	only	says	these	instructions	will	be	speci2ied	at	some	future	date.	Presently,	
there	is	nothing	speci2ic	for	the	following	extensions:	

	 L	–	Decimal	arithmetic	instructions	
	 V	–	Vector	arithmetic	instructions	
	 P	–	Packed	SIMD	instructions	
	 B	–	Bit	manipulation	instructions	
	 T	–	Transactional	memory	support	

The	approach	we	take	in	this	document	is	to	describe	a	RISC-V	architecture	with	the	
following	features:	

	 •	32	registers	
	 •	Registers	are	32	bits	wide	
	 •	Multiply	and	divide	instructions	are	present	
	 •	Single	and	double	precision	2loating	point	instructions	are	present	
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	 •	Atomic	instructions	are	present	
	 •	Supervisor	mode	is	supported	
	 •	Virtual	memory	is	supported	

Rather	than	specify	all	variants	simultaneously	using	generalities,	we	will	focus	on	a	
speci2ic	ISA	and	then	comment	on	possible	variations.	

The	RISC-V	documentation	provides	an	ISA	“standard”	which	can	be	adopted	and	
used	freely	by	different	groups.	The	standard	leaves	some	decisions	open,	giving	
implementers	several	choices.	For	example,	the	implementer	is	free	to	choose	the	
size	of	the	registers;	the	standard	mentions	32-bits,	64-bits,	and	128-bits	but	does	
not	mandate	a	particular	choice.	

In	other	areas,	the	standard	is	un2inished.	For	example,	mention	is	made	of	decimal	
2loating	point	instructions,	but	the	section	discussing	them	says	“to	be	2illed	in	later”.	

Also,	the	RISC-V	documentation	acknowledges	that	some	implementers	will	choose	
to	violate	the	standard	or	extend	the	standard.	They	use	the	terminology	“non-
standard	extensions”	to	refer	to	features	that	might	be	present	in	a	given	chip,	but	
which	do	not	conform	to	the	RISC-V	standard.	

Commentary:	The	RISC-V	documentation	contains	a	number	of	enlightening	
parenthetical	remarks	describing	the	various	design	choices	they	considered	and	
offering	justi2ications	for	the	design	decisions	they	made.	This	level	of	
thoughtfulness	is	absent	in	most	extant	ISAs.	In	some	cases,	the	RISC-V	
documentation	seems	to	address	the	design	space	itself	and	offers	a	language	and	
framework	for	future	ISA	development.	

The	Usual	Disclaimer	/	Request	For	Corrections	

This	is	a	derivative	work,	based	on:	

•	 The	RISC-V	Instruction	Set	Manual,	Volume	I:	User-Level	ISA	Document	
(Version	2.2,	May	7,	2017)	

•	 The	RISC-V	Instruction	Set	Manual,	Volume	II:	Privileged	Architecture	
(Version	1.10,	May	7,	2017)	

Consult	the	of2icial	documentation,	which	prevails.	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	15 323



Chapter	1:	Introduction	

The	RISC-V	is	complex.	This	document	takes	liberties	and	simpli2ies	things.	Our	goal	
is	to	introduce	the	general	design	and	explain	the	main	ideas.	While	this	may	look	
like	a	manual	or	reference	work,	it	is	not.	To	make	this	material	comprehensible…	

	 •	Some	details	are	simpli2ied.	
	 •	Some	statements	are	not	strictly	true	or	complete.	
	 •	Some	material	may	simply	be	incorrect.	

This	document	uses	“???”	to	mark	incomplete	or	questionable	information.	Please	
contact	the	author	if	you	2ind…	

	 •	Inaccurate	information	that	you	can	correct	
	 •	Incomplete	information	that	you	can	2ill	in	
	 •	Confusing	text	that	needs	to	be	reworded	

Document	Revision	History	/	Permission	to	Copy	

Version	numbers	are	not	used	to	identify	revisions	to	this	document.	Instead	the	
date	and	the	author’s	name	is	used.	The	document	history	is:	

Date	 Author	
January	26,	2018	 Harry	H.	Porter	III		<Initial	version>	

	 	
In	the	spirit	of	RISC-V	and	the	open-source	movement,	the	author	grants	permission	
to	freely	copy	and/or	modify	this	document,	with	the	following	requirement:	

You	must	not	alter	this	section,	except	to	add	to	the	revision	history.	You	
must	append	your	date/name	to	the	revision	history.	

You	are	also	free	to	adapt	this	document	to	describe	a	particular	implementation.	If	
you	specialize	this	document	to	a	speci2ic	hardware	design,	you	should	change	the	
title	to	re2lect	this	new	use.	Any	material	lifted	should	be	referenced.	
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Basic	Terminology	

There	 has	 been	 some	 confusion	 in	 computer	 science	 documentation	 regarding	
abbreviations	for	large	numbers.	For	example:	

	 4K	=	?	
	 	 4,000		
	 	 4,096		

We	use	the	following	pre2ix	notation	for	large	numbers,	which	is	becoming	common	
in	the	context	of	computer	architecture:	

	 						Pre=ix							 Example			 Value																																																																				
	 Ki	 kibi	 KiByte	 210	 1,024	 ~103	
	 Mi	 mebi	 MiByte	 220	 1,048,576	 ~106	
	 Gi	 gibi	 GiByte	 230	 1,073,741,824	 ~109	
	 Ti	 tebi	 TiByte	 240	 1,099,511,627,776	 ~1012	
	 Pi	 pebi	 PiByte	 250	 1,125,899,906,842,624	 ~1015	
	 Ei	 exbi	 EiByte	 260	 1,152,921,504,606,846,976	 ~1018	

Contrast	this	to	the	standard	metric	pre2ixes,	which	we	avoid:	

	 						Pre=ix							 Example			 Value																																																																				
	 K	 kilo	 KByte	 103	 1,000	
	 M	 mega	 MByte	 106	 1,000,000	
	 G	 giga	 GByte	 109	 1,000,000,000	
	 T	 tera	 TByte	 1012	 1,000,000,000,000	
	 P	 peta	 PByte	 1015	 1,000,000,000,000,000	
	 E	 exa	 EByte	 1018	 1,000,000,000,000,000,000	

In	this	document,	we	use	the	terms	“byte”,	“halfword”,	“word”,	“doubleword”,	and	
“quadword”	to	refer	to	various	sizes	of	binary	data.	

             number   number    
            of bytes  of bits        example value (in hex)
            ========  =======  ===================================
    byte         1       8                     A4
    halfword     2      16                    C4F9
    word         4      32                  AB12CD34
    doubleword   8      64              01234567 89ABCDEF
    quadword    16     128     4B6D073A 9A145E40 35D0F241 DE849F03
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The	 bits	 within	 an	 8-bit	 byte	 are	 numbered	 from	 0	 (lower,	 least	 signi2icant)	 to	 7	
(upper,	most	signi2icant).	

    7654  3210
    ====  ====
    0000  0000

The	bits	within	a	16-bit	halfword	are	numbered	from	0	to	15.	

    15  12    8      4     0
     ====  ====   ====  ====
     0000  0000   0000  0000

The	bits	within	a	32-bit	word	are	numbered	from	0	to	31.	

    31  28    24     20    16     12    8      4     0
     ====  ====   ====  ====   ====  ====   ====  ====
     0000  0000   0000  0000   0000  0000   0000  0000

Likewise,	 the	bits	within	a	64-bit	doubleword	are	numbered	 from	0	 to	63	and	 the	
bits	within	a	128-bit	quadword	are	numbered	from	0	to	127.	

We	use	the	following	notation	to	represent	a	range	of	bits:	

     Example     Meaning
    =========   ======================================================
     [7:0]       Bits 0 through 7; e.g., all bits in a byte
     [31:0]      Bits 0 through 31; e.g., all bits in a word
     [31:28]     Bits 28 through 31; e.g., the upper 4 bits in a word
     [1:0]       Bits 0 through 1; e.g., the least significant 2 bits

A	single	hex	digit	 can	be	used	 to	 represent	4	bits	 (half	 a	byte,	 sometimes	 called	a	
“nibble”),	as	follows:	
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    Binary     Hex
    ======     ===
     0000       0
     0001       1
     0010       2
     0011       3
     0100       4
     0101       5
     0110       6
     0111       7
     1000       8
     1001       9
     1010       A
     1011       B
     1100       C
     1101       D
     1110       E
     1111       F

    
The	 8	 bits	 within	 a	 byte	 are	 conveniently	 expressed	 with	 two	 hex	 digits.	 For	
example:	

    8-bit byte     In Hex
    ==========    ========
    1010 0100        A4

The	32	bits	in	a	word	are	given	with	8	hex	digits.	For	example:	

                     32-bit word                      In Hex
    =============================================    ========
    1010 1011   0001 0010   1100 1101   0011 0100    AB12CD34 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Main	Memory	

Main	memory	is	byte	addressable.	Addresses	are	4	bytes	(i.e.,	32	bits)	long,	allowing	
for	up	to	4	GiBytes	to	be	addressed.	

The	RISC-V	documentation	discusses	several	different	address	size	options,	but	
we’ll	start	simple	with	32	bit	addresses.	

Memory	can	be	viewed	as	a	sequence	of	bytes:	

     address      data
    (in hex)    (in hex)
    ========    ========
    00000000       89
    00000001       AB
    00000002       CD
    00000003       EF
    00000004       01
    00000005       23
    00000006       45
    00000007       67
      ...         ...
    FFFFFFFC       E0
    FFFFFFFD       E1
    FFFFFFFE       E2
    FFFFFFFF       E3

“Low”	memory	refers	to	smaller	memory	addresses,	which	will	be	shown	higher	on	
the	page	than	“high”	memory	addresses,	as	in	the	above	example.	

Little	Endian	

The	RISC-V	is	a	little	endian	architecture.	
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As	an	example,	assume	that	main	memory	holds	the	following	bytes:	

     address      data
    (in hex)    (in hex)
    ========    ========
      ...         ...
    E5000004       1A
    E5000005       2B
    E5000006       3C
    E5000007       4D
    E5000008       5E
    E5000009       6F
    E500000A       70
    E500000B       81
    E500000C       92
    E500000D       A3
    E500000E       B4
    E500000F       C5
      ...         ...

Consider	loading	a	registers	that	is	32	bits	(4	bytes)	wide.	There	are	several	LOAD	
instructions,	which	can	move	either	a	byte,	a	halfword,	or	a	word	from	memory	into	
a	register.	

Assume	that	a	LOAD	instruction	loads	a	byte	from	address	0xE5000004.	The	
register	will	then	contain:	

 0x0000001A

Assume	that	a	LOAD	instruction	loads	a	halfword	(2	bytes)	from	the	same	address.	
The	register	will	then	contain:	

 0x00002B1A

Assume	that	a	LOAD	instruction	loads	a	word	(4	bytes)	from	the	same	address.	The	
register	will	then	contain:	

 0x4D3C2B1A

Note	that	we	can	view	the	memory	as	holding	a	sequence	of	properly	aligned	
halfwords,	which	we	can	naturally	represent	as	follows:	
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     address      data
    (in hex)    (in hex)
    ========    ========
      ...          ...
    E5000004      2B1A
    E5000006      4D3C
    E5000008      6F5E
    E500000A      8170
    E500000C      A392
    E500000E      C5B4
      ...          ...

Or	we	can	view	this	memory	as	holding	a	sequence	of	properly	aligned	words,	which	
looks	like	this:	

     address      data
    (in hex)    (in hex)
    ========    ========
      ...         ...
    E5000004    4D3C2B1A
    E5000008    81706F5E
    E500000C    C5B4A392
      ...         ...

Commentary:	In	a	little	endian	architecture,	the	order	of	the	bytes	is	changed	
whenever	data	is	copied	from	memory	to	a	register	or	stored	from	a	register	into	
memory.	This	can	be	a	source	of	confusion,	particularly	when	humans	look	at	a	
printout	of	memory	contents.	

Big	endian	architectures	are	simpler	to	understand	since	the	bytes	are	not	
reordered	during	loads	and	stores.	

Notice	that	with	a	little	endian	architecture,	the	2irst	byte	in	memory	(0x1A	in	the	
example)	always	goes	into	the	same	bits	in	the	register,	regardless	of	whether	the	
instruction	is	moving	a	byte,	halfword,	or	word.	This	can	result	in	a	simpli2ication	
of	the	circuitry.	

The	spec	mentions	that	they	selected	little	endian	since	it	is	commercially	
dominant.	They	also	mention	the	possibility	of	“bi-endian”	architectures,	which	
mix	big-	and	little-endianness.	
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The	Registers	

For	concreteness,	this	document	focuses	primarily	on	RV32,	the	32-bit	variant	of	
RISC-V.	The	box	below	discusses	“Other	Register	Sizes”.	

The	general	purpose	registers	are	32	bits	(i.e.,	4	bytes	or	one	word)	in	width.	

There	are	32	registers.	
		
The	registers	are	named	x0,	x1,	x2,	…	x31.	

Other	Register	Sizes:	We	mainly	focus	on	describing	the	RV32	variant	of	RISC-V,	
in	which	the	registers	are	32	bits	in	width.		

In	the	RV64	variant,	the	registers	are	64	bits	(i.e.,	8	bytes	or	a	doubleword)	in	size.	

In	the	RV128	variant,	the	registers	are	128	bits	(i.e.,	16	bytes	or	a	quadword)	in	
size.	

In	all	cases,	the	number	of	registers	is	32.	

If	2loating	point	is	supported,	there	will	be	additional	=loating	point	registers	
named	f0,	f1,	f2,	…	f31.	These	registers	are	distinct	from	x0,	x1,	x2,	…	x31.	Floating	
point	registers	will	be	discussed	later.	

Register	x0	is	a	special	“zero	register”.	When	read,	its	value	is	always	0x00000000.	
Whenever	there	is	an	attempt	to	write	to	x0,	the	data	is	simply	discarded.	

All	other	registers	are	treated	identically	by	the	ISA;	there	is	nothing	special	about	
any	register.	

There	is	no	special	support	for	a	“stack	pointer,”	a	“frame	pointer,”	or	a	“link	register”.	
Although	these	are	important	concepts	and	are	used	in	the	implementation	of	
programming	languages,	the	ISA	does	not	have	any	specialized	instructions	for	
them.	Any	register	can	be	used	for	these	functions.	
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Reduced	Number	of	General	Purpose	Registers:	In	the	RISC-V	“E”	extension,	the	
number	of	registers	is	reduced	to	16.	

The	registers	are	named	x0,	x1,	x2,	…	x15.	

This	extension	is	only	applicable	to	32-bit	machines.	In	other	words,	the	base	ISA	
will	either	be	RV32I	or	RV32E,	with	the	only	difference	being	the	number	of	
general	purpose	registers.	For	64-bit	and	128-bit	machines,	there	will	always	be	a	
full	sized	register	set	with	32	registers,	so	“E”	does	not	apply	to	RV64	or	RV128.	

All	instruction	formats	are	the	same.	In	other	words,	there	is	no	change	to	the	
instruction	encodings	between	the	normal	RV32I	and	the	reduced	RV32E	variants.	
The	only	difference	is	that	the	5-bit	2ields	for	encoding	a	register	number	are	
limited	to	containing	only	the	values	of	0	through	15	(in	binary:	00000	through	
01111).	

This	extension	is	meant	for	simpli2ied,	embedded	(“E”)	computers.	The	spec	
suggests	that	the	circuitry	for	a	full	sized	register	set	can	consume	50%	of	the	chip	
real	estate,	not	counting	the	space	used	for	cache.	Thus,	dividing	the	number	of	
registers	in	half	will	result	in	a	25%	savings	in	real	estate.	

Compressed	Instructions:	In	the	RISC-V	“C”	extension	for	compressed	
instructions,	8	registers	(x8,	x9,	…	x15)	are	easily	accessible.	To	access	the	other	
registers,	the	programmer	may	have	to	use	a	normal,	uncompressed	instruction.	
Therefore,	compilers	are	encouraged	(but	not	required)	to	use	only	registers	x8,	
x9,	…	x15.	

In	this	extension,	the	fact	that	certain	registers	will	be	used	as	stack	pointer,	link	
register,	etc.	is	made	use	of,	so	some	registers	are	treated	slightly	differently	here.	

We	discuss	compressed	instructions	later.	

In	addition	to	the	general	purpose	registers,	there	is	also	a	program	counter	(PC),	
whose	width	matches	the	width	of	the	general	purpose	registers.	

In	the	variant	we	focus	on,	the	PC	register	is	32	bits	wide.	In	the	RV64	and	RV128	
variants,	the	size	of	the	PC	increases	and	matches	the	size	of	the	general	purpose	
registers.	
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Many	processor	ISAs	include	a	“status	register”,	sometimes	called	a	“condition	code	
register.”	Such	a	register	usually	contains	bits	such	as:	

	 •	Sign	/	Negative	Value	
	 •	Zero	/	Equal	
	 •	Carry	Bit	
	 •	Over2low	

In	other	ISAs,	there	is	usually	a	COMPARE	instruction	(which	will	set	bits	in	the	
status	register)	and	several	BRANCH	instructions	(which	will	test	the	status	register	
bits	and	conditionally	jump).	

The	RISC-V	does	not	include	any	such	“status	register.”	Instead,	the	BRANCH	
instructions	in	RISC-V	will	perform	both	the	test	and	the	conditional	jump.	

Commentary:	The	normal	pattern	of	most	code	in	other	non-RISC-V	architectures	
is	to	execute	a	COMPARE	instruction	and,	immediately	afterward,	execute	a	
BRANCH	instruction.	They	go	together	and	effectively	perform	a	single	“test-and-
jump”	operation.	By	combining	them	into	a	single	instruction	in	the	RISC-V	
architecture,	greater	performance	ef2iciency	can	be	achieved	whenever	this	“test-
and-jump”	operation	must	be	performed.	

Furthermore,	by	eliminating	the	“status	register”,	the	processing	of	interrupts	is	
streamlined.	Here’s	why:	The	code	in	any	interrupt	handler	routine	will	certainly	
modify	the	status	register,	so	therefore	the	status	register	must	be	automatically	
saved	whenever	an	interrupt	handler	is	invoked	and	restored	whenever	the	
handler	returns.	Additional	architectural	complexity	would	be	required	to	support	
these	operations	(which	must	be	atomic),	but	this	complexity	is	avoided	with	the	
RISC-V	approach.	

Control	and	Status	Registers	(CSRs)	

The	entire	state	of	a	running	RISC-V	core	consists	of:	

	 •	The	integer	registers	x1,	x2,	…	x31	
	 •	The	2loating	point	registers,	if	2loating	point	is	supported.	
	 •	The	Program	Counter	(PC)	
	 •	A	set	of	“Control	and	Status	Registers”	(CSRs)	
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The	“Control	and	Status	Registers”	(CSRs)	are	used	for	the	protection	and	privilege	
system.	The	privilege	system	is	used	by	the	OS	kernel	to	protect	itself	and	manage	
user-level	processes.	

At	any	moment,	the	RISC-V	processor	will	be	executing	either	in	user-mode	or	in	
supervisor-mode.	Kernel	code	is	executed	in	supervisor-mode	and	application	
programs	are	executed	in	user-mode.	[	Actually	there	are	two	non-user	modes;	we’ll	
go	into	details	later.	]	

Each	“Control	and	Status	Register”	(CSR)	has	a	special	name	and	each	has	a	unique	
function.	Reading	and/or	writing	a	CSR	will	have	an	effect	on	the	processor	
operation.	Reading	and	writing	to	the	CSRs	is	used	to	perform	all	operations	that	
cannot	be	performed	with	normal	instructions.	The	behavior	associated	with	each	
CSR	is	often	quite	complex	and	each	register	must	be	understood	independently.	

There	is	a	large	2ile	of	CSRs:	there	can	be	up	to	4,096	CSRs	de2ined.	The	CSRs	are	
read	and	written	with	just	a	couple	of	general-purpose	instructions.	

A	few	dozen	CSRs	are	de2ined	in	the	spec,	giving	their	names,	behaviors,	and	effects.	
The	spec	leaves	open	the	possibility	of	more	CSRs	being	de2ined	and	it	is	clear	that	
there	will	be	signi2icant	variation	between	implementations	in	the	details	of	which	
CSRs	are	implemented	and	exactly	how	each	one	works.	

Fortunately,	the	CSRs	can	be	ignored	at	2irst.	The	CSRs	are	primarily	used	by	OS	
code.	For	example,	the	CSRs	are	used	for	interrupt	processing,	thread	switching,	and	
page	table	manipulation.	

In	order	understand	the	user-mode	instruction	set	and	to	create	user-level	code,	the	
CSRs	can	and	should	be	ignored,	especially	on	your	2irst	introduction	to	RISC-V.	

Alignment	

A	“halfword	aligned”	address	is	an	address	that	is	a	multiple	of	2.	The	last	bit	of	a	
halfword-aligned	address	will	always	be	0.	Likewise,	a	“word	aligned”	address	is	a	
multiple	of	4,	and	ends	with	the	bits	00.	Similarly	for	“doubleword	alignment”	and	
“quadword	alignment”.	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	26 323



Chapter	2:	Basic	Organization	

A	halfword-sized	value	is	said	to	be	“properly	aligned”	if	it	is	stored	at	a	halfword-
aligned	address.	A	word-sized	value	is	properly	aligned	if	it	is	stored	at	a	word-
aligned	address,	and	similarly	for	other	sizes.	

RISC-V	does	not	require	data	to	be	properly	aligned	for	the	LOAD	and	STORE	
instructions.	In	other	words,	any	value	may	be	stored	at	any	address.	However,	
proper	alignment	is	good	practice	and	encouraged.	In	most	implementations,	LOAD	
and	STORE	instructions	will	perform	much	faster	when	the	data	is	properly	aligned.	

However,	there	is	an	alignment	requirement	for	instructions.	

Instructions	are	32	bits	in	length	and	must	be	stored	at	word-aligned	locations.	An	
attempt	to	jump	to	an	unaligned	addressed	will	cause	an	“instruction	misaligned”	
exception.	

Commentary:	In	the	RISC-V	“C”	extension	for	compressed	instructions,	halfword-
sized	instructions	are	allowed.	In	this	case,	the	alignment	requirement	is	slightly	
relaxed:	Instructions	(whether	16	or	32	bits),	must	only	be	halfword	aligned,	not	
word	aligned.	

Since	all	instructions	must	be	at	least	halfword	aligned,	all	branch	target	address	
and	the	program	counter	(PC)	values	must	be	even	numbers,	i.e.,	must	end	with	a	
single	0	bit.	Some	instructions	make	use	of	the	fact	that	the	least	signi2icant	bit	is	
always	0,	allowing	a	more	ef2icient	encoding	of	instructions	by	leaving	this	2inal	bit	
implicit.  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Instructions	

Instructions	are	32	bits	(4	bytes,	1	word)	in	length	and	must	be	stored	at	word-
aligned	memory	locations.	Instructions	for	the	RV64	and	RV128	variants	are	still	32	
bits	long.	

Some	computer	architectures	are	said	to	employ	“two-address”	instructions.	For	
example,	the	following	instruction	mentions	only	two	registers.	(This	is	not	RISC-V.)	

ADD x4,x5 # x4 = x4 + x5

RISC-V	is	a	“three	address”	architecture.	The	ADD	instruction	looks	like	this:	

ADD x4,x5,x7 # x4 = x5 + x7

Note	that	in	the	RISC-V	assembly	language,	the	destination	is	typically	the	leftmost	
operand.	

The	Compressed	Instruction	Extension	

This	chapter	describes	the	32-bit	instructions.	However	in	this	section,	we	introduce	
the	16-bit	compressed	instructions.	We	will	cover	the	compressed	instructions	fully	
in	a	later	chapter.	

In	the	RISC-V	“C”	extension	for	compressed	instructions,	halfword-sized	instructions	
are	also	allowed.	If	this	extension	is	implemented,	both	16-bit	and	32-bit	
instructions	can	be	used.	
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The	16-bit	and	32-bit	instructions	can	be	intermixed.	There	is	no	“mode”	bit	to	put	
the	processor	into	“compressed-instruction”	mode,	as	there	is	in	other	processors.	

With	this	extension,	the	alignment	restriction	for	instructions	is	relaxed	to	halfword-
alignment.	

Each	compressed	16-bit	instruction	is	exactly	equivalent	in	function	to	a	32-bit	
instruction.	However,	there	are	many	32-bit	instructions	for	which	there	is	no	
equivalent	16-bit	version.	

Thus,	each	compressed	16-bit	instruction	can	be	thought	of	as	a	shorthand	for	some	
longer	32-bit	instruction.	The	idea	is	that	the	most	frequently	used	instructions	have	
16-bit	versions.	By	using	the	shorter	versions,	the	size	of	program	code	can	be	
reduced.	The	RISC-V	designers	have	done	research	to	determine	which	instructions	
are	the	best	candidates	to	be	given	compressed	variants.	

Commentary:	Reducing	the	size	of	code	results	in	increased	processor	
performance	since	it	allows	more	instructions	to	be	cached,	reducing	the	time	to	
fetch	instructions	from	main	memory,	which	is	often	a	performance	bottleneck.	

In	a	typical	hardware	implementation,	when	a	compressed	instruction	is	fetched	
and	loaded	into	the	Instruction	Register	(IR)	prior	to	being	executed,	the	hardware	
will	notice	that	it	is	a	compressed	instruction.	At	that	time,	the	compressed	
instruction	will	immediately	be	expanded	from	16	bits	into	the	equivalent	32	bit	
instruction.	Thereafter,	there	is	no	need	for	any	additional	hardware	logic	to	
support	the	compressed	instruction	set.	

To	address	32	registers,	5	bits	are	required.	Consider	an	instruction	which	refers	to	
3	registers,	such	as:	

	 ADD x8,x9,x10

If	this	instruction	is	encoded	using	5	bits	for	each	register,	15	bits	would	be	
consumed.	With	only	16	bits	to	work	with	in	compressed	instructions,	this	will	
clearly	not	work,	since	only	1	bit	is	left	for	encoding	the	opcode.	

Instead,	many	of	the	compressed	instructions	restrict	access	to	only	8	of	the	
registers.	With	this	restriction,	registers	can	be	encoded	using	only	3	bits.	
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Many	of	the	compressed	instructions	only	allow	access	to	registers	x8,	x9,	…	x15.	
However,	certain	other	registers	are	(by	convention	and	habit)	used	for	special	
purposes,	such	as	for	a	“stack	pointer”	(x2)	or	“link	register/return	address”	(x1),	
and	some	compressed	instructions	implicitly	refer	to	these	registers.	

Some	compressed	instructions	allow	any	of	the	32	registers	to	be	speci2ied,	
employing	a	5-bit	2ield	to	encode	the	register.	Obviously,	these	instructions	don’t	
have	room	for	three	such	register	operands.	

In	general,	RISC-V	uses	three-address	instructions.	However,	some	compressed	
instructions	use	the	two-address	approach.	For	example,	the	instruction	

	 ADD x8,x8,x10 # Add x10 to x8
	 	
can	be	represented	in	compressed	form	since	the	destination	register	is	also	an	
operand.	

More	precisely,	a	compressed	instruction	of	the	form:	

	 C.ADDW RegD,RegB # RegD = RegD + RegB

can	be	expanded	to		

	 ADDW RegD,RegD,RegB # Equivalent 32-bit inst

In	assembly	language,	compressed	instructions	are	identi2ied	with	the	“C.”	pre2ix.	

The	instruction	opcode	here	ends	with	a	“W”	suf2ix,	indicating	that	it	operates	on	a	
32-bit	word,	as	opposed	to	64-bit	or	128-bit	values.	

In	a	typical	implementation,	a	compressed	instruction	will	be	expanded	to	the	
equivalent	32-bit	instruction	by	the	FETCH	and	DECODE	hardware,	after	an	
instruction	is	fetched	from	memory,	directly	before	it	is	executed.	

However,	the	expansion	to	a	full-sized	32-bit	instruction	could	be	performed	by	the	
assembler.	This	would	be	useful	when	assembling	for	a	machine	that	does	not	
support	the	compressed	extension.		

Assembler	Note:	A	sophisticated	assembler	will	automatically	generate	
compressed	instructions	whenever	it	can.	The	idea	is	that	the	programmer	(or	
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compiler)	will	create	only	32-bit	instructions.	Upon	encountering	a	32-bit	
instruction	that	can	also	be	coded	as	a	16-bit	instruction,	the	assembler	will	
choose	the	smaller	instruction.	Such	an	assembler	will	relieve	programmers	(and	
compilers)	from	the	burden	of	selecting	compressed	instructions,	although	a	
sophisticated	compiler	may	be	able	to	generate	shorter	code	sequences	if	it	is	
aware	of	which	instructions	can	be	compressed.	

Instruction	Encoding	

Each	instruction	is	32-bits	in	length.	

In	other	words,	the	ISA	is	built	around	a	32-bit	instruction	size.	Each	compressed	
16-bit	instruction	can	also	be	represented	as	a	equivalent	32-bit	instruction,	so	the	
set	of	32-bit	instruction	fully	describes	the	available	instructions.	
		
The	least	signi2icant	2	bits	always	indicate	whether	the	instruction	is	16	or	32	bits,	
so	the	processor	can	immediately	tell	whether	or	not	it	has	just	loaded	a	compressed	
instruction.	

Details:	A	bit	pattern	ending	in	11	indicates	a	32-bit	instruction.	The	other	bit	
patterns	(00,	01,	10)	indicate	a	compressed	instruction.	This	approach	reduces	the	
available	number	of	unique	16-bit	instructions	by	¼,	and	reduces	the	number	of	
effective	bits	available	for	the	32-bit	instructions	to	30	bits:	a	reasonable	
compromise.	

The	distinguishing	bits	are	in	the	least	signi2icant	positions,	which	is	appropriate	
for	a	little	endian	architecture.	

There	is	also	a	provision	for	instructions	that	are	longer	than	32	bits,	but	no	such	
instructions	are	speci2ied.	Such	instructions	would	be	a	non-standard	extension.	

Longer	instructions	must	be	a	multiple	of	16	bits	in	length.	An	encoding	scheme	is	
speci2ied,	which	shows	how	instructions	of	length	48	bits,	64	bits,	etc.	are	to	have	
their	length	encoded.	Beyond	the	length	encoding,	further	instructions	details	are	
left	unspeci2ied	and	up	to	the	implementers	of	non-standard	devices.	
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For	instructions	of	length	32	bits,	the	least	signi2icant	2	bits	must	be	11.	In	
addition,	the	next	3	bits	must	not	be	111,	since	this	indicates	an	instruction	of	
length	greater	than	32-bits.	

	 Compressed	(16-bit)	Instructions:	
xxxx xxxx  xxxx xxAA    (where	AA	≠	11)	

	 Normal	(32-bit)	Instructions:	
xxxx xxxx  xxxx xxxx  xxxx xxxx  xxxB BB11    (where	BBB	≠	111)	

	 Longer	Instructions:	
xxxx xxxx  ...  xxxx xxxx  xxxx xxxx  xxx1 1111

Consult	the	of2icial	documentation	for	details	for	longer	instructions.	

In	this	section,	we	will	discuss	only	32-bit	instructions.	

Since	there	are	32	registers,	a	2ield	with	a	width	of	5	bits	is	used	to	encode	each	
register	operand	within	instructions.	

The	prototypical	instruction	mentions	3	registers,	which	are	symbolically	called	

	 RegD	–	The	destination	
	 Reg1	–	The	2irst	operand	
	 Reg2	–	The	second	operand	

In	addition,	a	number	of	instructions	contain	immediate	data.	The	immediate	data	
value	is	always	sign-extended	to	yield	a	32-bit	value.	

The	following	sizes	of	immediate	data	values	are	used:	

	 Notation	 Field	width	 Number	of	Values	 Range	of	values	
	 Immed-12	 12	bits	 212	=	4	Ki	 -2,048	..	+2,047	
	 Immed-20	 20	bits	 220	=	1	Mi	 -	524,288	..	+	524,287	

Commentary:	Loading	an	arbitrary	32	bit	value	into	a	register	using	instructions	
which	are	themselves	only	32-bits	necessarily	requires	two	instructions.	

Note	that	12+20	equals	32.	In	RISC-V,	an	arbitrary	32-bit	value	can	be	split	into	
two	pieces	and	loaded	into	a	register	with	two	instructions.	The	designers	have	
chosen	the	12-20	split	for	a	number	of	reasons.	Many	common	constants	and	
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offsets	fall	within	the	range	of	the	smaller	immed-12	values.	Also,	the	RISC-V	
virtual	memory	supports	a	page	size	of	4	KiBytes.	

Here	are	the	instruction	formats:	

	 R-type	instructions:	
	 	 Operands:	
	 	 	 RegD,Reg1,Reg2	
	 	 Example:	

ADD   x4,x6,x8     # x4 = x6+x8
	 I-type	instructions:	
	 	 Operands:	
	 	 	 RegD,Reg1,Immed-12	
	 	 Examples:	

ADDI  x4,x6,123    # x4 = x6+123
LW    x4,8(x6)     # x4 = Mem[8+x6]

	 S-type	instructions:	
	 	 Operands:	
	 	 	 Reg1,Reg2,Immed-12	
	 	 Example:	

SW    x4,8(x6)       # Mem[8+r6] = x4 (word)
	 B-type	instructions	(a	variant	of	S-type):	
	 	 Operands:	
	 	 	 Reg1,Reg2,Immed-12	
	 	 Example:	

blt   x4,x6,loop     # if x4<x6, goto offset(pc)
	 U-type	instructions:	
	 	 Operands:	
	 	 	 RegD,Immed-20	
	 	 Example:	

LUI   x4,0x12AB7   # x4 = value<<12
AUIPC x4,0x12AB7   # x4 = (value<<12) + pc

	 J-type	instructions	(a	variant	of	U-type):	
	 	 Operands:	
	 	 	 RegD,Immed-20	
	 	 Example:	

jal   x4,foo       # call: pc=offset+pc; x4=ret addr

The	only	difference	between	S-type	and	B-type	instructions	is	how	the	12-bit	
immediate	value	is	handled.	In	an	B-type	instruction,	the	immediate	value	is	
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multiplied	by	2	(i.e.,	shifted	left	1	bit)	before	being	used.	In	the	S-type	instruction,	
the	value	is	not	shifted.	

In	both	cases,	sign-extension	occurs.	In	particular,	the	bits	to	the	left	are	synthesized	
by	2illing	them	in	with	a	copy	of	the	most	signi2icant	bit	actually	present.	

	 S-type	immediate	values:	
	 	 Actual	value	used	(where	s=sign-extension):	

ssss ssss ssss ssss ssss VVVV VVVV VVVV
	 	 Range	of	values:	

-2,048	..	+2,047	
0xFFFFF800	..	0x000007FF	

	 B-type	immediate	values:	
	 	 Actual	value	used	(where	s=sign-extension):	

ssss ssss ssss ssss sssV VVVV VVVV VVV0
	 	 Range	of	values:	

-4,096	..	+4,094	(in	multiples	of	2)	
0xFFFFF000	..	0x00000FFE	

The	only	difference	between	U-type	and	J-type	instructions	is	how	the	20-bit	
immediate	value	is	handled.	In	a	U-type	instruction,	the	immediate	value	is	shifted	
left	by	12	bits	to	give	a	32	bit	value.	In	other	words,	the	immediate	value	is	placed	in	
the	uppermost	20	bits,	and	the	lower	12	bits	are	zero-2illed.	

In	a	J-type	instruction,	the	immediate	value	is	shifted	left	by	1	bit	(i.e.,	multiplied	by	
2).	It	is	also	sign-extended.	

	 U-type	immediate	values:	
	 	 Actual	value	used:	

VVVV VVVV VVVV VVVV VVVV 0000 0000 0000
	 	 The	value	is	always	aligned	to	a	multiple	of	4,096.	
	 J-type	immediate	values:	
	 	 Actual	value	used	(where	s=sign-extension):	

ssss ssss sssV VVVV VVVV VVVV VVVV VVV0
	 	 Range	of	values:	

-1,048,576	..	+1,048,574	(in	multiples	of	2)	
0xFFF00000	..	0x000FFFFE	

Next,	we	give	the	encodings	for	the	different	types	of	instructions.	In	the	following,	
each	letter	represents	a	single	bit,	according	to	the	following	legend:	
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	 DDDDD	=	RegD	
	 11111	=	Reg1	
	 22222	=	Reg2	
	 VVVVV	=	Immediate	value	
	 XXXXX	=	Op-code	/	function	code	

	 R-type	instructions:	
	 	 Operands:	
	 	 	 RegD,Reg1,Reg2	
	 	 Encoding:	

XXXX XXX2 2222 1111 1XXX DDDD DXXX XXXX
	 I-type	instructions:	
	 	 Operands:	
	 	 	 RegD,Reg1,Immed-12	
	 	 Encoding:	

VVVV VVVV VVVV 1111 1XXX DDDD DXXX XXXX
	 S-type	and	B-type	instructions:	
	 	 Operands:	
	 	 	 Reg1,Reg2,Immed-12	
	 	 Encoding:	

VVVV VVV2 2222 1111 1XXX VVVV VXXX XXXX
	 U-type	and	J-type	instructions:	
	 	 Operands:	
	 	 	 RegD,Immed-20	
	 	 Encoding:	

VVVV VVVV VVVV VVVV VVVV DDDD DXXX XXXX

Commentary:	Note	that	Reg1,	Reg2,	and	RegD	occur	in	the	same	place	in	all	
instruction	formats.	

This	simpli2ies	the	chip	circuitry,	which	would	be	more	complex	if,	for	example,	
RegD	was	sometimes	in	one	part	of	the	instruction	and	other	times	in	a	different	
place	in	the	instruction.	

A	consequence	of	keeping	the	register	2ields	in	that	same	place	is	that	immediate	
data	values	in	an	instruction	are	sometimes	not	always	in	contiguous	bits.	And	
note	that	the	bits	encoding	the	immediate	values	in	the	S-type	and	B-type	
instructions	are	not	contiguous.	
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	 I-type:	
	 	 VVVV VVVV VVVV ---- ---- ---- ---- ——

S-type	and	B-type:	
	 	 VVVV VVV- ---- ---- ---- VVVV V--- ——

U-type	and	J-type:	
	 	 VVVV VVVV VVVV VVVV VVVV ---- ---- ——

While	both	S-type	and	B-type	have	a	12-bit	immediate	value,	the	precise	order	of	
the	bits	in	those	2ields	differs	between	the	two	formats.	While	you	would	
reasonably	assume	the	bits	are	in	order,	they	are	in	fact	scrambled	up	a	little	in	the	
B-type	instruction	format.	Similarly,	the	bits	of	the	20-bit	immediate	value	2ield	in	
the	J-type	formats	are	scrambled,	as	compared	to	U-type.	Consult	the	spec	for	
details.	

Immediate	values	are	always	sign-extended.	Although	the	immediate	value	can	be	
different	sizes	and	may	be	broken	into	multiple	2ields,	the	sign	bit	is	always	in	the	
same	instruction	bit	(namely	the	leftmost	bit,	bit	31).	This	simpli2ies	and	speeds	
sign-extension	circuitry.	

User-Level	Instructions	

The	RISC-V	speci2ication	breaks	the	instructions	into	two	broad	categories:	“user-
level”	instructions	and	“privileged”	instructions.	We	begin	by	describing	the	
individual	user-level	instructions.	We’ll	cover	the	privileged	instructions	later.	

The	instruction	set	is	quite	small	and	tightly	de2ined;	there	are	not	as	many	
instructions	in	the	RISC-V	architecture	as	in	other	architectures.	

Several	familiar	instructions	(which	you	would	2ind	in	other	architectures)	are	
simply	special	cases	of	more	general	RISC-V	instructions.	

The	of2icial	RISC-V	documentation	focuses	on	the	actual	instructions	and	mentions	
special	cases	only	brie2ly,	in	connection	with	the	more	general	instruction.	We	will	
separate	out	some	of	these	special	cases	and	present	them	as	useful	instructions	in	
their	own	right,	mentioning	that	they	are	actually	implemented	as	special	cases	of	
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other	instructions.	Also,	some	other	useful	“instructions”	are	actually	expanded	by	
the	assembler	into	a	sequence	of	two	simpler	instructions.	

The	RISC-V	standard	describe	three	different	machine	sizes:	

	 RV32	 32-bit	registers	
	 RV64	 64-bit	registers	
	 RV128	 128-bit	registers	

Any	particular	RISC-V	hardware	chip	will	implement	only	one	of	the	above	
standards.	However,	each	size	is	strictly	more	powerful	than	the	smaller	sizes.	An	
RV64	chip	will	include	all	the	instructions	necessary	to	manipulate	32-bit	data,	so	it	
can	easily	do	anything	an	RV32	chip	can.	Likewise,	an	RV128	chip	is	a	strict	superset	
of	the	RV32	and	RV64	chips.	

You	should	read	the	instruction	descriptions	below	assuming	that	the	register	width	
is	32	bits.	However,	the	same	descriptions	apply	and	make	sense	for	64-bit	or	128-
bit	registers,	except	where	speci2ically	noted.	

Regarding	64-bit	and	128-bit	extensions:	For	the	larger	machine	sizes,	the	
basic	32-bit	instructions	work	identically.	

In	summary,	smaller	data	values	are	sign-extended	to	2it	into	larger	registers.	
Thus,	32-bit	values	are	sign-extended	to	64	bits	on	an	RV64	machine.	This	means	
you	can	run	32-bit	code	directly	on	a	64-bit	machine	with	no	changes!	

Of	course,	some	instructions	from	a	RV64	machine	will	not	be	present	on	a	RV32	
machine,	so	code	that	truly	requires	64-bits	won’t	work.	

When	using	a	64-bit	machine	to	execute	code	written	for	a	32-bit	machine,	keep	
in	mind	that	the	upper	32	bits	of	registers	will	normally	contain	the	sign	
extension,	and	not	a	zero	extension.	

Likewise,	32-bit	and	64-bit	values	are	sign-extended	to	128-bits	on	an	RV128	
machine.	

The	12-bit	and	20-bit	immediate	values	in	instructions	are	sign-extended	to	the	
basic	machine	size.	This	includes	the	immediate	values	in	the	two	U-type	
instructions	(LUI	and	AUIPC).	
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For	instructions	that	are	not	present	on	all	machine	sizes,	we	make	special	notes.	
Otherwise,	the	instruction	is	present	in	all	variants.	

The	of2icial	documentation	does	not	dwell	on	the	assembler	notation.	The	assembler	
notation	presented	here	is	sometimes	a	“best	guess”	of	what	is	accepted	by	the	
typical	RISC-V	assembler	tools.	

Arithmetic	Instructions	(ADD,	SUB,	…)	

Add	Immediate	

General	Form:	
ADDI   RegD,Reg1,Immed-12

Example:	
ADDI   x4,x9,123    # x4 = x9 + 0x0000007B

Description:	
The	immediate	value	(a	sign-extended	12-bit	value,	i.e.,	-2,048	..	+2,047)	is	
added	to	the	contents	of	Reg1	and	the	result	is	placed	in	RegD.	

Comments:	
There	is	no	“subtract	immediate”	instruction	because	subtraction	is	equivalent	
to	adding	a	negative	value.	

Encoding:	
	 This	is	an	I-type	instruction.	

Commentary:	There	is	no	distinction	between	signed	and	unsigned	
addition;	the	same	hardware	yields	correct	result	regardless	of	whether	both	
values	are	considered	to	represent	signed	values	or	both	are	considered	to	
represent	unsigned	values.	

The	only	distinction	between	signed	and	unsigned	addition	is	in	how	
over2low	is	to	be	detected.	The	same	is	true	of	subtraction.	This	is	not	unique	
to	RISC-V;	it	is	true	of	all	computers.		

Over2low	is	ignored	in	RISC-V.	When	over2low	occurs,	no	exceptions	are	
raised	and	no	status	bits	are	set.	This	satis2ies	the	needs	of	the	“C”	language,	
but	may	be	problematic	for	languages	that	mandate	over2low	detection.	
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Thus,	RISC-V	has	only	one	sort	of	addition;	RISC-V	does	not	distinguish	
between	signed	and	unsigned	addition.	Likewise,	there	is	no	distinction	
between	signed	and	unsigned	subtraction.	

Note	that	over2low	detection	can	be	programmed	fairly	simply.	For	example,	
the	following	code	sequence	will	add	two	unsigned	values	and	branch	on	
over2low:	
	 	 ADDI RegD,Reg1,Immed-12

BLTU RegD,Reg1,overflow if	RegD	<U	Reg1	then	branch	

The	following	code	sequence	will	add	two	signed	values	and	branch	on	
over2low.	However,	it	will	only	function	correctly	as	long	as	we	know	that	the	
immediate	value	is	positive.	
	 	 ADDI RegD,Reg1,Immed-12

BLT RegD,Reg1,overflow if	RegD	<S	Reg1	then	branch

In	the	general	case	of	signed	addition,	you	can	use	the	following	code	
sequence,	which	will	require	a	couple	of	additional	registers:	
	 	 ADD RegD,Reg1,Reg2

SLTI Reg3,Reg2,0 Reg3	=	(Reg2	<S	0)	?	1	:	0	
	 	 SLT Reg4,RegD,Reg1 Reg4	=	(RegD	<S	Reg1)	?	1	:	0	
	 	 BNE Reg3,Reg4,overflow if	Reg3	≠	Reg4	then	branch

Add	Immediate	Word	

General	Form:	
ADDIW   RegD,Reg1,Immed-12

Example:	
ADDIW   x4,x9,123       # x4 = x9 + 0x0000007B

Description:	
This	instruction	is	only	present	in	64-bit	and	128-bit	machines.	The	operation	
is	performed	using	32-bit	arithmetic.	

The	immediate	value	(a	sign-extended	12-bit	value,	i.e.,	-2,048	..	+2,047)	is	
added	to	the	contents	of	Reg1.	The	result	is	then	truncated	to	32-bits,	signed-
extended	to	64	or	128	bits	and	placed	in	RegD.	

Encoding:	
	 This	is	an	I-type	instruction.	
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RV32	/	RV64	/	RV128:	The	ADDI	instruction	is	present	in	all	machine	
variations.	The	ADDI	instruction	is	used	to	perform	32-bit	addition	on	a	32-bit	
machine,	64-bit	addition	on	a	64-bit	machine,	and	128-bit	addition	on	a	128-bit	
machine.	

To	perform	32-bit	addition	on	a	64-bit	or	128-bit	machine,	the	ADDIW	
instruction	is	used.	

To	perform	64-bit	addition	on	a	128-bit	machine,	the	ADDID	instruction	is	used.	

When	working	with	32-bit	data	on	a	64-bit	machine,	the	upper	half	of	the	
register	will	contain	nothing	but	the	sign	extension	of	the	lower	half.	This	is	true	
regardless	of	whether	the	data	in	the	lower	32	bits	is	to	be	interpreted	as	a	
signed	integer,	an	unsigned	integer,	or	something	other	than	an	integer.	

To	understand	how	the	ADDI	instruction	differs	from	ADDIW	on	a	64-bit	
machine,	consider	this	example:	

       0x 0000 0000 0000 0001
     + 0x 0000 0000 7FFF FFFF
    --------------------------
       0x 0000 0000 8000 0000    Result of ADDI

       0x 0000 0000 0000 0001
     + 0x 0000 0000 7FFF FFFF
    --------------------------
       0x FFFF FFFF 8000 0000    Result of ADDIW

Add	Immediate	Double	

General	Form:	
ADDID   RegD,Reg1,Immed-12

Example:	
ADDID   x4,x9,123       # x4 = x9 + 0x0000007B

Description:	
This	instruction	is	only	present	in	128-bit	machines.	The	operation	is	
performed	using	64-bit	arithmetic.	
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The	immediate	value	(a	sign-extended	12-bit	value,	i.e.,	-2,048	..	+2,047)	is	
added	to	the	contents	of	Reg1.	The	result	is	then	truncated	to	64-bits,	signed-
extended	to	128	bits	and	placed	in	RegD.	

Encoding:	
	 This	is	an	I-type	instruction.	

Sign	Extension:	Consider	the	problem	of	sign-extending	a	32-bit	value	to	a	64-bit	
value	on	a	RV64	machine.	For	example,	the	64-bit	value:	

       0x 3B4C 204E 92A7 5321

should	be	“coerced”	to	2it	within	the	range	of	a	32-bit	signed	integer,	resulting	in:	

       0x FFFF FFFF 92A7 5321

The	ADDIW	instruction	can	do	this.	Simply	adding	0	to	the	value	will	produce	the	
desired	result.	

Likewise,	the	ADDID	instruction	can	be	used	to	coerce	a	128-bit	value	into	a	64-bit	
value.	

Add	

General	Form:	
ADD    RegD,Reg1,Reg2

Example:	
ADD    x4,x9,x13     # x4 = x9+x13

Description:	
The	contents	of	Reg1	is	added	to	the	contents	of	Reg2	and	the	result	is	placed	
in	RegD.	

Comments:	
There	is	no	distinction	between	signed	and	unsigned.	Over2low	is	ignored.	

Encoding:	
	 This	is	an	R-type	instruction.	

RV32	/	RV64	/	RV128:	The	ADD	instruction	is	present	in	all	machine	variations.	
The	ADD	instruction	is	used	to	perform	32-bit	addition	on	a	32-bit	machine,	64-
bit	addition	on	a	64-bit	machine,	and	128-bit	addition	on	a	128-bit	machine.	
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To	perform	32-bit	addition	on	a	64-bit	or	128-bit	machine,	the	ADDW	
instruction	is	used.	

To	perform	64-bit	addition	on	a	128-bit	machine,	the	ADDD	instruction	is	used.	

Add	Word	

General	Form:	
ADDW    RegD,Reg1,Reg2

Example:	
ADDW    x4,x9,x13     # x4 = x9+x13

Description:	
The	contents	of	Reg1	is	added	to	the	contents	of	Reg2	and	the	result	is	placed	
in	RegD.	

RV32	/	RV64	/	RV128:	
This	instruction	is	only	present	in	64-bit	and	128-bit	machines.	The	operation	
is	performed	using	32-bit	arithmetic.	

Comments:	
There	is	no	distinction	between	signed	and	unsigned.	Over2low	beyond	32-bits	
is	ignored.	The	32-bit	result	is	sign-extended	to	2ill	the	upper	bits	of	the	
destination	register.	

Encoding:	
	 This	is	an	R-type	instruction.	

Add	Double	

General	Form:	
ADDD    RegD,Reg1,Reg2

Example:	
ADDD    x4,x9,x13     # x4 = x9+x13

Description:	
The	contents	of	Reg1	is	added	to	the	contents	of	Reg2	and	the	result	is	placed	
in	RegD.	

RV32	/	RV64	/	RV128:	
This	instruction	is	only	present	in	128-bit	machines.	The	operation	is	
performed	using	64-bit	arithmetic.	

Comments:	
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There	is	no	distinction	between	signed	and	unsigned.	Over2low	beyond	64-bits	
is	ignored.	The	64-bit	result	is	sign-extended	to	2ill	the	upper	bits	of	the	
destination	register.	

Encoding:	
	 This	is	an	R-type	instruction.	

Commentary:	The	RISC-V	authors	decided	to	de2ine	many	instructions	generally,	
without	specifying	how	many	bits	they	operate	on.	Instead,	the	number	of	bits	
operated	on	by	the	instruction	is	determined	by	the	register	size	of	the	machine.	

For	example,	the	ADD	instruction	performs	32-bit	addition	on	a	RV32	machine,	
64-bit	addition	on	an	RV64	machine,	and	128-bit	addition	on	an	RV128	machine.	

To	perform	32-bit	addition	on	a	64-bit	machine,	a	new	instruction	is	included,	
since	the	upper	32	bits	of	the	operands	must	be	ignored	and	the	result	must	have	
the	upper	32	bits	2illed	with	the	proper	sign-extension.	

So	for	the	64-bit	machine	(RV64),	they	added	a	second	instruction	(ADDW)	to	
add	32-bit	quantities.	For	RV128,	they	added	a	third	instruction	(ADDD)	to	add	
64-bit	quantities.	

The	following	table	shows	how	many	bits	each	instruction	operates	on	and	
highlights	a	slight	lack	of	orthogonality:	

	 	 	 																		Size	of	Machine																												
	 	 	 32-bit	 64-bit	 128-bit	
	 Basic	Instruction	Set:	
	 	 ADD	 32	 64	 128	
	 RV64	adds:	
	 	 ADDW	 	 32	 32	
	 RV128	adds:	
	 	 ADDD	 	 	 64	

An	alternate	approach	is	the	following:	(This	is	not	RISC-V.)	

Specify	that	the	basic	ADD	instruction	will	perform	32-bit	addition	regardless	of	
register	size;	for	64-bit	and	128-bit	machines,	this	instruction	will	ignore	the	
upper	bits	of	the	operands	and	sign-extend	the	result.	Then,	for	RV64	and	RV128	
machines,	a	new	instruction	(not	present	on	RV32	machines)	is	included	to	
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perform	64	bit	addition.	Finally,	for	RV128	machines,	a	third	instruction	is	
included	to	perform	128	bit	addition.	

To	illustrate	this	alternate	approach,	we	can	make	up	reasonable	names	for	these	
hypothetical	instructions	and	show	which	machines	have	which	instructions	with	
the	following	table:	
	 	 	 																		Size	of	Machine																												
	 	 	 32-bit	 64-bit	 128-bit	
	 Basic	Instruction	Set:	
	 	 ADDW	 32	 32	 32	
	 RV64	adds:	
	 	 ADDD	 	 64	 64	
	 RV128	adds:	
	 	 ADDQ	 	 	 128	

These	two	approaches	are	equivalent,	having	the	same	instructions,	which	only	
differ	in	their	names.	The	names	chosen	for	instructions	is	an	issue	orthogonal	to	
how	the	instructions	are	encoded.	The	RISC-V	designers	selected	the	2irst	naming	
scheme	to	mirror	the	instruction	opcode	encoding	patterns	they	chose.	

This	issue	applies	to	the	following	instruction	groups:	

	 ADDI	
	 ADD	
	 SUBI	
	 SUB	
	 NEG	
	 SLLI	
	 SLL	
	 SRLI  
	 SRL  
	 SRAI	
	 SRA	
	 LD	
	 ST	
	 MUL  
	 DIV	
	 DIVU	
	 REM	
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	 REMU	

Or	more	speci2ically:	

	 RV32	 RV64	 RV128		
	 ADDI	 ADDIW	 ADDID	
	 ADD	 ADDW	 ADDD	
	 SUBI	 SUBIW	 SUBID	
	 SUB	 SUBW	 SUBD	
	 NEG	 NEGW	 NEGD	
	 SLLI	 SLLIW	 SLLID	
	 SLL	 SLLW	 SLLD	
	 SRLI	 SRLIW	 SRLID	
	 SRL	 SRLW	 SRLD	
	 SRAI	 SRAIW	 SRAID	
	 SRA	 SRAW	 SRAD	
	 LD	 LDW	 LDD	
	 ST	 STW	 STD	
	 MUL	 MULW	 MULD	
	 DIV	 DIVW	 DIVD	
	 DIVU	 DIVUW	 DIVUD	
	 REM	 REMW	 REMD	
	 REMU	 REMUW	 REMUD	

Subtract	

General	Form:	
SUB    RegD,Reg1,Reg2

Example:	
SUB    x4,x9,x13     # x4 = x9-x13

Description:	
The	contents	of	Reg2	is	subtracted	from	the	contents	of	Reg1	and	the	result	is	
placed	in	RegD.	

Comments:	
There	is	no	distinction	between	signed	and	unsigned.	Over2low	is	ignored.	

Encoding:	
	 This	is	an	R-type	instruction.	
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Subtract	Word	

General	Form:	
SUBW    RegD,Reg1,Reg2

Example:	
SUBW    x4,x9,x13     # x4 = x9-x13

Description:	
The	contents	of	Reg2	is	subtracted	from	the	contents	of	Reg1	and	the	result	is	
placed	in	RegD.	

RV32	/	RV64	/	RV128:	
This	instruction	is	only	present	in	64-bit	and	128-bit	machines.	The	operation	
is	performed	using	32-bit	arithmetic.	

Comments:	
There	is	no	distinction	between	signed	and	unsigned.	Over2low	beyond	32-bits	
is	ignored.	The	32-bit	result	is	sign-extended	to	2ill	the	upper	bits	of	the	
destination	register.	

Encoding:	
	 This	is	an	R-type	instruction.	

Subtract	Double	

General	Form:	
SUBD    RegD,Reg1,Reg2

Example:	
SUBD    x4,x9,x13     # x4 = x9-x13

Description:	
The	contents	of	Reg2	is	subtracted	from	the	contents	of	Reg1	and	the	result	is	
placed	in	RegD.	

RV32	/	RV64	/	RV128:	
This	instruction	is	only	present	in	128-bit	machines.	The	operation	is	
performed	using	64-bit	arithmetic.	

Comments:	
There	is	no	distinction	between	signed	and	unsigned.	Over2low	beyond	64-bits	
is	ignored.	The	64-bit	result	is	sign-extended	to	2ill	the	upper	bits	of	the	
destination	register.	

Encoding:	
	 This	is	an	R-type	instruction.	
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Sign	Extend	Word	to	Doubleword	

General	Form:	
SEXT.W   RegD,Reg1

Example:	
SEXT.W   x4,x9       # x4 = Sign-extend(x9)

Description:	
This	instruction	is	only	available	for	64-bit	and	128-bit	machines.	

The	value	in	the	lower	32	bits	of	Reg1	is	signed-extended	to	64	or	128	bits	and	
placed	in	RegD.	

Comments:	
This	instruction	is	useful	when	a	32-bit	signed	value	must	be	“coerced”	to	a	
larger	value	on	64-bit	and	128-bit	machine.	

Encoding:	
This	is	a	special	case	of	a	more	general	instruction.	This	instruction	is	
assembled	identically	to:	

ADDIW   RegD,Reg1,0

Commentary:	The	RISC-V	documentation	uses	two	distinct	suf2ix	notations	to	
denote	the	size	of	instructions.	For	example:	

ADDIW
SEXT.W

Sign	Extend	Doubleword	to	Quadword	

General	Form:	
SEXT.D   RegD,Reg1

Example:	
SEXT.D   x4,x9       # x4 = Sign-extend(x9)

Description:	
This	instruction	is	only	available	for	128-bit	machines.	

The	value	in	the	lower	64	bits	of	Reg1	is	signed-extended	to	128	bits	and	
placed	in	RegD.	

Encoding:	
This	is	a	special	case	of	a	more	general	instruction.	This	instruction	is	
assembled	identically	to:	
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ADDID   RegD,Reg1,0

Negate	

General	Form:	
NEG    RegD,Reg2

Example:	
NEG    x4,x9        # x4 = -x9

Description:	
The	contents	of	Reg2	is	arithmetically	negated	and	the	result	is	placed	in	
RegD.	

Comments:	
The	result	is	computed	by	subtraction	from	zero.	Over2low	can	only	occur	
when	the	most	negative	value	is	negated.	Over2low	is	ignored.	

Encoding:	
This	is	a	special	case	of	a	more	general	instruction.	This	instruction	is	
assembled	identically	to:	

SUB   RegD,x0,Reg2

Negate	Word	

General	Form:	
NEGW    RegD,Reg2

Example:	
NEGW    x4,x9        # x4 = -x9

Description:	
The	contents	of	Reg2	is	arithmetically	negated	and	the	result	is	placed	in	
RegD.		

RV64	/	RV	128:	
This	instruction	is	only	present	in	64-bit	and	128-bit	machines.	The	operation	
is	performed	using	32-bit	arithmetic,	whereas	the	NEG	instruction	operates	on	
64-bit	or	128-bit	quantities	in	the	larger	machines.	

Encoding:	
This	is	a	special	case	of	a	more	general	instruction.	This	instruction	is	
assembled	identically	to:	

SUBW   RegD,x0,Reg2
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Negate	Doubleword	

General	Form:	
NEGD    RegD,Reg2

Example:	
NEGD    x4,x9        # x4 = -x9

Description:	
The	contents	of	Reg2	is	arithmetically	negated	and	the	result	is	placed	in	
RegD.		

RV64	/	RV	128:	
This	instruction	is	only	present	in	128-bit	machines.	The	operation	is	
performed	using	64-bit	arithmetic.	

Encoding:	
This	is	a	special	case	of	a	more	general	instruction.	This	instruction	is	
assembled	identically	to:	

SUBD   RegD,x0,Reg2

Logical	Instructions	(AND,	OR,	XOR,	…)	

And	Immediate	

General	Form:	
ANDI   RegD,Reg1,Immed-12

Example:	
ANDI   x4,x9,123       # x4 = x9 & 0x0000007B

Description:	
The	immediate	value	(a	sign-extended	12-bit	value,	i.e.,	-2,048	..	+2,047)	is	
logically	ANDed	with	the	contents	of	Reg1	and	the	result	is	placed	in	RegD.	

Encoding:	
	 This	is	an	I-type	instruction.	

And	

General	Form:	
AND    RegD,Reg1,Reg2
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Example:	
AND    x4,x9,x13     # x4 = x9 & x13

Description:	
The	contents	of	Reg1	is	logically	ANDed	with	the	contents	of	Reg2	and	the	
result	is	placed	in	RegD.	

Encoding:	
	 This	is	an	R-type	instruction.	

Or	Immediate	

General	Form:	
ORI   RegD,Reg1,Immed-12

Example:	
ORI   x4,x9,123       # x4 = x9 | 0x0000007B

Description:	
The	immediate	value	(a	sign-extended	12-bit	value,	i.e.,	-2,048	..	+2,047)	is	
logically	ORed	with	the	contents	of	Reg1	and	the	result	is	placed	in	RegD.	

Encoding:	
	 This	is	an	I-type	instruction.	

Or	

General	Form:	
OR    RegD,Reg1,Reg2

Example:	
OR    x4,x9,x13     # x4 = x9 | x13

Description:	
The	contents	of	Reg1	is	logically	ORed	with	the	contents	of	Reg2	and	the	result	
is	placed	in	RegD.	

Encoding:	
	 This	is	an	R-type	instruction.	

Xor	Immediate	

General	Form:	
XORI   RegD,Reg1,Immed-12  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Example:	
XORI   x4,x9,123       # x4 = x9 ^ 0x0000007B

Description:	
The	immediate	value	(a	sign-extended	12-bit	value,	i.e.,	-2,048	..	+2,047)	is	
logical	XORed	with	the	contents	of	Reg1	and	the	result	is	placed	in	RegD.	

Encoding:	
	 This	is	an	I-type	instruction.	

Xor	

General	Form:	
XOR    RegD,Reg1,Reg2

Example:	
XOR    x4,x9,x13     # x4 = x9 ^ x13

Description:	
The	contents	of	Reg1	is	logically	XORed	with	the	contents	of	Reg2	and	the	
result	is	placed	in	RegD.	

Encoding:	
	 This	is	an	R-type	instruction.	

Not	

General	Form:	
NOT     RegD,Reg1

Example:	
NOT     x4,x9     # x4 = ~x9

Description:	
The	contents	of	Reg1	is	fetched	and	each	of	the	bits	is	2lipped.	The	resulting	
value	is	copied	into	RegD.	

Encoding:	
This	is	a	special	case	of	a	more	general	instruction.	This	instruction	is	
assembled	identically	to:	

XORI   RegD,Reg1,-1    # Note that -1 = 0xFFFFFFFF
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Shifting	Instructions	(SLL,	SRL,	SRA,	…)	

Shift	Left	Logical	Immediate	

General	Form:	
SLLI   RegD,Reg1,Immed-12

Example:	
SLLI   x4,x9,5    # x4 = x9<<5

Description:	
The	immediate	value	determines	the	number	of	bits	to	shift.	The	contents	of	
Reg1	is	shifted	left	that	many	bits	and	the	result	is	placed	in	RegD.	The	shift	
value	is	not	adjusted,	i.e.,	0	means	no	shifting	is	done.	(Apparently	all	values,	
including	0,	are	allowed.	???)	

RV64	/	RV128:	
For	32-bit	machines,	the	shift	amount	must	be	within	0..31.	For	64-bit	
machines,	the	shift	amount	must	be	within	0..63.	For	128-bit	machines,	the	
shift	amount	must	be	within	0..127.	

Encoding:	
	 This	is	an	I-type	instruction.	

Shift	Left	Logical	

General	Form:	
SLL   RegD,Reg1,Reg2

Example:	
SLL   x4,x9,x13    # x4 = x9<<x13

Description:	
Register	Reg2	contains	the	shift	amount.	The	contents	of	Reg1	is	shifted	left	
and	the	result	is	placed	in	RegD.	

RV64	/	RV128:	
For	32-bit	machines,	the	shift	amount	must	be	within	0..31.	For	64-bit	
machines,	the	shift	amount	must	be	within	0..63.	For	128-bit	machines,	the	
shift	amount	must	be	within	0..127.	

Encoding:	
	 This	is	an	R-type	instruction.	
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Shift	Right	Logical	Immediate	

General	Form:	
SRLI   RegD,Reg1,Immed-12

Example:	
SRLI   x4,x9,5    # x4 = x9>>5

Description:	
The	immediate	value	determines	the	number	of	bits	to	shift.	The	contents	of	
Reg1	is	shifted	right	that	many	bits	and	the	result	is	placed	in	RegD.	The	shift	
is	“logical”,	i.e.,	zero	bits	are	repeatedly	shifted	in	on	the	most-signi2icant	end.	

RV64	/	RV128:	
For	32-bit	machines,	the	shift	amount	must	be	within	0..31.	For	64-bit	
machines,	the	shift	amount	must	be	within	0..63.	For	128-bit	machines,	the	
shift	amount	must	be	within	0..127.	

Encoding:	
	 This	is	an	I-type	instruction.	

Shift	Right	Logical	

General	Form:	
SRL   RegD,Reg1,Reg2

Example:	
SRL   x4,x9,x13    # x4 = x9>>x13

Description:	
Register	Reg2	contains	the	shift	amount.	The	contents	of	Reg1	is	shifted	right	
and	the	result	is	placed	in	RegD.	The	shift	is	“logical”,	i.e.,	zero	bits	are	
repeatedly	shifted	in	on	the	most-signi2icant	end.	

RV64	/	RV128:	
For	32-bit	machines,	the	shift	amount	must	be	within	0..31.	For	64-bit	
machines,	the	shift	amount	must	be	within	0..63.	For	128-bit	machines,	the	
shift	amount	must	be	within	0..127.	

Encoding:	
	 This	is	an	R-type	instruction.	
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Shift	Right	Arithmetic	Immediate	

General	Form:	
SRAI   RegD,Reg1,Immed-12

Example:	
SRAI   x4,x9,5    # x4 = x9>>>5

Description:	
The	immediate	value	determines	the	number	of	bits	to	shift.	The	contents	of	
Reg1	is	shifted	right	that	many	bits	and	the	result	is	placed	in	RegD.	The	shift	
is	“arithmetic”,	i.e.,	the	sign	bit	is	repeatedly	shifted	in	on	the	most-signi2icant	
end.	

RV64	/	RV128:	
For	32-bit	machines,	the	shift	amount	must	be	within	0..31.	For	64-bit	
machines,	the	shift	amount	must	be	within	0..63.	For	128-bit	machines,	the	
shift	amount	must	be	within	0..127.	

Encoding:	
	 This	is	an	I-type	instruction.	

Shift	Right	Arithmetic	

General	Form:	
SRA   RegD,Reg1,Reg2

Example:	
SRA   x4,x9,x13    # x4 = x9>>>x13

Description:	
Register	Reg2	contains	the	shift	amount.	The	contents	of	Reg1	is	shifted	right	
and	the	result	is	placed	in	RegD.	The	shift	is	“arithmetic”,	i.e.,	the	sign	bit	is	
repeatedly	shifted	in	on	the	most-signi2icant	end.	

RV64	/	RV128:	
For	32-bit	machines,	the	shift	amount	must	be	within	0..31.	For	64-bit	
machines,	the	shift	amount	must	be	within	0..63.	For	128-bit	machines,	the	
shift	amount	must	be	within	0..127.	

Encoding:	
	 This	is	an	R-type	instruction.	
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RV32	/	RV64	/	RV128:	The	shift	operations	de2ined	above	work	on	the	entire	
register,	regardless	of	its	size.	For	a	64-bit	machine,	they	shift	all	64	bits;	for	a	128-
bit	machine,	they	shift	all	128	bits.	

Note	that	when	using	64-bit	registers	to	contain	32-bit	values,	we	cannot	simply	
use	64-bit	shift	operations.	We	need	some	new	instructions.	

To	illustrate	the	problem,	consider	the	result	of	right-shifting	the	following	32-bit	
value	by	5	on	a	32-bit	machine:	
	 before:	 0x 8000 0000 	

shift	right	logical:	 0x 0400 0000	
shift	right	arithmetic:	 0x FC00 0000

What	happens	if	we	try	to	use	64-bit	shift	instructions?	

If	the	value	is	represented	as	a	64-bit	sign-extended	value,	we	get	the	wrong	value	
for	the	logical	shift:	
	 before:	 0x FFFF FFFF 8000 0000

shift	right	logical:	 0x 07FF FFFF FC00 0000
shift	right	arithmetic:	 0x FFFF FFFF FC00 0000

On	the	other	hand,	if	the	value	is	represented	as	a	64-bit	zero-extended	value,	we	
get	the	wrong	value	for	the	arithmetic	shift:	
	 before:	 0x 0000 0000 8000 0000

shift	right	logical:	 0x 0000 0000 0400 0000
shift	right	arithmetic:	 0x 0000 0000 0400 0000		

As	a	consequence,	several	new	shift	instructions	are	needed	for	64-bit	machines	
to	perform	32-bit	shifting	correctly.	For	the	RV64	architectural	extension,	the	
following	instructions	are	added:	
	 SLLIW   RegD,Reg1,Immed-12	

SLLW    RegD,Reg1,Reg2
SRLIW   RegD,Reg1,Immed-12
SRLW    RegD,Reg1,Reg2
SRAIW   RegD,Reg1,Immed-12
SRAW    RegD,Reg1,Reg2

where	the	shift	amounts	are	restricted	to	5	bits	(i.e.,	0..31).	
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These	new	instructions	perform	a	shift	of	between	0	and	31	bits	and	they	operate	
only	on	the	lower	order	32	bits,	leaving	the	upper	32	bits	unmodi2ied.	

For	example,	when	shifting	right	by	5	we	get	the	correct	value	in	the	low-order	32-
bits	regardless	of	what	is	in	the	upper-bits.	
	 before:	 0x 89AB CDEF 8000 0000

SRLW	(logical):	 0x 89AB CDEF 0400 0000
SRAW	(arithmetic):	 0x 89AB CDEF FC00 0000

Similarly,	when	we	go	to	a	128-bit	machine,	another	group	of	shift	instructions	is	
needed	to	perform	64-bit	shifting	correctly.	For	the	RV128	architecture,	the	
following	instructions	are	added:	
	 SLLID   RegD,Reg1,Immed-12	

SLLD    RegD,Reg1,Reg2
SRLID   RegD,Reg1,Immed-12
SRLD    RegD,Reg1,Reg2
SRAID   RegD,Reg1,Immed-12
SRAD    RegD,Reg1,Reg2

where	the	shift	amounts	are	restricted	to	6	bits	(i.e.,	0..63).	

These	new	RV128	instructions	perform	a	shift	of	between	0	and	63	bits	and	they	
operate	only	on	the	lower	order	64	bits,	leaving	the	upper	64	bits	unmodi2ied.	

Shift	Instructions	for	RV64	and	RV128	

General	Form:	
	 SLLIW   RegD,Reg1,Immed-12 # RV64 and RV128 only	

SLLW    RegD,Reg1,Reg2	 # RV64 and RV128 only
SRLIW   RegD,Reg1,Immed-12	 # RV64 and RV128 only
SRLW    RegD,Reg1,Reg2	 # RV64 and RV128 only
SRAIW   RegD,Reg1,Immed-12	 # RV64 and RV128 only
SRAW    RegD,Reg1,Reg2	 # RV64 and RV128 only

	 SLLID   RegD,Reg1,Immed-12	 # RV128 only	
SLLD    RegD,Reg1,Reg2	 # RV128 only
SRLID   RegD,Reg1,Immed-12	 # RV128 only
SRLD    RegD,Reg1,Reg2	 # RV128 only
SRAID   RegD,Reg1,Immed-12	 # RV128 only
SRAD    RegD,Reg1,Reg2	 # RV128 only
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Comment:	
	 See	above.	

Miscellaneous	Instructions	

Nop	

General	Form:	
NOP

Example:	
NOP        # Do nothing

Description:	
This	instruction	has	no	effect.	

Comment:	
There	are	several	ways	to	encode	the	“nop”	operation.	Using	ADDI	is	the	
canonical,	recommended	way.	Also	note	that	instructions	with	the	bit	
encoding	of	0x00000000	and	0xFFFFFFFF	are	speci2ically	not	used	for	“nop”.	
These	two	values	are	commonly	returned	from	memory	units	when	the	actual	
memory	is	missing	(i.e.,	unpopulated).	The	two	values	0x00000000	and	
0xFFFFFFFF	are	speci2ied	as	“illegal	instructions”	and	will	cause	an	“illegal	
instruction	exception”	if	fetched	and	executed.	

Encoding:	
This	is	a	special	case	of	a	more	general	instruction.	This	instruction	is	
assembled	identically	to:	

ADDI   x0,x0,0 

Move	(Register	to	Register)	

General	Form:	
MV     RegD,Reg1

Example:	
MV     x4,x9     # x4 = x9

Description:	
The	contents	of	Reg1	is	copied	into	RegD.	

Encoding:	
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This	is	a	special	case	of	a	more	general	instruction.	This	instruction	is	
assembled	identically	to:	

ADDI   RegD,Reg1,0

Load	Upper	Immediate	

General	Form:	
LUI    RegD,Immed-20

Example:	
LUI    x4,0x12345   # x4 = 0x12345<<12  (0x12345000)

Description:	
The	instruction	contains	a	20-bit	immediate	value.	This	value	is	placed	in	the	
leftmost	(i.e.,	upper,	most	signi2icant)	20	bits	of	the	register	RegD	and	the	
rightmost	(i.e.,	lower,	least	signi2icant)	12-bits	are	set	to	zero.	

RV64	/	RV128:	
The	description	above	applies	to	32-bit	machines.	Regardless	of	register	size,	
the	immediate	value	is	moved	into	bits	31:12.	In	the	case	of	64-bit	registers	or	
128-bit	registers,	the	value	is	sign-extended	to	2ill	the	upper	32	or	96	bits	(i.e.,	
bits	63:32	or	bits	127:32).	

Comment:	
This	instruction	is	often	used	directly	before	an	instruction	containing	a	12-bit	
immediate	value,	which	will	be	added	in	to	RegD.	Together,	they	are	used	to	
effectively	make	a	32-bit	value.	In	the	case	of	64-bit	or	128-bit	machines,	this	
will	be	a	32-bit	signed	value,	in	the	range	-2,147,483,648	..	2,147,483,647	(i.e.,	
-231	..	231-1).	

Encoding:	
	 This	is	a	U-type	instruction.	

Load	Immediate	

General	Form:	
LI     RegD,Immed-32

Example:	
LI     x4,123        # x4 = 0x0000007B

Description:	
The	immediate	value	(which	can	be	any	32-bit	value)	is	copied	into	RegD.	

Encoding:	
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This	is	a	special	case	of	more	general	instructions	and	is	assembled	differently	
depending	on	the	actual	value	present.	

If	the	immediate	value	is	in	the	range	of	-2,048	..	+2,047,	then	it	can	be	
assembled	identically	to:	

ADDI   RegD,x0,Immed

If	the	immediate	value	is	not	within	the	range	of	-2,048	..	+2,047	but	is	within	
the	range	of	a	32-bit	number	(i.e.,	-2,147,483,648	..	+2,147,483,647)	then	it	
can	be	assembled	using	this	two-instruction	sequence:	

LUI   RegD,Upper-20
ADDI  RegD,RegD,Lower-12

where	“Upper-20”	represents	the	uppermost	20	bits	of	the	value	
and“Lower-12”	represents	the	least	signi2icant	12-bits	of	the	value.	

Commentary:	Notice	that	the	assembler	must	be	careful	when	computing	
the	“Upper-20”	and	“Lower-12”	pieces	from	an	arbitrary	32-bit	value.	The	
assembler	cannot	simply	break	the	value	apart.	

Why?	Because	the	immediate	12	bit	value	will	be	sign-extended	in	the	
second	(ADDI)	instruction.	If	the	most	signi2icant	bit	of	“Lower-12”	is	1,	then	
the	ADDI	instruction	will	be	working	with	a	negative	value,	causing	the	
incorrect	value	to	be	computed.	

Instead,	the	assembler	needs	to	compute	this:	
	 Given:	Value	(a	32-bit	quantity)	
	 Compute:	
	 	 Lower12	=	Value[11:0]	
	 	 x	=	Value	–	SignExtend	(Lower12)	
	 	 Upper20	=	(x	>>	12)	[19:0]	
The	resulting	LUI/ADDI	sequence	will	load	the	correct	signed	value	on	32,	
64,	and	128	bit	machines,	since	the	quantities	are	signed-extended	in	both	
instructions.	

Add	Upper	Immediate	to	PC	

General	Form:	
AUIPC    RegD,Immed-20  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Example:	
AUIPC    x4,0x12345   # x4 = PC + (0x12345<<12)

Description:	
The	instruction	contains	a	20-bit	immediate	value.	This	value	is	moved	into	
the	leftmost	(i.e.,	upper,	most	signi2icant)	20	bits	of	and	the	rightmost	(i.e.,	
lower,	least	signi2icant)	12-bits	are	set	to	zero.	The	number	so	created	is	then	
added	to	the	contents	of	the	Program	Counter.	The	result	is	placed	in	RegD.	
The	value	of	the	PC	used	here	is	the	address	of	the	instruction	that	follows	the	
AUIPC.	

RV64	/	RV128:	
The	description	above	applies	to	32-bit	machines.	In	the	case	of	64-bit		or	128-
bits	registers,	the	immediate	value	is	sign-extended	before	being	added	to	the	
PC.	The	size	of	the	PC	equal	to	the	size	of	the	registers.	

Comment:	
This	instruction	is	often	used	directly	before	an	instruction	containing	a	12-bit	
immediate	value,	which	will	be	added	in	to	RegD.	Together,	they	are	used	to	
effectively	make	a	32-bit	PC-relative	offset.	This	is	adequate	to	address	any	
location	in	a	32-bit	(4	GiByte)	address	space.	

In	the	case	of	64-bit	or	128-bit	machines,	this	will	be	a	32-bit	signed	offset,	in	
the	range	-2,147,483,648	..	2,147,483,647	(i.e.,	-231	..	231-1).	If	the	address	
space	is	larger	than	4	GiBytes,	this	technique	will	fail;	a	different	instruction	
sequence	is	required.		

The	current	PC	can	be	obtained	by	using	this	instruction	with	an	immediate	
value	of	zero.	Use	of	JAL	to	determine	the	current	PC	is	not	recommended.	

Encoding:	
	 This	is	a	U-type	instruction.	

Load	Address	

General	Form:	
LA     RegD,Address

Example:	
LA     x4,MyVar     # x4 = &MyVar

Description:	
The	address	of	some	memory	location	is	copied	into	RegD.	No	access	to	
memory	occurs.	

Encoding:	
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There	is	no	actual	“load	address”	instruction;	instead	the	assembler	
substitutes	a	sequence	of	two	instructions	to	achieve	the	same	effect.	

The	“address”	can	refer	to	any	location	within	the	32-bit	memory	space.	The	
address	is	converted	to	a	PC-relative	address,	with	an	offset	of	32	bits.	This	
offset	is	then	broken	into	two	pieces:	a	20-bit	piece	and	a	12-bit	piece.	The	
instruction	is	assembled	using	these	two	instructions:	

AUIPC   RegD,Upper-20
ADDI    RegD,RegD,Lower-12

Set	If	Less	Than	(Signed)	

General	Form:	
SLT    RegD,Reg1,Reg2

Example:	
SLT    x4,x9,x13    # x4 = (x9<x13) ? 1 : 0

Description:	
The	contents	of	Reg1	is	compared	to	the	contents	of	Reg2	using	signed	
comparison.	If	the	value	in	Reg1	is	less	than	the	value	in	Reg2,	the	value	1	is	
stored	in	RegD.	Otherwise,	the	value	0	is	stored	in	RegD.	

Encoding:	
	 This	is	an	R-type	instruction.	

Set	Less	Than	Immediate	(Signed)	

General	Form:	
SLTI   RegD,Reg1,Immed-12

Example:	
SLTI   x4,x9,123       # x4 = (x9<0x0000007B) ? 1 : 0

Description:	
The	immediate	value	(a	sign-extended	12-bit	value,	i.e.,	-2,048	..	+2,047)	is	
compared	to	the	contents	of	Reg1	using	signed	comparison.	If	the	value	in	
Reg1	is	less	than	the	immediate	value,	the	value	1	is	stored	in	RegD.	
Otherwise,	the	value	0	is	stored	in	RegD.	

Encoding:	
	 This	is	an	I-type	instruction.	
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Set	If	Greater	Than	(Signed)	

General	Form:	
SGT    RegD,Reg1,Reg2

Example:	
SGT    x4,x9,x13    # x4 = (x9>x13) ? 1 : 0

Description:	
The	contents	of	Reg1	is	compared	to	the	contents	of	Reg2	using	signed	
comparison.	If	the	value	in	Reg1	is	greater	than	the	value	in	Reg2,	the	value	1	
is	stored	in	RegD.	Otherwise,	the	value	0	is	stored	in	RegD.	

Encoding:	
This	is	a	special	case	of	a	different	instruction.	This	instruction	is	assembled	
identically	to:	

SLT   RegD,Reg2,Reg1    # Note: regs are switched

Note:	There	is	no	“Set	If	Greater	Than	Immediate	(signed)”	instruction.	

Set	If	Less	Than	(Unsigned)	

General	Form:	
SLTU    RegD,Reg1,Reg2

Example:	
SLTU    x4,x9,x13    # x4 = (x9<x13) ? 1 : 0

Description:	
The	contents	of	Reg1	is	compared	to	the	contents	of	Reg2	using	unsigned	
comparison.	If	the	value	in	Reg1	is	less	than	the	value	in	Reg2,	the	value	1	is	
stored	in	RegD.	Otherwise,	the	value	0	is	stored	in	RegD.	

Encoding:	
	 This	is	an	R-type	instruction.	

Set	Less	Than	Immediate	(Unsigned)	

General	Form:	
SLTIU   RegD,Reg1,Immed-12

Example:	
SLTIU   x4,x9,123       # x4 = (x9<0x0000007B) ? 1 : 0 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Description:	
The	immediate	value	(a	sign-extended	12-bit	value,	i.e.,	-2,048	..	+2,047)	is	
compared	to	the	contents	of	Reg1	using	unsigned	comparison.	If	the	value	in	
Reg1	is	less	than	the	immediate	value,	the	value	1	is	stored	in	RegD.	
Otherwise,	the	value	0	is	stored	in	RegD.	

Encoding:	
	 This	is	an	I-type	instruction.	

Set	If	Greater	Than	(Unsigned)	

General	Form:	
SGTU    RegD,Reg1,Reg2

Example:	
SGTU    x4,x9,x13    # x4 = (x9>x13) ? 1 : 0

Description:	
The	contents	of	Reg1	is	compared	to	the	contents	of	Reg2	using	unsigned	
comparison.	If	the	value	in	Reg1	is	greater	than	the	value	in	Reg2,	the	value	1	
is	stored	in	RegD.	Otherwise,	the	value	0	is	stored	in	RegD.	

Encoding:	
This	is	a	special	case	of	a	different	instruction.	This	instruction	is	assembled	
identically	to:	

SLTU  RegD,Reg2,Reg1    # Note: regs are switched

Note:	There	is	no	“Set	If	Greater	Than	Immediate	Unsigned”	instruction.	

Set	If	Equal	To	Zero	

General	Form:	
SEQZ   RegD,Reg1

Example:	
SEQZ   x4,x9    # x4 = (x9==0) ? 1 : 0

Description:	
If	the	value	in	Reg1	is	zero,	the	value	1	is	stored	in	RegD.	Otherwise,	the	value	
0	is	stored	in	RegD.	

Comment:	
This	instruction	is	implemented	with	an	unsigned	comparison	against	1.	Using	
unsigned	numbers,	the	only	value	less	than	1	is	0.	Therefore	if	the	less-than	
condition	holds,	the	value	in	Reg1	must	be	0.	
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Encoding:	
This	is	a	special	case	of	a	more	general	instruction.	This	instruction	is	
assembled	identically	to:	

SLTIU   RegD,Reg1,1

Set	If	Not	Equal	To	Zero	

General	Form:	
SNEZ   RegD,Reg2

Example:	
SNEZ   x4,x9    # x4 = (x9≠0) ? 1 : 0

Description:	
If	the	value	in	Reg2	is	not	zero,	the	value	1	is	stored	in	RegD.	Otherwise,	the	
value	0	is	stored	in	RegD.	

Comment:	
This	instruction	is	implemented	with	an	unsigned	comparison	against	0.	Using	
unsigned	numbers,	the	only	value	not	less	than	0	is	0.	Therefore	if	the	less-
than	condition	holds,	the	value	in	Reg2	must	be	not	be	0.	

Encoding:	
This	is	a	special	case	of	a	more	general	instruction.	This	instruction	is	
assembled	identically	to:	

SLTU   RegD,x0,Reg2

Set	If	Less	Than	Zero	(signed)	

General	Form:	
SLTZ   RegD,Reg1

Example:	
SLTZ   x4,x9    # x4 = (x9<0) ? 1 : 0

Description:	
If	the	value	in	Reg1	is	less	than	zero	(using	signed	arithmetic),	the	value	1	is	
stored	in	RegD.	Otherwise,	the	value	0	is	stored	in	RegD.	

Encoding:	
This	is	a	special	case	of	a	more	general	instruction.	This	instruction	is	
assembled	identically	to:	

SLT   RegD,Reg1,x0
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Set	If	Greater	Than	Zero	(signed)	

General	Form:	
SGTZ   RegD,Reg2

Example:	
SGTZ   x4,x9    # x4 = (x9>0) ? 1 : 0

Description:	
If	the	value	in	Reg2	is	greater	than	zero	(using	signed	arithmetic),	the	value	1	
is	stored	in	RegD.	Otherwise,	the	value	0	is	stored	in	RegD.	

Comment:	
“Reg2	>	0”	is	equivalent	to	“0	<	Reg2”.	

Encoding:	
This	is	a	special	case	of	a	more	general	instruction.	This	instruction	is	
assembled	identically	to:	

SLT   RegD,x0,Reg2

Branch	and	Jump	Instructions	

Branch	if	Equal	

General	Form:	
BEQ    Reg1,Reg2,Immed-12

Example:	
BEQ    x4,x9,MyLabel    # If x4==x9 goto MyLabel

Description:	
The	contents	of	Reg1	is	compared	to	the	contents	of	Reg2.	If	equal,	control	
jumps.	The	target	address	is	given	as	a	PC-relative	offset.	More	precisely,	the	
offset	is	sign-extended,	multiplied	by	2,	and	added	to	the	value	of	the	PC.	The	
value	of	the	PC	used	is	the	address	of	the	instruction	following	the	branch,	not	
the	branch	itself	(???).	The	offset	is	multiplied	by	2,	since	all	instructions	must	
be	halfword	aligned.	This	gives	an	effective	range	of	-4,096	..	4,094	(in	
multiples	of	2),	relative	to	the	PC.	

Comment:	
Most	conditional	branches	occur	within	smallish	subroutines/functions,	so	
the	limited	range	should	be	adequate.	
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If	the	limited	size	of	the	offset	is	inadequate,	code	such	as	the	following:	
   BEQ   x4,x9,MyLabel

must	be	altered	to:	
   BNE   x4,x9,Skip
   J     MyLabel      # a “long jump”

    Skip:
This	applies	to	all	conditional	branch	instructions.	

Encoding:	
	 This	is	a	B-type	instruction.	

Commentary:	Instruction	sizes,	locations,	and	relative	offsets	are	determined	by	
the	assembler	and	linker,	not	by	the	compiler.	However,	the	compiler	(which	
selects	instructions	and	produces	the	assembly	code	sequence)	does	not	have	
enough	knowledge	to	determine	whether	an	offset	will	be	within	range.	
Therefore,	it	cannot	know	whether	or	not	a	“long	jump”	is	necessary.	

What	is	the	solution?	

(1)	The	compiler	always	errs	on	the	safe	side	and	generates	many	unnecessary	
“long	jumps.”	Not	acceptable.	

(2)	The	compiler	ignores	the	problem,	always	uses	short	jumps,	and	occasionally	
generates	code	that	will	not	assemble	without	further	attention.	Not	acceptable.	

(3)	The	compiler	is	modi2ied	to	count	instructions	and	determine	when	“long	
jumps”	should	be	inserted.	This	puts	a	burden	on	the	compiler,	but	the	compiler	
may	already	be	keeping	track	of	the	lengths	of	the	code	sequences	it	generates,	in	
order	to	compare	alternatives.	In	order	for	this	to	work,	the	assembler	must	be	
forbidden	from	doing	things	like	compiling	the	LI	instruction	conditionally,	as	
described	earlier.	

(4)	The	assembler	detects	offset	over2lows	and	quietly	alters	the	code	sequence	by	
reversing	the	sense	of	the	test	and	inserting	a	“long	jump”	instruction.	This	may	be	
the	easiest,	but	violates	the	traditional	one-to-one	mapping	between	assembler	
and	machine	code.	
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Branch	if	Not	Equal	

General	Form:	
BNE    Reg1,Reg2,Immed-12

Example:	
BNE    x4,x9,MyLabel    # If x4≠x9 goto MyLabel

Description:	
The	contents	of	Reg1	is	compared	to	the	contents	of	Reg2.	If	not	equal,	control	
jumps	to	a	PC-relative	target	address.	

Comment:	
The	target	location	given	by	the	offset	must	be	within	the	range	of	-4,096	..	
4,094	(in	multiples	of	2),	relative	to	the	PC.	See	the	“BEQ”	instruction.	

Encoding:	
	 This	is	a	B-type	instruction.	

Branch	if	Less	Than	(Signed)	

General	Form:	
BLT    Reg1,Reg2,Immed-12

Example:	
BLT    x4,x9,MyLabel    # If x4<x9 goto MyLabel

Description:	
The	contents	of	Reg1	is	compared	to	the	contents	of	Reg2.	If	Reg1	is	less	than	
Reg2	(using	signed	comparison),	control	jumps	to	a	PC-relative	target	address.	

Comment:	
The	target	location	given	by	the	offset	must	be	within	the	range	of	-4,096	..	
4,094	(in	multiples	of	2),	relative	to	the	PC.	See	the	“BEQ”	instruction.	

Encoding:	
	 This	is	a	B-type	instruction.	

Branch	if	Less	Than	Or	Equal	(Signed)	

General	Form:	
BLE    Reg1,Reg2,Immed-12

Example:	
BLE    x4,x9,MyLabel    # If x4<=x9 goto MyLabel 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Description:	
The	contents	of	Reg1	is	compared	to	the	contents	of	Reg2.	If	Reg1	is	less	than	
or	equal	to	Reg2	(using	signed	comparison),	control	jumps	to	a	PC-relative	
target	address.	

Comment:	
The	target	location	given	by	the	offset	must	be	within	the	range	of	-4,096	..	
4,094	(in	multiples	of	2),	relative	to	the	PC.	See	the	“BEQ”	instruction.	

Encoding:	
This	is	a	special	case	of	another	instruction.	This	instruction	is	assembled	
identically	to:	

BGE   Reg2,Reg1,Immed-12  # Note: regs are swapped

Branch	if	Greater	Than	(Signed)	

General	Form:	
BGT    Reg1,Reg2,Immed-12

Example:	
BGT    x4,x9,MyLabel    # If x4>x9 goto MyLabel

Description:	
The	contents	of	Reg1	is	compared	to	the	contents	of	Reg2.	If	Reg1	is	greater	
than	Reg2	(using	signed	comparison),	control	jumps	to	a	PC-relative	target	
address.	

Comment:	
The	target	location	given	by	the	offset	must	be	within	the	range	of	-4,096	..	
4,094	(in	multiples	of	2),	relative	to	the	PC.	See	the	“BEQ”	instruction.	

Encoding:	
This	is	a	special	case	of	another	instruction.	This	instruction	is	assembled	
identically	to:	

BLT   Reg2,Reg1,Immed-12  # Note: regs are swapped

Branch	if	Greater	Than	Or	Equal	(Signed)	

General	Form:	
BGE    Reg1,Reg2,Immed-12

Example:	
BGE    x4,x9,MyLabel    # If x4>=x9 goto MyLabel 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Description:	
The	contents	of	Reg1	is	compared	to	the	contents	of	Reg2.	If	Reg1	is	greater	
than	or	equal	to	Reg2	(using	signed	comparison),	control	jumps	to	a	PC-
relative	target	address.	

Comment:	
The	target	location	given	by	the	offset	must	be	within	the	range	of	-4,096	..	
4,094	(in	multiples	of	2),	relative	to	the	PC.	See	the	“BEQ”	instruction.	

Encoding:	
	 This	is	a	B-type	instruction.	

Branch	if	Less	Than	(Unsigned)	

General	Form:	
BLTU    Reg1,Reg2,Immed-12

Example:	
BLTU    x4,x9,MyLabel    # If x4<x9 goto MyLabel

Description:	
The	contents	of	Reg1	is	compared	to	the	contents	of	Reg2.	If	Reg1	is	less	than	
Reg2	(using	unsigned	comparison),	control	jumps	to	a	PC-relative	target	
address.	

Comment:	
The	target	location	given	by	the	offset	must	be	within	the	range	of	-4,096	..	
4,094	(in	multiples	of	2),	relative	to	the	PC.	See	the	“BEQ”	instruction.	

Encoding:	
	 This	is	a	B-type	instruction.	

Branch	if	Less	Than	Or	Equal	(Unsigned)	

General	Form:	
BLEU    Reg1,Reg2,Immed-12

Example:	
BLEU    x4,x9,MyLabel    # If x4<=x9 goto MyLabel

Description:	
The	contents	of	Reg1	is	compared	to	the	contents	of	Reg2.	If	Reg1	is	less	than	
or	equal	to	Reg2	(using	unsigned	comparison),	control	jumps	to	a	PC-relative	
target	address.  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Comment:	
The	target	location	given	by	the	offset	must	be	within	the	range	of	-4,096	..	
4,094	(in	multiples	of	2),	relative	to	the	PC.	See	the	“BEQ”	instruction.	

Encoding:	
This	is	a	special	case	of	another	instruction.	This	instruction	is	assembled	
identically	to:	

BGEU  Reg2,Reg1,Immed-12   # Note: regs are swapped

Branch	if	Greater	Than	(Unsigned)	

General	Form:	
BGTU    Reg1,Reg2,Immed-12

Example:	
BGTU    x4,x9,MyLabel    # If x4>x9 goto MyLabel

Description:	
The	contents	of	Reg1	is	compared	to	the	contents	of	Reg2.	If	Reg1	is	greater	
than	Reg2	(using	unsigned	comparison),	control	jumps	to	a	PC-relative	target	
address.	

Comment:	
The	target	location	given	by	the	offset	must	be	within	the	range	of	-4,096	..	
4,094	(in	multiples	of	2),	relative	to	the	PC.	See	the	“BEQ”	instruction.	

Encoding:	
This	is	a	special	case	of	another	instruction.	This	instruction	is	assembled	
identically	to:	

BLTU  Reg2,Reg1,Immed-12  # Note: regs are swapped

Branch	if	Greater	Than	Or	Equal	(Unsigned)	

General	Form:	
BGEU    Reg1,Reg2,Immed-12

Example:	
BGEU    x4,x9,MyLabel    # If x4>=x9 goto MyLabel

Description:	
The	contents	of	Reg1	is	compared	to	the	contents	of	Reg2.	If	Reg1	is	greater	
than	or	equal	to	Reg2	(using	unsigned	comparison),	control	jumps	to	a	PC-
relative	target	address. 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Comment:	
The	target	location	given	by	the	offset	must	be	within	the	range	of	-4,096	..	
4,094	(in	multiples	of	2),	relative	to	the	PC.	See	the	“BEQ”	instruction.	

Encoding:	
	 This	is	a	B-type	instruction.	

Comparisons	to	Zero:	The	following	abbreviations	are	simple	variations	on	the	
previous	instructions.	They	compare	a	value	in	a	register	to	zero	using	signed	
comparison.	The	zero	register	(x0)	is	implicit	in	these	forms.	

	 Abbreviated	Form:	 Assembled	As:	
	 BEQZ  Reg1,target	 BEQ  Reg1,x0,target	
	 BNEZ  Reg1,target	 BNE  Reg1,x0,target	
	 BLTZ  Reg1,target	 BLT  Reg1,x0,target	
	 BLEZ  Reg1,target	 BGE  x0,Reg1,target	
	 BGTZ  Reg1,target	 BLT  x0,Reg1,target	
	 BGEZ  Reg1,target	 BGE  Reg1,x0,target	

Commentary:	The	RISC-V	architecture	does	not	include	conditionally	executed	
instructions.	The	idea	with	a	conditionally	executed	instruction	is	that	the	
instruction	execution	is	predicated	on	some	condition	code(s).	The	instruction	is	
executed,	and	will	either	work	normally	or	have	no	effect,	depending	on	whether	
the	condition	is	true	or	false.	The	bene2it	is	that	conditional	branch	instructions	
(with	their	pipeline	issues)	can	sometimes	be	avoided,	resulting	in	improved	
ef2iciency.	The	RISC-V	designers	considered	and	rejected	conditional	execution.	

Jump	And	Link	(Short-Distance	CALL)	

General	Form:	
JAL    RegD,Immed-20

Example:	
JAL    x1,MyFunct    # Goto MyFunct, x1=RetAddr

Description:	
This	instruction	is	used	to	call	a	subroutine	(i.e.,	function).	The	return	address	
(i.e.,	the	PC,	which	is	the	address	of	the	instruction	following	the	JAL)	is	saved	
in	RegD.	
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The	target	address	is	given	as	a	PC-relative	offset.	More	precisely,	the	offset	is	
sign-extended,	multiplied	by	2,	and	added	to	the	value	of	the	PC.	The	value	of	
the	PC	used	is	the	address	of	the	instruction	following	the	JAL,	not	the	JAL	
itself	(???).	The	offset	is	multiplied	by	2,	since	all	instructions	must	be	
halfword	aligned.	This	gives	an	effective	range	of	±1	MiByte,	i.e.,	-1,048,576	..	
1,048,574	(in	multiples	of	2),	relative	to	the	PC.	

Assembler	Shorthand:	
By	convention,	x1	is	generally	used	as	the	“link	register”.	If	the	register	is	not	
mentioned,	then	x1	is	implied.	

JAL MyFunct          # Call MyFunct
Comment:	

The	programming	convention	is	to	use	register	x1	as	a	“link	register.”	This	
return	address	is	stored	in	x1,	rather	than	being	pushed	onto	a	stack	in	
memory,	thus	making	calls	and	returns	faster.	However,	if	some	routine	“foo”	
will	call	another	routine	“bar”,	then	“foo”	must	save	x1	before	calling	“bar”.	The	
“foo”	routine	might	push	x1	onto	a	stack	in	memory,	or	“foo”	might	save	x1	in	a	
“callee-saved”	register	in	the	hope	of	avoiding	any	memory	access.	

Exceptions:	
This	may	generate	an	“instruction	misaligned	exception.”	The	target	address	
will	necessarily	be	a	multiple	of	2,	but	it	may	not	be	multiple	of	4.	For	
machines	that	do	not	support	16-bit	instructions,	this	will	cause	an	alignment	
exception.	

Encoding:	
	 This	is	a	J-type	instruction.	

Commentary:	Most	programs	code	segments	are	fairly	small,	so	the	limited	range	
of	JAL	should	be	adequate.	

If	the	program	size	exceeds	1	MiByte,	the	limited	size	of	the	offset	may	be	
inadequate.	Code	such	as	the	following:	

	 JAL   x1,MyFunct	

must	be	altered	to:	

	 LUI    Reg2,Offset-20
JALR   x1,Reg2,Offset-12
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Typically	several	routines	are	separately	compiled	so	the	compiler	will	not	know	
how	far	away	the	target	function	is	from	the	CALL	instruction.	Even	the	assembler	
will	not	know	and	only	at	link-time	can	it	be	determined	whether	a	20-bit	offset	is	
adequate.	One	approach	is	for	the	linker	to	print	out	an	inscrutable	error	message.	

Jump	(Short-Distance)	

General	Form:	
J      Immed-20

Example:	
J      MyLabel    # Goto MyLabel

Description:	
The	target	address	is	given	as	a	PC-relative	offset.	The	effective	range	is	±1	
MiByte,	i.e.,	-1,048,576	..	1,048,574	(in	multiples	of	2),	relative	to	the	PC.	

Exceptions:	
This	may	generate	an	“instruction	misaligned	exception.”	The	target	address	
will	necessarily	be	a	multiple	of	2,	but	it	may	not	be	multiple	of	4.	For	
machines	that	do	not	support	16-bit	instructions,	this	will	cause	an	alignment	
exception.	

Encoding:	
This	is	a	special	case	of	another	instruction.	This	instruction	is	assembled	
identically	to:	

JAL   x0,Immed-20     # Discard return address

Jump	And	Link	Register	

General	Form:	
JALR    RegD,Reg1,Immed-12

Example:	
JALR    x1,x4,MyFunct    # Goto MyFunct, x1=RetAddr

Description:	
This	instruction	is	used	to	call	a	subroutine	(i.e.,	function).	The	return	address	
(i.e.,	the	PC,	which	is	the	address	of	the	instruction	following	the	JAL)	is	saved	
in	RegD.	

The	target	address	is	computed	by	adding	the	offset	to	the	contents	of	Reg1.	
More	precisely,	the	offset	is	sign-extended	and	added	to	the	value	of	Reg1.	The	
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offset	is	not	multiplied	by	2.	This	gives	an	effective	range	of	±2	KiByte,	i.e.,	
-2,048	..	2,047,	relative	to	the	address	in	Reg1.	

Comment:	
This	instruction	can	be	used	in	several	ways.	See	the	JR,	RET,	CALL,	and	TAIL	
instructions.	

Assembler	Shorthand:	
By	convention,	x1	is	used	as	the	“link	register”.	The	following	form:	

JALR    Reg1           # Call *Reg1
is	used	short	hand	for:	

JALR    x0,Reg1,0 
Exceptions:	

This	may	generate	an	“instruction	misaligned	exception.”	
Encoding:	
	 This	is	an	I-type	instruction.	

Jump	Register	

General	Form:	
JR      Reg1

Example:	
JR      Reg1    # Goto *Reg1, i.e., PC = Reg1

Description:	
Jump	to	the	address	in	Reg1.	

Exceptions:	
This	may	generate	an	“instruction	misaligned	exception.”	

Encoding:	
This	is	a	special	case	of	another	instruction.	This	instruction	is	assembled	
identically	to:	

JALR   x0,Reg1,0    # Discard ret addr; offset=0

Return	

General	Form:	
RET      

Example:	
RET    # Goto *x1, i.e., PC = x1 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Description:	
By	convention,	x1	is	used	as	the	“link	register”	and	will	hold	a	return	address.	
This	instruction	returns	from	a	subroutine/function.	

Exceptions:	
This	may	generate	an	“instruction	misaligned	exception.”	

Encoding:	
This	is	a	special	case	of	another	instruction.	This	instruction	is	assembled	
identically	to:	

JALR   x0,x1,0    # PC=x1+0; don’t save prev PC

Call	Faraway	Subroutine	

General	Form:	
CALL    Immed-32      

Example:	
CALL    MyFunct     # PC = new addr; x1 = ret addr

Description:	
By	convention,	x1	is	used	as	the	“link	register”	and	will	hold	a	return	address.	
This	instruction	calls	a	subroutine/function	using	a	PC-relative	scheme,	where	
the	subroutine	offset	from	the	CALL	instruction	exceeds	the	20-bit	limit	(i.e.,	
±1	MiByte)	of	the	JAL	instruction.	This	instruction	modi2ies	register	x6.	

Encoding:	
In	order	to	deal	with	the	larger	distance	to	the	subroutine,	this	“synthetic”	
instruction	will	be	assembled	using	the	following	two-instruction	sequence.	
The	target	address	can	be	expressed	as	a	32-bit	offset	from	the	Program	
Counter.	This	offset	is	broken	into	two	pieces,	which	are	added	to	the	PC	in	
two	steps.	

AUIPC  x6,Immed-20    
JALR   x1,x6,Immed-12

The	AUIPC	instruction	adds	the	PC	to	the	upper	20-bit	portion	of	the	32-bit	
offset	and	places	the	result	in	a	temporary	register.	The	JALR	instruction	adds	
in	the	lower	12	bits	of	the	32-bit	offset	and	transfers	control	by	loading	the	
sum	into	the	PC.	It	also	saves	the	return	address	in	x1.	

The	CALL	instruction	makes	use	of	the	convention	that	x1	is	the	link	register.	It	
also	uses	x6,	which	is	a	“caller-saved	temporary	register”	by	convention.		
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Commentary:	The	actual	values	2illed	into	the	instructions	(in	the	Immed-20	and	
Immed-12	2ields)	must	be	computed	by	the	linker,	since	the	actual	target	address	
will,	in	general,	not	be	available	to	the	assembler.	The	linker	must	convert	the	
target	address	into	a	32-bit	offset	from	the	Program	Counter.	At	runtime,	the	PC	
value	used	will	be	the	address	of	the	AUIPC	(not	the	JALR	instruction)	so	the	value	
must	be	relative	to	that	address.	

Also	note	that	the	12-bit	immediate	value	will	be	sign	extended	in	the	JALR	
instruction,	so	simply	breaking	the	offset	apart	into	pieces	will	not	work.	Instead,	
the	linker	must	2irst	isolate	the	low-order	12	bits	and	sign-extend	it.	Then	the	
linker	must	subtract	it	from	the	full-32-bit	offset,	yielding	the	upper	Immed-20	
portion.	

This	applies	to	the	TAIL	instruction,	too.	

Exceptions:	
	 This	sequence	may	generate	an	“instruction	misaligned	exception”	if	the	target	

offset	from	which	the	immediate	values	are	computed	is	not	word	aligned	and	
the	processor	does	not	support	16-bit	instructions.	

Tail	Recursion:	Some	subroutines/functions	end	by	calling	another	function.	For	
example,	the	last	statement	in	a	function	named	“foo”	may	be	to	invoke/call	a	
function	named	“bar.”	When	the	called	function	(bar)	returns,	the	original	function	
(foo)	immediately	completes	and	returns.	Any	value	returned	by	the	called	
function	(bar)	will	be	used	as	the	return	value	from	the	caller	(foo).	

This	pattern	often	occurs	in	functional	programs,	where	recursion	is	used	to	
implement	repetitive	looping	behavior.	Without	special	attention,	some	functional	
programs	that	use	recursion	in	this	way	can	create	very	deep	stacks	by	pushing	
thousands	of	return	addresses	onto	the	stack.	

A	common	optimization	is	called	the	“tail	recursion	optimization”.	Here	is	how	it	
works.	The	compiled	code	for	the	caller	(foo)	is	modi2ied	to	not	actually	call	bar,	
but	instead	to	simply	jump	to	the	2irst	instruction	in	bar.	Then,	when	bar	returns,	
the	processor	will	effectively	return	from	foo,	since	no	other	return	address	was	
saved.	Furthermore,	anything	returned	by	bar	will	be	naturally	be	returned	to	foo’s	
caller.	The	tail	recursion	optimization	effectively	turns	functional	programs	which	
use	recursion	to	perform	looping	activities	into	instruction	sequences	that	use	
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“goto”	instructions.	It	coverts	recursive	programs	into	looping	programs	with	
“goto”	instructions,	making	recursive	programming	techniques	practical.	

Quite	often	a	recursive	function	will	call	itself.	In	such	cases	of	the	tail	recursion	
optimization,	the	“goto”	need	not	be	a	long-distance	jump	and	the	J	instruction	will	
suf2ice.	But	in	other	cases,	mutual	recursion	might	involve	separately	compiled	
functions	and	require	the	long-distance	jumping	ability	of	the	TAIL	instruction.	

Tail	Call	(Faraway	Subroutine)	/	Long-Distance	Jump	

General	Form:	
TAIL    Immed-32      

Example:	
TAIL    MyFunct    # PC = new addr; Discard ret addr

Description:	
This	instruction	is	used	to	jump	to	a	distant	location	using	a	PC-relative	
scheme,	where	the	displacement	from	the	TAIL	instruction	to	the	target	
instruction	exceeds	the	20-bit	limit	(i.e.,	±1	MiByte)	of	the	J	instruction	(jump	
short	distance).	This	instruction	modi2ies	register	x6.	

Comment:	
This	instruction	is	nothing	more	than	a	long-distance	“goto”	instruction;	the	
name	“TAIL”	may	be	confusing,	but	re2lects	how	it	will	sometimes	be	used.	

Encoding:	
This	“synthetic”	instruction	will	be	assembled	using	the	following	two-
instruction	sequence.	

AUIPC  x6,Immed-20    
JALR   x0,x6,Immed-12

See	the	comments	for	the	CALL	instruction.	The	only	difference	is	that	here	
the	return	address	is	discarded	(x0),	instead	of	being	saved	in	x1.	

Exceptions:	
	 Like	the	CALL	instruction,	this	sequence	may	generate	an	“instruction	

misaligned	exception.”	
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Load	and	Store	Instructions	

Load	Byte	(Signed)	

General	Form:	
LB     RegD,Immed-12(Reg1)

Example:	
LB     x4,1234(x9)    # x4 = Mem[x9+1234]

Description:	
An	8-bit	value	is	fetched	from	memory	and	moved	into	register	RegD.	The	
memory	address	is	formed	by	adding	the	offset	to	the	contents	of	Reg1.	The	
value	is	sign-extended	to	the	full	length	of	the	register.	

Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	

There	is	no	alignment	issue	and	this	instruction	will	execute	atomically.	
Encoding:	
	 This	is	an	I-type	instruction.	

Load	Byte	(Unsigned)	

General	Form:	
LBU     RegD,Immed-12(Reg1)

Example:	
LBU     x4,1234(x9)    # x4 = Mem[x9+1234]

Description:	
An	8-bit	value	is	fetched	from	memory	and	moved	into	register	RegD.	The	
memory	address	is	formed	by	adding	the	offset	to	the	contents	of	Reg1.	The	
value	is	zero-extended	to	the	full	length	of	the	register.	

Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	

There	is	no	alignment	issue	and	this	instruction	will	execute	atomically.	
Encoding:	
	 This	is	an	I-type	instruction.	
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Load	Halfword	(Signed)	

General	Form:	
LH     RegD,Immed-12(Reg1)

Example:	
LH     x4,1234(x9)    # x4 = Mem[x9+1234]

Description:	
A	16-bit	value	is	fetched	from	memory	and	moved	into	register	RegD.	The	
memory	address	is	formed	by	adding	the	offset	to	the	contents	of	Reg1.	The	
value	is	sign-extended	to	the	full	length	of	the	register.	

Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	

The	address	of	the	memory	location	is	not	required	to	be	properly	aligned	(i.e.	
halfword-aligned),	but	it	is	assumed	that	this	instruction	will	execute	faster	
with	properly	aligned	addresses.	

This	instruction	is	guaranteed	to	execute	atomically	if	the	address	is	properly	
aligned.	If	the	address	is	not	aligned,	there	is	no	guarantee	of	atomic	
operation.	

Encoding:	
	 This	is	an	I-type	instruction.	

Load	Halfword	(Unsigned)	

General	Form:	
LHU     RegD,Immed-12(Reg1)

Example:	
LHU     x4,1234(x9)    # x4 = Mem[x9+1234]

Description:	
A	16-bit	value	is	fetched	from	memory	and	moved	into	register	RegD.	The	
memory	address	is	formed	by	adding	the	offset	to	the	contents	of	Reg1.	The	
value	is	zero-extended	to	the	full	length	of	the	register.	

Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	
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The	address	of	the	memory	location	is	not	required	to	be	properly	aligned	(i.e.	
word-aligned),	but	it	is	assumed	that	this	instruction	will	execute	faster	with	
properly	aligned	addresses.	

This	instruction	is	guaranteed	to	execute	atomically	if	the	address	is	properly	
aligned.	If	the	address	is	not	aligned,	there	is	no	guarantee	of	atomic	
operation.	

Encoding:	
	 This	is	an	I-type	instruction.	

Load	Word	(Signed)	

General	Form:	
LW     RegD,Immed-12(Reg1)

Example:	
LW     x4,1234(x9)    # x4 = Mem[x9+1234]

Description:	
A	32-bit	value	is	fetched	from	memory	and	moved	into	register	RegD.	The	
memory	address	is	formed	by	adding	the	offset	to	the	contents	of	Reg1.	

Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	

The	address	of	the	memory	location	is	not	required	to	be	properly	aligned	(i.e.	
word-aligned),	but	it	is	assumed	that	this	instruction	will	execute	faster	with	
properly	aligned	addresses.	

This	instruction	is	guaranteed	to	execute	atomically	if	the	address	is	properly	
aligned.	If	the	address	is	not	aligned,	there	is	no	guarantee	of	atomic	
operation.	

RV64	/	RV128:	
For	a	machine	with	a	register	width	larger	than	32-bits,	the	value	is	sign-
extended	to	the	full	length	of	the	register.	

Encoding:	
	 This	is	an	I-type	instruction.	
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Load	Word	(Unsigned)	

General	Form:	
LWU     RegD,Immed-12(Reg1)

Example:	
LWU     x4,1234(x9)    # x4 = Mem[x9+1234]

Description:	
This	instruction	is	only	available	for	64-bit	and	128-bit	machines.	

A	32-bit	value	is	fetched	from	memory	and	moved	into	register	RegD.	The	
value	is	zero-extended	to	the	full	length	of	the	register.	The	memory	address	is	
formed	by	adding	the	offset	to	the	contents	of	Reg1.	

In	a	machine	with	32-bit	registers,	neither	sign-extension	nor	zero-extension	
is	necessary	for	value	that	is	already	32	bits	wide.	Therefore	the	“signed	load”	
instruction	(LW)	does	the	same	thing	as	the	“unsigned	load”	instruction	
(LWU),	making	LWU	redundant.	

Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	

The	address	of	the	memory	location	is	not	required	to	be	properly	aligned	(i.e.	
word-aligned),	but	it	is	assumed	that	this	instruction	will	execute	faster	with	
properly	aligned	addresses.	

This	instruction	is	guaranteed	to	execute	atomically	if	the	address	is	properly	
aligned.	If	the	address	is	not	aligned,	there	is	no	guarantee	of	atomic	
operation.	

Encoding:	
	 This	is	an	I-type	instruction.	

Load	Doubleword	(Signed)	

General	Form:	
LD     RegD,Immed-12(Reg1)

Example:	
LD     x4,1234(x9)    # x4 = Mem[x9+1234  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Description:	
This	instruction	is	only	available	for	64-bit	and	128-bit	machines.	

A	64-bit	value	is	fetched	from	memory	and	moved	into	register	RegD.	The	
memory	address	is	formed	by	adding	the	offset	to	the	contents	of	Reg1.	Sign	
extension	occurs	for	machines	with	128-bit	registers.	

Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	

The	address	of	the	memory	location	is	not	required	to	be	properly	aligned	(i.e.	
word-aligned),	but	it	is	assumed	that	this	instruction	will	execute	faster	with	
properly	aligned	addresses.	

This	instruction	is	guaranteed	to	execute	atomically	if	the	address	is	properly	
aligned.	If	the	address	is	not	aligned,	there	is	no	guarantee	of	atomic	
operation.	

Encoding:	
	 This	is	an	I-type	instruction.	

Load	Doubleword	(Unsigned)	

General	Form:	
LDU     RegD,Immed-12(Reg1)

Example:	
LDU     x4,1234(x9)    # x4 = Mem[x9+1234]

Description:	
This	instruction	is	only	available	for	128-bit	machines.	

A	64-bit	value	is	fetched	from	memory	and	moved	into	register	RegD.	The	
value	is	zero-extended	to	128-bits.	The	memory	address	is	formed	by	adding	
the	offset	to	the	contents	of	Reg1.	

Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	

The	address	of	the	memory	location	is	not	required	to	be	properly	aligned	(i.e.	
word-aligned),	but	it	is	assumed	that	this	instruction	will	execute	faster	with	
properly	aligned	addresses.	
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This	instruction	is	guaranteed	to	execute	atomically	if	the	address	is	properly	
aligned.	If	the	address	is	not	aligned,	there	is	no	guarantee	of	atomic	
operation.	

Encoding:	
	 This	is	an	I-type	instruction.	

Load	Quadword	

General	Form:	
LQ     RegD,Immed-12(Reg1)

Example:	
LQ     x4,1234(x9)    # x4 = Mem[x9+1234]

Description:	
This	instruction	is	only	available	for	128-bit	machines.	

A	128-bit	value	is	fetched	from	memory	and	moved	into	register	RegD.	The	
memory	address	is	formed	by	adding	the	offset	to	the	contents	of	Reg1.	

Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	

The	address	of	the	memory	location	is	not	required	to	be	properly	aligned	(i.e.	
word-aligned),	but	it	is	assumed	that	this	instruction	will	execute	faster	with	
properly	aligned	addresses.	

This	instruction	is	guaranteed	to	execute	atomically	if	the	address	is	properly	
aligned.	If	the	address	is	not	aligned,	there	is	no	guarantee	of	atomic	
operation.	

Encoding:	
	 This	is	an	I-type	instruction.	

Store	Byte	

General	Form:	
SB     Reg2,Immed-12(Reg1)

Example:	
SB     x4,1234(x9)    # Mem[x9+1234] = x4
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Description:	
An	8-bit	value	is	copied	from	register	Reg2	to	memory.	The	upper	(more	
signi2icant)	bits	in	Reg2	are	ignored.	The	memory	address	is	formed	by	adding	
the	offset	to	the	contents	of	Reg1.	

Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	

There	is	no	alignment	issue	and	this	instruction	will	execute	atomically.	
Encoding:	
	 This	is	an	S-type	instruction.	

Store	Halfword	

General	Form:	
SH     Reg2,Immed-12(Reg1)

Example:	
SH     x4,1234(x9)    # Mem[x9+1234] = x4

Description:	
A	16-bit	value	is	copied	from	register	Reg2	to	memory.	The	upper	(more	
signi2icant)	bits	in	Reg2	are	ignored.	The	memory	address	is	formed	by	adding	
the	offset	to	the	contents	of	Reg1.	

Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	

The	address	of	the	memory	location	is	not	required	to	be	properly	aligned	(i.e.	
halfword-aligned),	but	it	is	assumed	that	this	instruction	will	execute	faster	
with	properly	aligned	addresses.	

This	instruction	is	guaranteed	to	execute	atomically	if	the	address	is	properly	
aligned.	If	the	address	is	not	aligned,	there	is	no	guarantee	of	atomic	
operation.	

Encoding:	
	 This	is	an	S-type	instruction.	
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Store	Word	

General	Form:	
SW     Reg2,Immed-12(Reg1)

Example:	
SW     x4,1234(x9)    # Mem[x9+1234] = x4

Description:	
A	32-bit	value	is	copied	from	register	Reg2	to	memory.	The	memory	address	is	
formed	by	adding	the	offset	to	the	contents	of	Reg1.	

Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	

The	address	of	the	memory	location	is	not	required	to	be	properly	aligned	(i.e.	
word-aligned),	but	it	is	assumed	that	this	instruction	will	execute	faster	with	
properly	aligned	addresses.	

This	instruction	is	guaranteed	to	execute	atomically	if	the	address	is	properly	
aligned.	If	the	address	is	not	aligned,	there	is	no	guarantee	of	atomic	
operation.	

RV64	/	RV128:	
For	a	machine	with	a	register	width	larger	than	32-bits,	the	upper	bits	of	the	
register	are	ignored.	

Encoding:	
	 This	is	an	S-type	instruction.	

Store	Doubleword	

General	Form:	
SD     Reg2,Immed-12(Reg1)

Example:	
SD     x4,1234(x9)    # Mem[x9+1234] = x4

Description:	
This	instruction	is	only	available	in	64-bit	and	128-bit	machines.	

A	64-bit	value	is	copied	from	register	Reg2	to	memory.	The	memory	address	is	
formed	by	adding	the	offset	to	the	contents	of	Reg1.	For	a	128-bit	machine	the	
upper	bits	of	the	register	are	ignored.	
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Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	

The	address	of	the	memory	location	is	not	required	to	be	properly	aligned	(i.e.	
doubleword-aligned),	but	it	is	assumed	that	this	instruction	will	execute	faster	
with	properly	aligned	addresses.	

This	instruction	is	guaranteed	to	execute	atomically	if	the	address	is	properly	
aligned.	If	the	address	is	not	aligned,	there	is	no	guarantee	of	atomic	
operation.	

Encoding:	
	 This	is	an	S-type	instruction.	

Store	Quadword	

General	Form:	
SQ     Reg2,Immed-12(Reg1)

Example:	
SQ     x4,1234(x9)    # Mem[x9+1234] = x4

Description:	
This	instruction	is	only	available	in	128-bit	machines.	

A	128-bit	value	is	copied	from	register	Reg2	to	memory.	The	memory	address	
is	formed	by	adding	the	offset	to	the	contents	of	Reg1.	

Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	

The	address	of	the	memory	location	is	not	required	to	be	properly	aligned	(i.e.	
word-aligned),	but	it	is	assumed	that	this	instruction	will	execute	faster	with	
properly	aligned	addresses.	

This	instruction	is	guaranteed	to	execute	atomically	if	the	address	is	properly	
aligned.	If	the	address	is	not	aligned,	there	is	no	guarantee	of	atomic	
operation.	

Encoding:	
	 This	is	an	S-type	instruction.	
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Commentary:	For	the	“store”	instructions,	the	RISC-V	documentation	does	not	
make	it	clear	whether	the	address	is	formed	using	Reg1	or	Reg2,	nor	whether	the	
source	register	is	Reg1	or	Reg2.	However,	based	on	the	assumption	that	the	same	
register	will	be	used	for	address	calculation	in	both	“load”	and	“store”	
instructions	and	on	comments	elsewhere,	we	conclude	the	order	is	what	is	
shown	here.	

Commentary:	The	RISC-V	documentation	suggests	that	assembler	expects	the	
memory	address	operand	to	be	the	second	operand,	not	the	2irst.	This	violates	
the	general	pattern	in	assembly	code	that	data	movement	is	toward	the	left,	i.e.,	
from	the	second	operand	to	the	2irst.	

Commentary:	By	convention,	register	x2	is	used	as	a	stack	top	pointer	(SP).	
However,	the	RISC-V	architecture	does	not	contain	any	special	instructions	for	
manipulating	the	stack;	register	x2	is	treated	uniformly	to	all	other	registers	by	
the	ISA,	even	though	the	assembler	may	support	some	shorthand	notations	that	
facilitate	use	x2	as	a	stack	pointer.	

Compilers	for	traditional	programming	languages	typically	place	local	variables	in	
a	stack	frame	(i.e.,	an	activation	record)	which	is	conveniently	accessed	using	the	
stack	top	pointer.	To	read	and	write	such	local	variables,	the	“load”	and	“store”	
instructions	will	naturally	use	offsets	from	x2:	

LB   x5,offset(x2)   # Load from variable
SB   x5,offset(x2)   # Store into variable
ADDI x2,x2,4         # Pop 4 bytes off stack
LW   x5,0(x2)        # Fetch word on stack top

Assuming	that	stack	frames	tend	to	have	modest	sizes,	the	RISC-V	instruction	set,	
which	utilizes	12-bit	offsets	(-2,048	..	+2,047),	works	well.	

For	global	(i.e.,	shared	or	common)	variables,	one	approach	is	to	keep	a	single	
pointer	to	a	block	of	global	variables.	By	convention,	register	x3	is	often	used	as	
such	a	“global	base	pointer.”	Again,	assuming	the	amount	of	memory	required	for	
the	global	variables	is	modest,	the	12-bit	offset	works	well.	

In	cases	where	the	desired	offsets	exceed	the	12-bit	limit,	the	“load	upper	
immediate”	instruction	(LUI)	comes	to	the	rescue.	Recall	that	LUI	takes	a	20-bit	
immediate	value,	shifts	it	left	12	bits,	and	moves	it	into	a	register.	
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As	an	example,	the	following	instruction	sequence	can	be	used	to	load	a	value	
from	a	location	offset	from	a	base	pointer	(in	this	case	x2),	when	the	offset	
exceeds	the	12-bit	limit.	

LUI  x5,Immed-20     # Grab the upper 20 bits
ADD  x5,x5,x2        # Add the base pointer
LB   x5,Immed-12(x5) # Add the lower 12 bits

A	similar	sequence	can	be	used	for	“store”	instructions,	although	another	register	
would	be	required.	

Note	that	some	care	must	be	taken	when	breaking	a	32-bit	offset	into	12	and	20	
bit	pieces	because	of	the	sign-extension	that	will	occur	with	the	12-bit	portion	
when	it	is	added	in.	

Commentary:	In	some	cases	it	will	be	necessary	to	use	the	“load”	or	“store”	
instructions	to	access	arbitrary	locations	in	memory.	

In	some	cases,	a	PC-relative	address	is	preferred;	in	other	cases	an	absolute	
address	is	preferred.	

Any	address	within	a	32-bit	address	space	can	be	accessed	using	a	32-bit	offset	
from	the	PC,	since	a	32-bit	offset	(signed	or	not)	from	the	PC	will	wrap	around	
from	0xFFFFFFFF	to	0x00000000.	Any	32-bit	offset	can	be	broken	into	two	pieces:	
a	20-bit	upper	portion	and	a	12-bit	lower	portion.	

For	cases	where	an	absolute	address	(i.e.,	not	a	PC-relative	address)	is	desired,	
recall	that	the	“Load	Upper	Immediate”	instruction	(LUI)	contains	a	20-bit	
immediate	value	which	is	shifted	left	12	bits	and	moved	into	a	register.	

For	example,	to	load	a	halfword	from	an	arbitrary	location	in	memory,	an	
instruction	sequence	like	this	can	be	used:	

LUI    x4,Immed-20	
LH     x4,Immed-12(x4)

(In	the	case	of	a	“store”	instruction,	a	second	register	would	be	needed.)	
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As	mentioned	elsewhere,	care	must	be	taken	when	breaking	a	32-bit	offset	into	12	
and	20	bit	pieces	because	of	the	sign-extension	that	will	occur	with	the	12-bit	
portion	when	it	is	added	in.	

For	cases	where	a	PC-relative	address	is	desired,	recall	that	the	“Add	Upper	
Immediate	to	PC”	instruction	(AUIPC)	contains	a	20-bit	immediate	value	which	is	
shifted	left	12	bits,	added	to	the	PC,	and	stored	in	a	register.	

For	example,	to	load	a	halfword	using	an	arbitrary	PC-relative	offset,	an	instruction	
sequence	like	this	can	be	used:	

AUIPC  x4,Immed-20	
LH     x4,Immed-12(x4)

PC-relative	addresses	are	preferred	in	situations	where	(1)	the	code	may	the	
relocated	to	arbitrary	locations	after	link-time;	(2)	the	load	instruction	and	the	
target	are	assembled	in	the	same	2ile	and	there	some	reason	to	complete	
instruction	generation	before	link-time;	and	(3)	the	address	space	exceeds	32-bits	
(4	GiBytes),	but	the	target	location	lies	within	±2	GiBytes	of	the	load	instruction.	

Integer	Multiply	and	Divide	

The	RISC-V	spec	makes	the	multiply	and	divide	instructions	optional.	This	section	
describes	these	instructions,	which	may	or	may	not	be	implemented.	(There	was	a	
change	between	RISC-V	version	1.9	and	2.0;	we	describe	the	more	recent	version	
here.)	

Multiply	

General	Form:	
MUL     RegD,Reg1,Reg2

Example:	
MUL     x4,x9,x13     # x4 = x9*x13

Description:	
The	contents	of	Reg1	is	multiplied	by	the	contents	of	Reg2	and	the	result	is	
placed	in	RegD. 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RV32	/	RV64	/	RV128:	
Regardless	of	the	size	of	the	registers,	the	result	of	their	multiplication	will	be	
twice	as	large,	and	therefore	require	2	registers	to	contain.	This	instruction	
captures	the	lower-order	half	of	the	result	and	moves	it	into	the	destination	
register.	See	the	commentary	and	the	other	multiply	instructions	for	the	upper	
half.	

Comments:	
There	is	no	distinction	between	signed	and	unsigned;	the	result	is	identical.	
Over2low	is	ignored.	

Encoding:	
	 This	is	an	R-type	instruction.	

Binary	Multiplication	–	Upper	Bits,	Signed	vs.	Unsigned	

Whenever	two	values	are	multiplied,	the	result	may	require	up	to	twice	as	many	bits	
to	represent.	For	example,	consider	multiplying	these	two	8	bit	values:	

          1101 0101 
          1011 1011 

If	we	view	these	as	unsigned	numbers,	we	get	this	result:	
          1101 0101 = 213 (unsigned)
        × 1011 1011 = 187 (unsigned)
1001 1011 1001 0111 = 39,831 (unsigned)

If	we	view	these	as	signed	values,	we	get	this	result:	
          1101 0101 = -43 (signed)
        × 1011 1011 = -69 (signed)
0000 1011 1001 0111 = 2,967 (signed)

If	we	view	one	value	as	signed	and	the	other	as	unsigned,	we	get	this	result:	
          1101 0101 = -43 (signed)
        × 1011 1011 = 187 (unsigned)
1110 0000 1001 0111 = -8,041 (signed)

Regardless	of	whether	we	are	interpreting	the	operands	as	signed	or	unsigned	
numbers,	note	that	the	least-signi2icant	half	of	the	result	is	always	the	same	bits.	
This	is	not	a	coincidence;	it	is	always	true.	

However,	the	most-signi2icant	half	can	be	different,	as	these	three	cases	prove.	
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For	this	reason,	there	must	be	three	additional	multiply	instructions	to	obtain	the	
most-signi2icant	half	of	the	result:	

	 MULH	 –	signed	operands	
	 MULHU	 –	unsigned	operands	
	 MULHSU	 –	one	signed	operand	and	one	unsigned	operand	

We	may	wish	to	detect	over2low,	i.e.,	to	make	sure	the	result	is	small	enough	to	2it	
into	the	same	number	of	bits	as	the	operands.	For	an	unsigned	result,	we	can	check	
to	make	sure	the	bits	of	the	most-signi2icant	half	are	all	zero.	For	a	signed	result,	we	
must	check	to	make	sure	that	the	bits	of	the	most-signi2icant	half	are	all	the	same	as	
the	sign	bit	of	the	least-signi2icant	half.	

Multiply	–	High	Bits	(Signed)	

General	Form:	
MULH    RegD,Reg1,Reg2

Example:	
MULH    x4,x9,x13     # x4 = HighBits(x9*x13)

Description:	
The	contents	of	Reg1	is	multiplied	by	the	contents	of	Reg2	and	the	most-
signi2icant	half	of	the	result	is	placed	in	RegD.	Both	operands	and	the	result	
are	interpreted	as	signed	values.	

Encoding:	
This	is	a	R-type	instruction.	

Multiply	–	High	Bits	(Unsigned)	

General	Form:	
MULHU   RegD,Reg1,Reg2

Example:	
MULHU   x4,x9,x13     # x4 = HighBits(x9*x13)

Description:	
The	contents	of	Reg1	is	multiplied	by	the	contents	of	Reg2	and	the	most-
signi2icant	half	of	the	result	is	placed	in	RegD.	Both	operands	and	the	result	
are	interpreted	as	unsigned	values.	

Encoding:	
	 This	is	an	R-type	instruction.	
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Multiply	–	High	Bits	(Signed	and	Unsigned)	

General	Form:	
MULHSU  RegD,Reg1,Reg2

Example:	
MULHSU  x4,x9,x13     # x4 = HighBits(x9*x13)

Description:	
The	contents	of	Reg1	is	multiplied	by	the	contents	of	Reg2	and	the	most-
signi2icant	half	of	the	result	is	placed	in	RegD.	One	operand	is	interpreted	as	
signed	and	one	operand	is	interpreted	as	unsigned	and	the	result	is	
interpreted	as	a	signed	value.	

The	spec	suggests	that:	
	 Reg2	=	multiplier	=	signed	
	 Reg1	=	multiplicand	=	unsigned	
but	this	interpretation	is	also	a	possibility	???	
	 Reg2	=	multiplier	=	unsigned	
	 Reg1=	multiplicand	=	signed	

Encoding:	
	 This	is	an	R-type	instruction.	

Recommended	Usage:	Typically,	the	programmer	will	want	to	obtain	the	full	
result	of	a	multiplication,	i.e.,	both	upper	half	and	lower	halves.	This	requires	two	
multiply	instructions.	

For	example,	the	following	sequence	

	 MULH   x4,x9,x13   # compute upper half
MUL    x5,x9,x13   # compute lower half

will	place	the	result	in	the	register	pair	x4:x5.	

It	is	recommended	that	the	instructions	always	be	placed	in	this	order,	i.e.,	with	the	
upper	half	computed	2irst	and	the	lower	half	second.	In	some	implementations,	the	
execution	unit	may	recognize	this	common	programming	idiom	and,	at	the	micro-
architectural	level,	fuse	these	two	instructions	into	a	single	multiplication	
operation,	thereby	improving	performance.	
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Additional	Multiply	Instruction	For	64-bit	and	128-bit	Machines	

64-bit	and	128-bit	machines	also	add	an	additional	multiply	instruction	(MULW)	to	
properly	perform	32-bit	multiplication,	as	it	would	be	done	on	a	32-bit	machine.	

To	understand	why	this	is	necessary,	consider	a	64-bit	machine	being	used	to	
execute	32-bit	code	operating	on	32-bit	integers.	A	RV64	machine	will	store	every	
32-bit	value	in	the	lower-order	bits	of	a	64-bit	register,	with	the	upper	32	bits	
containing	the	sign	extension	of	the	lower-order	32	bits.	

But	when	we	multiply	two	32-bit	values,	the	result	might	over2low	and	be	larger	
than	32-bits.	The	result	we	desire	is	the	low-order	32	bits	of	the	correct	answer,	with	
a	sign	extension	in	the	upper	32	bits.	So,	to	properly	emulate	the	behavior	of	a	32-bit	
multiply,	we	don’t	actually	want	the	mathematically	correct	result.	

Let’s	look	at	an	example.	To	make	our	example	manageable,	let’s	consider	a	machine	
with	16-bit	registers,	which	are	being	used	to	contain	8-bit	values	(rather	than	64-
bit	registers	containing	32-bit	values).	

Imagine	that	we	wish	to	multiply	117	×	94.	Both	numbers	can	be	represented	as	8-
bit	signed	values,	but	the	result	(10,998)	cannot	be.	

  0000 0000 0111 0101 = +117
× 0000 0000 0101 1110 = +94
  0010 1010 1111 0110 = +10,998

This	is	a	situation	where	over2low	occurs,	in	the	sense	that	the	result	cannot	be	
represented	in	only	8	bits.	In	order	to	emulate	an	8-bit	machine,	we	want	the	low-
order	8	bits	of	the	correct	result,	with	sign	extension	in	the	upper	8	bits,	like	this:	

  1111 1111 1111 0110 

The	MUL	instruction	would	give	us	the	mathematically	correct	result,	namely	

  0010 1010 1111 0110

But	we	don’t	want	the	mathematically	correct	result.	Instead	we	need	a	new	
instruction	to	give	us	the	appropriate	value	for	emulating	the	8-bit	multiply	
operation,	namely	the	right	lower-order	bits,	with	sign	extension	in	the	upper	part	
of	the	register:	
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  1111 1111 1111 0110 

Multiply	Word	

General	Form:	
MULW    RegD,Reg1,Reg2

Example:	
MULW    x4,x9,x13     # x4 = x9*x13

Description:	
The	contents	of	Reg1	is	multiplied	by	the	contents	of	Reg2	and	the	result	is	
placed	in	RegD.	Only	the	lower	order	32-bits	of	the	result	are	used;	the	lower	
32	bits	are	signed	extended	to	the	full	length	of	the	register.	

Comment:	
This	instruction	is	used	to	properly	emulate	32-bit	multiplication	on	a	64-bit	
or	128-bit	machine.	

Note	that	only	the	least-signi2icant	32	bits	of	Reg1	and	Reg2	can	possibly	affect	
the	result.	

If	you	want	the	upper	32-bits	of	the	full	64-bit	result	use	the	MUL	instruction	
on	a	64-bit	machine.	

RV32/RV64/RV128:	
This	instruction	is	only	available	on	64-bit	and	128-bit	machines.	

Encoding:	
	 This	is	an	R-type	instruction.	

Commentary:	Consider	the	following	sequence	when	executed	on	a	32-bit	
machine:	

	 MULH   x4,x9,x13   # compute upper half
MUL    x5,x9,x13   # compute lower half

It	will	place	the	64-bit	result	in	the	register	pair	x4:x5.	

Now	consider	executing	this	same	sequence	on	a	64-bit	machine.	The	x5	register	
will	contain	the	full	64-bit	value,	not	a	32-bit,	sign-extended	value.	The	x4	register	
will	contain	nothing	but	meaningless	sign	bits.	
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Previously	we	said	that	32-bit	code	could	be	executed	on	a	64-bit	machine	with	no	
change:	The	idea	was	that	the	upper	32	bits	of	the	registers	are	simply	ignored.	
This	is	a	clear	exception:	in	this	sequence	valid	bits	are	placed	in	the	upper	32	bits.	
Therefore,	the	code	sequence	to	perform	a	32-bit	multiply	with	64-bit	result	must	
be	different	for	RV32	and	RV64	machines.	

Additional	Multiply	Instruction	For	128	Bit	Machines	

It	would	seem	logical	for	a	“double”	version	of	MUL	(with	the	name	“MULD”)	to	exist	
for	RV128	machines,	in	analogy	to	the	MULW	instruction.	However	the	spec	does	not	
mention	this	instruction.	

Integer	Division	–	Basic	Concepts	

With	division	and	remainder	there	is	always	question	about	how	negative	operands	
are	treated.	

Consider	dividing	a	by	n	(that	is,	a/n).	

q		=		a		DIV		n	 #	compute	quotient	
r		=		a		REM		n	 #	compute	remainder	

There	is	agreement	that	the	quotient	(q)	and	remainder	(r)	must	obey	these	
equations:	

a	=	nq	+	r	
	 |r|	<	|q|	

Many	languages	(C,	C++,	Java)	perform	“truncated	division”:	

q	=	trunc(a/n)	
r	=	a	-	n	trunc(a/n)	

which	produces	these	results:	

 7 /  3 =  2        7 %  3 =  1
-7 /  3 = -2       -7 %  3 = -1  
 7 / -3 = -2        7 % -3 =  1  
-7 / -3 =  2       -7 % -3 = -1

Another	reasonable	de2inition	is	“2loored	division”:	
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q	=	⌊a/n⌋	
r	=	a	-	n⌊a/n⌋	

which	produces	the	following	results.	The	dot	(•)	indicates	differences	with	
truncated	division.	

 7 /  3 =  2        7 %  3 =  1
-7 /  3 = -3 •     -7 %  3 =  2 •
 7 / -3 = -3 •      7 % -3 = -2 •
-7 / -3 =  2       -7 % -3 = -1

There	is	also	a	de2inition	called	“Euclidean	division”,	in	which	the	remainder	is	never	
negative.	The	dot	(•)	indicates	differences	with	both	the	previous	de2initions.	

 7 /  3 =  2        7 %  3 =  1
-7 /  3 = -3       -7 %  3 =  2
 7 / -3 = -2        7 % -3 =  1
-7 / -3 =  3 •     -7 % -3 =  2 •

The	RISC-V	spec	makes	no	commitment	regarding	the	exact	meaning	of	DIV	and	
REM.	The	following	quote	from	Wikipedia	is	pertinent:	

“…	Euclidean	division	is	superior	to	the	other	ones	in	terms	of	regularity	and	
useful	mathematical	properties,	although	2loored	division	…	is	also	a	good	
de2inition.	Despite	its	widespread	use,	truncated	division	is	shown	to	be	
inferior	to	the	other	de2initions.”	

— Daan	Leijen,	Division	and	Modulus	for	Computer	Scientists	

Division	Error	Conditions	

RISC-V	supports	both	signed	division	(i.e.,	dividing	a	signed	number	by	a	signed	
number)	and	unsigned	division	(i.e.,	dividing	an	unsigned	number	by	an	unsigned	
number).	With	multiplication,	you	could	mix	signed	and	unsigned;	not	so	with	
division.	

Concerning	the	sizes	of	the	result,	note	that	the	following	must	hold,	since	|n|	≥	1:	

|q|	≤	|a|	
|r|	<	|a|	
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Thus,	if	the	operands	(a	and	n)	are	32-bits,	then	the	results	(q	and	r)	will	almost	
always	2it	into	32-bits.	

There	is	exactly	one	exception	in	which	the	results	will	not	2it.	This	is	called	“division	
over2low”	and	it	can	only	occur	with	signed	division.	

Let	M	represent	-231,	which	is	the	most	negative	number	representable	in		32-bits.	If	
we	divide	M	by	-1,	the	result	is	+231,	which	is	one	greater	than	the	largest	32-bit	
number.	

The	RISC-V	speci2ies	that	division	over2low	will	be	handled	as	follows:	

	 Correct	Result:	
	 	 q	=	+231	
	 	 r	=	0	
	 Actual	Result:	
	 	 q	=	-231	
	 	 r	=	0	

The	other	well-known	issue	is	with	division	by	zero.	The	spec	says	that	the	result	
will	be:	

	 q	=	0xFFFFFFFF	
	 r	=	a	

This	can	be	interpreted	as:	

	 Signed	Divide-By-Zero	Result:	
	 	 q	=	-1	
	 	 r	=	a	

	 Unsigned	Divide-By-Zero	Result:	
	 	 q	=	+232-1	 i.e.,	the	maximum	unsigned	number	
	 	 r	=	a	

Our	discussion	of	error	conditions	is	for	32-bit	division,	but	naturally	extends	and	
applies	to	64-bit	and	128-bit	division.	

Both	divide-by-zero	and	division-over2low	errors	occur	without	causing	a	trap	or	
exception	and	instruction	execution	continues	with	no	indication.	In	fact	there	are	
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no	arithmetic	traps	or	exceptions.	If	some	high-level	language	mandates	that	divide-
by-zero	must	be	caught,	then	the	compiler	must	insert	a	single	BRANCH-IF-ZERO	
instruction.	The	actual	results	computed	by	the	hardware	are	chosen	because	these	
are	the	values	that	naturally	result	from	a	typical	hardware	implementation.	

If	the	high-level	language	mandates	that	division-over2low	should	be	caught	(and	
they	all	ought	to!)	then	at	least	one	additional	test-and-branch	instruction	must	be	
executed.	

Divide	(Signed)	

General	Form:	
DIV     RegD,Reg1,Reg2

Example:	
DIV     x4,x9,x13     # x4 = x9 DIV x13

Description:	
The	contents	of	Reg1	is	divided	by	the	contents	of	Reg2	and	the	quotient	is	
placed	in	RegD.	Both	operands	and	the	result	are	signed	values.	

Comments:	
Divide-by-zero	and	division-over2low	result	in	mathematically	incorrect	
results.	See	discussion	above.	

Encoding:	
	 This	is	an	R-type	instruction.	

Divide	(Unsigned)	

General	Form:	
DIVU    RegD,Reg1,Reg2

Example:	
DIVU    x4,x9,x13     # x4 = x9 DIV x13

Description:	
The	contents	of	Reg1	is	divided	by	the	contents	of	Reg2	and	the	quotient	is	
placed	in	RegD.	Both	operands	and	the	result	are	unsigned	values.	

Comments:	
Divide-by-zero	produces	a	mathematically	incorrect	result.	Division-over2low	
cannot	occur.	See	discussion	above.	

Encoding:	
	 This	is	an	R-type	instruction.	
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Remainder	(Signed)	

General	Form:	
REM     RegD,Reg1,Reg2

Example:	
REM     x4,x9,x13     # x4 = x9 REM x13

Description:	
The	contents	of	Reg1	is	divided	by	the	contents	of	Reg2	and	the	remainder	is	
placed	in	RegD.	Both	operands	and	the	result	are	signed	values.	

Comments:	
Divide-by-zero	and	division-over2low	result	in	mathematically	incorrect	
results.	See	discussion	above.	

Encoding:	
	 This	is	an	R-type	instruction.	

Remainder	(Unsigned)	

General	Form:	
REMU    RegD,Reg1,Reg2

Example:	
REMU    x4,x9,x13     # x4 = x9 REM x13

Description:	
The	contents	of	Reg1	is	divided	by	the	contents	of	Reg2	and	the	remainder	is	
placed	in	RegD.	Both	operands	and	the	result	are	unsigned	values.	

Comments:	
Divide-by-zero	produces	a	mathematically	incorrect	result.	Division-over2low	
cannot	occur.	See	discussion	above.	

Encoding:	
	 This	is	an	R-type	instruction.	

Recommended	Usage:	Often	the	programmer	will	want	to	obtain	both	the	
quotient	and	remainder.	It	is	recommended	that	the	DIV	be	done	2irst	and	the	
REM	be	done	second.	

For	example:	
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	 DIV    x4,x9,x13   # x4 = x9 DIV x13
REM    x5,x9,x13   # x5 = x9 REM x13

In	some	implementations,	the	execution	unit	may	recognize	this	common	pattern	
and	fuse	these	two	instructions	into	a	single	division	operation,	thereby	
improving	performance.	

Additional	Divide	Instructions	For	64	Bit	Machines	

For	64-bit	machines,	there	are	4	additional	DIVIDE/REMAINDER	instructions	to	
perform	32-bit	operations.	In	other	words,	the	above	4	instructions	will	perform	32-
bit	operations	on	a	RV32	machine	but	will	perform	64-bit	operations	on	an	RV64	
machine.	The	following	4	instructions	will	work	just	like	the	above	instructions	
would	work	on	a	32-bit	machine,	by	sign-extending	everything	up	to	64-bits.	

Divide	Word	(Signed)	

General	Form:	
DIVW    RegD,Reg1,Reg2

Example:	
DIVW    x4,x9,x13     # x4 = x9 DIV x13

RV32/RV64/RV128:	
This	instruction	is	only	available	on	64-bit	and	128-bit	machines.	

Description:	
The	contents	of	Reg1	is	divided	by	the	contents	of	Reg2	and	the	quotient	is	
placed	in	RegD.	Both	operands	and	the	result	are	signed	values.	Only	the	low-
order	32	bits	of	the	operands	are	used	and	the	32-bit	result	is	signed-extended	
to	2ill	the	destination	register.	

Comments:	
Divide-by-zero	and	division-over2low	result	in	mathematically	incorrect	
results.	See	discussion	above.	

Encoding:	
	 This	is	an	R-type	instruction.	

Divide	Word	(Unsigned)	

General	Form:	
DIVUW   RegD,Reg1,Reg2
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Example:	
DIVUW   x4,x9,x13     # x4 = x9 DIV x13

RV32/RV64/RV128:	
This	instruction	is	only	available	on	64-bit	and	128-bit	machines.	

Description:	
The	contents	of	Reg1	is	divided	by	the	contents	of	Reg2	and	the	quotient	is	
placed	in	RegD.	Both	operands	and	the	result	are	unsigned	values.	Only	the	
low-order	32	bits	of	the	operands	are	used	and	the	32-bit	result	is	signed-
extended	(???)	to	2ill	the	destination	register.	

Comments:	
Divide-by-zero	produces	a	mathematically	incorrect	result.	Division-over2low	
cannot	occur.	See	discussion	above.	

Encoding:	
	 This	is	an	R-type	instruction.	

Remainder	Word	(Signed)	

General	Form:	
REMW    RegD,Reg1,Reg2

Example:	
REMW    x4,x9,x13     # x4 = x9 REM x13

RV32/RV64/RV128:	
This	instruction	is	only	available	on	64-bit	and	128-bit	machines.	

Description:	
The	contents	of	Reg1	is	divided	by	the	contents	of	Reg2	and	the	remainder	is	
placed	in	RegD.	Both	operands	and	the	result	are	signed	values.	Only	the	low-
order	32	bits	of	the	operands	are	used	and	the	32-bit	result	is	signed-extended	
to	2ill	the	destination	register.	

Comments:	
Divide-by-zero	and	division-over2low	result	in	mathematically	incorrect	
results.	See	discussion	above.	

Encoding:	
	 This	is	an	R-type	instruction.	

Remainder	Word	(Unsigned)	

General	Form:	
REMUW   RegD,Reg1,Reg2
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Example:	
REMUW   x4,x9,x13     # x4 = x9 REM x13

RV32/RV64/RV128:	
This	instruction	is	only	available	on	64-bit	and	128-bit	machines.	

Description:	
The	contents	of	Reg1	is	divided	by	the	contents	of	Reg2	and	the	remainder	is	
placed	in	RegD.	Both	operands	and	the	result	are	unsigned	values.	Only	the	
low-order	32	bits	of	the	operands	are	used	and	the	32-bit	result	is	signed-
extended	(???)	to	2ill	the	destination	register.	

Comments:	
Divide-by-zero	produces	a	mathematically	incorrect	result.	Division-over2low	
cannot	occur.	See	discussion	above.	

Encoding:	
	 This	is	an	R-type	instruction.	

Additional	Divide	Instructions	For	128	Bit	Machines	

It	would	seem	logical	for	“double”	versions	of	these	instructions	to	exist	for	RV128	
machines.	However	the	spec	does	not	mention	these. 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Floating	Pointing	–	Review	of	Basic	Concepts	

This	section	can	be	skipped	if	you	are	familiar	with	2loating	point	arithmetic.	The	
discussion	here	is	general,	and	not	speci2ic	to	RISC-V.	

The	IEEE	754-2008	standard	describes	how	2loating	point	numbers	are	to	be	
represented	and	how	2loating	point	operations	are	to	be	executed	by	computers.	

The	standard	is	complicated	and	detailed.	This	section	is	meant	to	be	an	
introduction	and	is	not	an	exhaustive	description.	Most	modern	processor	ISAs	
implement	the	IEEE	754-2008	speci2ication,	but	the	speci2ication	has	options	and	
some	parts	are	not	fully	implemented	on	some	computers.	

The	speci2ication	de2ines	two	important	data	types:	

	 Single	Precision	(32-bit	“2loat”	values)	
	 Double	Precision	(64-bit	“double”	values)	

Some	computers	implement	only	single	precision;	other	computers	implement	both.	

In	either	case,	the	idea	is	to	represent	a	real	rational	number	in	a	way	similar	to	
scienti2ic	notation.	For	example,	the	following	number	is	given	in	scienti2ic	notation:	

6.022	×	1023				(an	approximation	to	Avogadro’s	constant)	

With	only	32	bits	of	precision	(or	64	bits	for	double	precision),	there	are	limits	to	
the	amount	of	precision	and	the	size	of	the	exponents.	The	available	bits	are	used	as	
follows:	
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	 Number	of	bits	used	for…	
	 Single	 Double	
	 Sign	 1	 1	
	 Exponent	 8	 11	
	 Value	 23	 52	
	 			Total	 32	 64	

Furthermore,	with	2loating	point	a	numerical	value	is	represented	in	binary	(not	
decimal)	and	this	introduces	some	subtleties	when	going	back	and	forth	between	
the	internal	bit	patterns	and	decimal	representations	which	humans	can	read.	

Every	positive	integer	can	be	represented	with	a	2inite	number	of	digits	and	a	2inite	
number	of	bits.	For	example,	here	is	the	same	number,	represented	both	ways.	Of	
course,	this	number	requires	a	few	more	characters	in	binary,	but	the	represented	
value	is	equal.	

	 2,468		 	 (decimal)	
	 100110100100	 (binary)	

We	commonly	represent	rational	numbers	in	decimal	using	a	“decimal	point”,	as	in:	

	 123.456	

We	can	also	represent	rational	numbers	in	binary	using	a	“binary	point”,	as	in:	

	 101.0101	

With	decimal	numbers,	the	position	of	each	digit	is	important	and	we	talk	about	the	
place	value	of	the	digits.	The	place	values	are	all	powers	of	10:	

	 …	 1000	 100	 10	 1	 1/10	 1/100	 1/100	 1/1000	 …	
	 …	 103	 102	 101	 100	 10-1	 10-2	 10-3	 10-4	 …	

We	can	use	the	place	values	to	compute	the	value	of	a	number,	as	you	learned	in	
primary	school:	

	 123.456	
	 =	(1	×	102)	+	(2	×	101)	+	(3	×	100)	+	(4	×	10-1)	+	(5	×	10-2)	+	(6×	10-3)	
	 =	(1×100)	+	(2×10)	+	(3×1)	+	(4×0.1)	+	(5×0.01)	+	(6×0.001)	
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Likewise,	with	binary	numbers,	the	value	of	each	bit	is	scaled	according	to	the	place	
value	of	the	bit.	But	with	binary,	the	place	values	are	all	powers	of	2:	

	 …	 8	 4	 2	 1	 1/2	 1/4	 1/8	 1/16	 …	
	 …	 23	 22	 21	 20	 2-1	 2-2	 2-3	 2-4	 …	

Using	this,	we	can	convert	binary	numbers	into	decimal	numbers:	

	 101.0101	
	 =	(1	×	22)	+	(0	×	21)	+	(1	×	20)	+	(0	×	2-1)	+	(1	×	2-2)	+	(0	×	2-3)	+	(1	×	2-4)	
	 =	(1	×	4)	+	(0	×	2)	+	(1	×	1)	+	(0	×	1/2)	+	(1	×	1/4)	+	(0	×	1/8)	+	(1	×	1/16)	
	 =	4	+	1	+	1/4	+	1/16	
	 =	5.3125	

Some	rational	numbers	require	an	in2inite	number	of	digits	in	their	decimal	
representation.	For	example:	

	 1/3		=		0.33333…		=		0.3(3)*	

Likewise,	some	rational	numbers	may	require	an	in2inite	number	of	bits	in	their	
binary	representation.	But	regardless	of	whether	we	represent	a	rational	number	in	
decimal	or	binary,	the	in2inite	strings	of	digits/bits	will	settle	into	a	simple	repeating	
pattern.	This	is	true	of	all	rational	numbers,	but	irrational	numbers	(e.g.,	𝜋,	√2)	do	
not	have	such	simple	decimal	or	binary	representations.	Neither	their	decimal	nor	
their	binary	expansions	will	ever	exhibit	a	repeating	pattern.	

Some	numbers	many	have	a	2inite	representation	in	decimal	but	require	an	in2inite	
sequence	in	binary.	For	example,	the	following	number:	

	 4.3	

requires	an	in2inite	binary	expansion	to	represent	it,	namely:	

	 100.01001100110011…		=		100.01(0011)*	

It	turns	out	that	every	binary	number	without	a	repeating	part	can	be	represented	
with	a	2inite	number	of	decimal	digits.	Furthermore,	the	number	of	digits	to	the	right	
of	the	decimal	point	will	never	exceed	the	number	of	places	to	the	right	of	the	binary	
point.	For	example:	
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101.1101	(binary)		=		5.8125	(decimal)	

Turning	to	2loating	point	representation,	we	have	limited	number	of	bits	available,	
which	means	we	cannot	accommodate	arbitrary	precision.	Not	every	number	is	
representable,	so	we	must	round	numbers	to	a	nearby	number	that	is	representable.	

For	example,	the	number	6.022		×	1023	can	only	be	represented	approximately,	even	
though	it	appears	not	to	have	a	great	amount	of	precision.	Here	is	the	closest	
number	that	can	be	represented	using	a	single	precision	2loating	point:	

	 6.02200013124147498450944		×	1023	

On	the	other	hand,	it	turns	out	that	this	number:	

	 2.383496609792		×	1012	

can	be	represented	exactly	using	only	32	bit	single	precision.	The	next	largest	value	
that	can	be	represented	exactly	happens	to	be:	

	 2.383496871936		×	1012	

We	can	make	the	following	statements	about	IEEE	754-2008	2loating	point	number	
representation:	

•	 Every	2loating	point	numbers	has	a	sign.	Every	number	is	either	positive	or	
negative.	

•	 There	are	two	representations	for	zero:	positive	zero	(i.e.,	+0.0)	and	negative	
zero	(i.e.,	-0.0).	

•	 There	are	two	representations	of	in2inity:	positive	in2inity	(+∞	or	+inf)	and	
negative	in2inity		(-∞	or	-inf)	

•	 The	exponent	may	be	positive	or	negative,	allowing	both	very	large	numbers	
and	very	small	numbers.	

•	 There	is	a	special	representation	called	“not	a	number”	(“NaN”).	This	value	can	
represent	a	missing	value	or	the	result	of	a	unde2ined	operation,	such	as	divide	
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by	zero.	In	some	implementations	there	are	two	variations,	called	“quiet	NaN”	
and	“signaling	NaN”.	

•	 Every	32-bit	integer	(i.e.,	every	integer	in	the	range	-2,147,483,648	to	
+2,147,483,647)	can	be	represented	exactly	with	a	64	bit	double	precision	
2loating	point	number,	but	not	with	a	single	precision	2loat.	In	fact,	the	integer	
range	is	a	little	greater:	every	54-bit	integer	can	be	represented	exactly	in	
double	precision	2loating	point.	Almost	all	larger	integers	will	get	rounded.	

•	 Every	25-bit	integer	(i.e.,	every	integer	in	the	range	-16,777,216	to	
+16,777,215)	can	be	represented	exactly	with	a	32	bit	single	precision	2loating	
point	number.	Almost	all	integers	outside	of	this	range	will	get	rounded.	

Here	is	the	range	of	values	that	can	be	represented.	(We	use	decimal	notation	here	
and	approximate	the	exact	values.)			

Single	Precision	
	 Largest	value:	 ~3.40282347	×	10+38	
	 Smallest	value	above	zero:	 ~1.17549440	×	10-38	
	 Digits	of	accuracy:	 about	7	

Double	Precision	
	 Largest	value:	 ~1.7976931348623157	×	10+308	
	 Smallest	value	above	zero:	 ~2.2250738585072014	×	10-308	
	 Digits	of	accuracy:	 about	16	

Remember	that	not	every	value	in	the	above	ranges	can	be	represented.	Why?	Recall	
there	is	a	countable	in2inity	of	rational	numbers	just	between	any	two	numbers,	yet	
with	only	32	or	64	bits,	we	only	have	a	small	number	of	unique	representations.	

Floating	point	arithmetic	is	meant	to	mimic	mathematical	arithmetic,	but	it	must	be	
remembered	that	they	are	only	approximately	the	same:	

•	 The	exact	value	or	result	of	an	operation	is	not	always	representable,	so	the	
computed	answer	is	often	not	mathematically	correct.	

•	 Floating	point	addition	is	not	always	associative,	due	to	rounding	errors.	That	
is,	(x	+	y)	+	z	is	not	always	equal	to	x	+	(y	+	z).	
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•	 Floating	point	multiplication	is	not	always	associative.	That	is,	
(x	*	y)	*	z	is	not	always	equal	to	x	*	(y	*	z).	

•	 Floating	point	multiplication	does	not	always	distribute	over	addition	with	the	
exact	same	results.	That	is,	x	*	(y	+	z)	is	not	always	equal	to	(x	*	y)	+	(x	*	z).	

However,	we	can	say	this:	

•	 Floating	point	addition	and	multiplication	are	commutative,	like	math.	For	
example,	x+y	=	y+x,	so	you	don’t	have	to	worry	about	the	order	of	operands	for	
a	single	operation.		

Here	are	the	different	types	of	things	that	can	be	represented	in	a	2loating	point	bit	
pattern:	

•	Positive	zero	(+0.0)	
	 •	Negative	zero	(-0.0)	
	 •	Positive	in2inity	(+∞	or	+inf)	
	 •	Negative	in2inity	(-∞	or	-inf)	
	 •	Not-a-number	(NaN)	
	 	 Quiet	Nan	(qNaN)	
	 	 Signaling	Nan	(sNaN)	

•	Normal	numbers	(or	“normalized	numbers”)	
•	Denormalized	numbers	(or	“denormals”)	

Zero	–	Positive	and	Negative	

There	are	exactly	two	ways	to	represent	zero,	one	is	positive	and	the	other	is	
negative.	This	is	unlike	math,	where	there	is	only	a	single	number	called	zero	and	it	
is	unsigned.	

Here	are	some	interesting	behaviors:	

	 1/+0	yields	+∞	
	 1/-0	yields	–∞	
	 +0	will	normally	compare	as	equal	to	-0	(e.g.,	the	==	in	the	“C”	language)	
	 Some	languages	provide	a	way	to	distinguish	+0	and	-0.	

There	are	additional	behaviors,	such	as:	
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	 -0/-∞		yields	+0	

Although	+0	and	-0	may	compare	as	equal,	they	may	also	result	in	different	
outcomes	in	some	computations.	This	challenges	our	understanding	of	the	meaning	
of	“equal”,	to	say	the	least.	

The	bit	pattern	representation	of	zero	is:	

	 	 single	 double	
	 +0.0	 0x0000	0000	 0x0000	0000	0000	0000	
	 -0.0	 0x8000	0000	 0x8000	0000	0000	0000	

Note	that	the	2loating	point	representation	for	+0.0	is	bit-for-bit	identical	to	the	
representation	for	0	in	binary	integer	representation	(both	signed	and	unsigned).	
Also,	-0.0	is	represented	identically	to	the	most	negative	signed	integer.	

Not	a	Number	-	NaN	

Operations	like	the	following	are	mathematically	unde2ined	and,	when	attempted,	
will	result	in	a	NaN	result,	to	indicate	that	the	result	is	unde2ined.	

	 0/0	
	 ∞	/	∞	
	 0	*	∞		

Other	operations	are	mathematically	de2ined	but	give	a	complex	result.	Complex	
numbers	are	not	handled	by	2loating	point,	so	operations	such	as	the	following	will	
return	NaN.	

	 Square	root	of	a	negative	number	
	 Log	of	a	negative	number	

Another	use	of	NaN	is	to	represent	an	uninitialized	or	missing	value.	If	a	variable	is	
used	before	it	is	initialized,	spurious	incorrect	results	might	occur,	but	this	can	be	
avoided	if	the	variable	contains	NaN.	

The	IEEE	spec	actually	mentions	two	kinds	of	NaN:	“signaling	NaN”	and	“quiet	NaN”.	
But	usually,	we	just	talk	about	NaN	without	making	any	distinction	about	whether	it	
is	signaling	or	quiet.	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	109 323



Chapter	4:	Floating	Point	Instructions	

A	“signaling	NaN”	is	supposed	to	cause	a	break	in	the	2low	of	execution	when	it	is	
encountered	in	a	computation.	That	is,	a	trap	or	exception	of	some	sort	will	occur,	
and	the	normal	instruction	sequence	will	be	interrupted	immediately.	Signaling	
NaNs	might	reasonably	used	for	uninitialized	values:	their	use	may	represent	a	
program	bug	which	needs	attention.	In	theory,	signaling	NaNs	might	also	be	used	as	
placeholders	for	values	(such	as	complex	numbers)	which	require	special	handling.	

The	idea	with	a	“quiet	NaN”,	is	that	it	can	be	used	as	an	operand	in	arithmetic	
operations	.	Furthermore,	a	quiet	NaN	will	be	propagated.	That	is,	if	one	of	the	
arguments	is	a	quiet	NaN,	the	result	will	also	be	a	quiet	NaN.	This	allows	a	lengthy	
sequence	of	operations	to	be	performed	quickly	with	no	special	testing	for	
problems.	Once	a	NaN	appears,	as	a	result	of	some	error,	it	will	persist	in	the	chain	of	
computations.	Each	subsequent	operation	will	complete	normally,	without	causing	
an	exception	or	trap	even	though	some	sort	of	error	occurred	earlier	in	the	
sequence.		If	any	problems	occur	at	any	step	of	the	computation,	the	2inal	result	will	
be	a	quiet	NaN.	Therefore,	it	is	suf2icient	to	perform	only	a	single	test	for	NaN	after	
the	entire	computation	to	see	if	any	errors	arose	at	any	stage	of	the	computation.	

The	spec	does	not	require	signaling	NaNs;	they	are	optional.	One	implementation	
approach	is	for	the	hardware	to	interpret	all	NaN	values	identically,	basically	as	quiet	
NaNs.	

There	are	several	bit	patterns	that	can	be	used	to	represent	NaNs,	so	there	is	not	a	
single	bit	pattern	for	NaN.	

A	value	is	de2ined	to	represent	NaN	if	(1)	the	exponent	2ield	is	all	1’s,	and	(2)	the	bits	
of	the	fraction	2ield	are	not	all	zero.	(If	the	fraction	bits	are	all	zero,	then	the	value	is	
either	+∞	or	–∞.)	The	sign	bit	of	a	NaN	value	is	ignored.	

If	a	distinction	between	quiet	and	signaling	NaN	is	implemented,	then	one	of	the	bits	
in	the	fraction	2ield	will	be	used	to	distinguish	between	quiet	and	signaling.		

The	exact	bit	patterns	for	NaN	are	not	fully	speci2ied	and	can	vary	between	
implementations.	

We	can	say	that	a	value	with	all	bits	set	to	one	(i.e.,	the	representation	for	the	signed	
integer	-1	which	is	0xFFFF	FFFF	or	0xFFFF	FFFF	FFFF	FFFF)	will	de2initely	
represent	a	NaN	and	will	almost	certainly	represent	a	quiet	NaN.	For	example,	this	
all-ones	pattern	will	be	a	quiet	NaN	for	Intel,	AMD,	SPARC,	ARM,	RISC-V,	etc.	
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Mixing	Single	and	Double	Precision	Using	NaN	

There	are	many	bits	in	the	fraction	2ield,	and	the	only	requirement	for	NaN	is	that	
they	cannot	all	be	zero.	Thus,	there	is	room	to	store	some	additional	data	within	
the	NaN.	So	a	NaN	can	carry	a	sort	of	“payload”	value	in	the	fraction	bits.	This	
capability	may	or	may	not	be	used	in	a	particular	implementation	of	IEEE	
754-2008.	

For	example,	the	fraction	2ield	in	a	double	is	52	bits.	Assume	that	one	bit	is	
reserved	to	be	always	set	to	indicate	that	this	is	a	NaN,	and	assume	that	a	second	
bit	is	reserved	and	used	to	distinguish	between	a	quiet	NaN	and	a	signaling	NaN.	
This	leaves	50	bits	that	can	be	used	to	store	a	arbitrary	value.	Notice	that	this	is	
enough	room	to	store	an	entire	single	precision	2loating	point	number.	

Imagine	a	machine	that	implements	double	precision	arithmetic	and	uses	64-bit	
registers	to	store	2loating	point	values.	How	might	this	machine	store	32-bit	single	
precision	values	in	these	same	registers?	

Any	64-bit	value	in	which	the	high	order	32	bits	are	set,	will	be	always	recognized	
as	a	NaN.	One	approach	to	storing	a	single	precision	value	in	a	64	bit	register	is	to	
store	the	single	precision	value	in	the	least	signi2icant	bits	32	bits	and	all	1s	in	the	
most	signi2icant	32	bits.	

All	single	precision	operations	will	only	look	at	the	least	signi2icant	32-bits	of	the	
operands	and,	for	the	result	value,	will	always	set	the	most-signi2icant	32	bits	to	1s.	

Any	accidental	attempt	to	perform	a	double	precision	operation	on	a	register	
containing	a	single	precision	value,	will	interpret	that	operand	as	a	NaN.	

Normal	and	Denormalized	Numbers	

Not	every	number	is	representable	and	the	representable	numbers	are	spaced	out	
on	the	number	line.	So	each	possible	2loating	point	value	is	separated	by	a	numerical	
distance	from	the	next	smallest	number	and	from	the	next	largest	number.	As	the	
numbers	get	smaller	and	closer	to	zero,	the	spacing	gets	smaller	and	the	numbers	
are	closer	together.	As	the	numbers	get	larger,	the	spacing	is	farther	apart.	

For	example,	the	following	numbers	differ	by	a	very	small	amount:	
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	 4.567	×	10-25	
	 4.568	×	10-25	

On	the	other	hand,	these	two	numbers	differ	by	a	very	large	amount:	

	 4.567	×	10+25	
	 4.568	×	10+25	

However	in	both	examples	above,	the	accuracy	is	the	same:	4	digits	of	precision.	

However,	there	are	only	a	limited	number	of	bits	available	to	represent	the	
exponents.	Exponents	cannot	continue	to	get	more	negative	and	we	cannot	
represent	smaller	and	smaller	numbers,	ever	more	close	to	zero.	Therefore,	this	
pattern	of	the	2loating	point	numbers	becoming	spaced	ever	more	closely	as	they	get	
closer	and	closer	to	zero	cannot	continue.	Something	has	to	change	as	the	numbers	
get	smaller	and	approach	zero.	

What	happens	is	that	below	some	size,	the	representable	values	are	simply	spaced	
uniformly	all	the	way	down	to	zero.	This	is	the	role	of	denormalized	numbers.	

Most	2loating	point	numbers	are	“normal”	numbers.	Normal	numbers	have	about	7	
digits	of	accuracy	(for	single	precision)	and	16	digits	of	accuracy	(for	double	
precision).	In	other	words,	we	can	approximate	any	desired	value	with	about	7	(or	
16)	digits	of	accuracy.	

Another	way	to	look	at	denormalized	numbers	is	this:	For	very	small	values,	we	
cannot	approximate	the	value	with	full	accuracy.	As	we	get	closer	and	closer	to	zero,	
we	can	approximate	the	true	value	with	fewer	and	fewer	places	of	accuracy.	For	
really	tiny	values,	we	may	even	be	forced	to	use	0.0	to	represent	the	value,	
essentially	losing	all	accuracy.	

We	can	make	the	following	statements	about	denormalized	numbers:	

•	 All	denormalized	numbers	are	very	close	to	zero.	
•	 Denormalized	numbers	extend	on	both	the	positive	and	negative	sides	of	
zero.	

•	 +0.0	and	-0.0	are	themselves	represented	as	denormalized	numbers.	
•	 All	denormalized	numbers	are	regularly	and	evenly	spaced.	(Exception:	+0.0	
and	-0.0	have	an	in2initesimal	difference	and	are	considered	equal.)	
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•	 The	largest	denormalized	number	is	just	less	than	the	smallest	positive	
normal	number.	

•	 Likewise,	the	most	negative	denormalized	number	is	just	greater	than	the	
least	negative	normal	number.	

•	 It	is	generally	safe	to	ignore	the	distinction	between	normalized	and	
denormalized	numbers	when	using	2loating	point	in	your	applications.	

There	are	rules	for	determining	the	precision	of	the	results	of	an	arithmetic	
calculation	involving	scienti2ic	notation.	But	if	very	small	values	(i.e.,	denormalized	
numbers)	arise	during	a	computation,	then	your	assumptions	about	precision	will	
be	violated	and	the	2inal	results	will	have	reduced	precision.	In	some	cases,	the	2inal	
result	will	be	a	meaningless,	incorrect	value.	

Warning:	Always	remember	that	numbers	as	represented	in	computers	are	NOT	
true	mathematical	numbers.	Computer	arithmetic	is	NOT	mathematical	arithmetic.	
Remember:	“int”s	are	not	integers	and	“2loats”	are	not	real	or	rational	numbers.	

Computer	values	and	computation	are	mere	approximations	of	mathematically	
pure	ideals.	A	good	programmer	knows	how	important	it	is	to	understand	and	
remember	their	differences	in	creating	reliable	software.	

Representation	of	Single	Precision	Floating	Point	Values	

A	single	precision	2loating	point	number	is	represented	with	a	32-bit	word	as	shown	
here:	

� 	

Let	N	be	the	number	represented.	Let	“sign”	be	the	most	signi2icant	bit.	Let	
“exponent”	be	the	bit	pattern	in	bits	30:23.	Let	“fraction”	be	the	bit	pattern	in	bits	
22:0.	

The	number	represented	is:	

	 N		=		(-1)sign		×		1.fraction		×		2exponent	
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The	2irst	term	simply	gives	the	sign	of	the	number:	0=positive	and	1=negative.	Note	
that	the	most	signi2icant	bit	holds	the	sign	bit	for	both	2loating	point	numbers	and	
signed	integers.	

When	converting	a	number	such	as	101.0101	into	2loating	point	format,	you	should	
2irst	shift	the	decimal	place	to	just	after	the	leftmost	1	bit.	Every	number	(except	
zero)	will	always	contain	at	least	a	single	1	bit.	Thus,	the	most	signi2icant	bit	must	be	
a	1	and	representing	it	is	redundant.	This	explains	why	we	pre2ix	the	fractional	part	
with	“1.”.	(This	trick	of	making	one	bit	implicit	doesn’t	work	with	decimal	numbers:	
the	leading	digit	can	be	anything	except	0,	so	we	cannot	make	it	implicit.)	

There	are	8	bits	in	the	exponent	2ield.	The	interpretation	of	the	“exponent”	bit	
patterns	is:	

	 Bit	Pattern	 Meaning	of	Exponent	Field	
	 0000 0000	 Denormalized	Numbers,	including	zero		
	 0000 0001	 -126	
	   ...	 ...	
	 0111 1110	 -1		
	 0111 1111	 0		
	 1000 0000	 +1		
	   ...	 ...	
	 1111 1110	 +127		
	 1111 1111	 InZinity,	Not-a-Number	

For	normalized	numbers,	the	exponent	has	an	effective	range	of	-126	..	+127.	

The	smallest	positive	normalized	number	is:	

In	binary:	
	 	 1.00000000000000000000000	×	2-126	 (There	are	23	zeros)	

In	bits:	
	 	 0x00800000		=		0	00000001	00000000000000000000000	

Decimal	approximation:	
	 	 1.17549435	×	10-38	
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The	largest	normalized	number	is:	

In	binary:	
	 	 1.11111111111111111111111	×	2+127	 (There	are	1+23	ones)	

In	bits:	
	 	 0x7F7FFFFF		=		0	11111110	11111111111111111111111	

Decimal	approximation:	
	 	 3.4028235	×	10+38	

If	the	exponent	is	all	ones	(i.e.,	11111111),	then	the	value	of	the	fraction	matters.	If	
the	fraction	is	all	zeros,	then	the	value	is	+∞	or	–∞	depending	on	the	sign	bit.	

+∞:	
	 	 0x7F800000		=		0	11111111	00000000000000000000000	

-∞:	
	 	 0xFF800000		=		1	11111111	00000000000000000000000	

If	the	exponent	is	all	ones	(i.e.,	11111111)	and	the	value	of	the	fraction	is	not	all	
zeros,	then	NaN	is	represented.	There	are	multiple	representations	that	are	to	be	
interpreted	as	NaN	values.	The	canonical,	preferred	representation	of	NaN	is	often	
this:	

NaN	(typical):	
	 	 0xFFFFFFFF		=		1	11111111	11111111111111111111111	

If	the	exponent	2ield	is	all	zeros	(i.e.,	00000000),	then	the	value	is	a	denormalized	
number.	The	value	of	the	number	is:	

	 N		=		(-1)sign		×		0.fraction		×		2-126	

Notice	that	the	leading	implicit	“1”	bit	is	no	longer	assumed;	it	is	now	“0”.	Also	the	
exponent	is	always	-126,	which	happens	to	be	the	smallest	exponent	for	normalized	
numbers.	

Here	are	some	sample	numbers	that	may	help	explain	denormalized	numbers:	
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	 Smallest	normalized	number:	
	 	 1.00000000000000000000000		×		2-126	 (24	bits	of	precision)	
	 Largest		denormalized	number:	
	 	 0.11111111111111111111111		×		2-126	 (23	bits	of	precision)	
	 …	
	 Random		denormalized	number:	
	 	 0.00000000001100101110101		×		2-126	 (13	bits	of	precision)	
	 …	
	 Smallest		denormalized	number:	
	 	 0.00000000000000000000001		×		2-126	 (1	bit	of	precision)	
	 +0.0:	
	 	 0.00000000000000000000000		×		2-126	 (0	bits	of	precision)	

Representation	of	Double	Precision	Floating	Point	Values	

Double	precision	2loating	point	numbers	are	represented	using	an	analogous	
scheme.	The	only	difference	is	the	number	of	bits	in	the	“exponent”	and	“fraction”	
2ields.	

Here	is	the	representation	of	a	64-bit	double	precision	2loating	point	value:	

� 	

There	are	11	bits	in	the	exponent	2ield,	instead	of	8	as	in	single	precision.	The	
interpretation	of	the	“exponent”	bit	patterns	is:	
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	 Bit	Pattern	 Meaning	of	Exponent	Field	
	 000 0000 0000	 Denormalized	Numbers,	including	zero		
	 000 0000 0001	 -1022	
	   ...	 ...	
	 011 1111 1110	 -1		
	 011 1111 1111	 0		
	 100 0000 0000	 +1		
	   ...	 ...	
	 111 1111 1110	 +1023		
	 111 1111 1111	 InZinity,	Not-a-Number	

For	normalized	numbers,	the	exponent	has	an	effective	range	of	-1022	..	+1023.	

The	smallest	positive	normalized	number	is:	

In	binary:	
	 	 1.000000000...00000000000	×	2-1022	 (There	are	52	zeros)	

In	bits:	
	 	 0x0010	0000	0000	0000	

Decimal	approximation:	
	 	 2.2250738585072014	×	10-308	

The	largest	normalized	number	is:	

In	binary:	
	 	 1.111111111...11111111111	×	2+1023	 (There	are	1+52	ones)	

In	bits:	
	 	 0x7FEF	FFFF	FFFF	FFFF	

Decimal	approximation:	
	 	 1.7976931348623157	×	10+308	

The	smallest	denormalized	number	is:	

In	binary:	
	 	 0.000000000...00000000001	×	2-1022	

In	bits:	
	 	 0x0000	0000	0000	0001	

Decimal	approximation:	
	 	 5.0	×	10-324	
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Other	Floating	Point	Sizes	

In	addition	to	the	well	known	single	precision	(32-bit)	and	double	precision	(64-bit)	
sizes,	the	IEEE	754-2008	standard	also	describes	these	2loating	point	sizes.	They	are	
much	less	common.	

	 16	bits	(half	precision)	
	 128	bits	(quadruple	precision)	
	 256	bits	(octuple	precision)	

There	is	also	mention	of	decimal-based	representations.	

Rounding	

The	result	of	a	computation	may	be	a	number	that	is	not	precisely	representable.	For	
example,	the	addition	of	two	double	numbers	may	not	be	exactly	representable	as	a	
double.	

For	example,	here	are	two	numbers	with	5	digits	of	precision.	Their	sum	has	8	digits	
of	precision.	

	   12.345	 =	1.2345	×	101	
	 +   .067891	 =	6.7891	×	10-2	
	   12.412891	 =	1.2412891	×	101	

The	IEEE	spec	says	that	the	exact	result	should	be	“rounded”	to	a	number	that	can	
be	represented.	For	example,	when	two	doubles	are	added,	their	result	will	be	some	
double	value.	

In	the	above	example,	to	bring	the	result	back	down	to	5	digits	of	precision,	some	
accuracy	must	be	sacri2iced.	Likewise,	when	2loating	point	operations	are	
performed,	there	may	be	a	loss	of	accuracy	as	a	result	of	rounding.	

The	IEEE	spec	lists	several	ways	that	a	value	can	be	rounded	to	something	that	can	
be	represented:	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	118 323



Chapter	4:	Floating	Point	Instructions	

	 •	Round	to	the	nearest	number	
	 	 (For	a	tie,	the	value	with	a	zero	in	the	least	signi2icant	bit	is	chosen.)	
	 •	Round	toward	zero	(i.e.,	truncate)	
	 •	Round	toward	positive	in2inity	(i.e.,	round	up)	
	 •	Round	toward	negative	in2inity	(i.e.,	round	down)	

In	order	to	perform	rounding	correctly,	a	computer	may	need	to	perform	
calculations	(e.g.,	multiplication)	with	greater	precision	to	2irst	compute	the	correct	
value.	Then,	as	the	2inal	step	in	the	calculation,	the	value	must	be	properly	rounded	
to	2it	into	the	available	2loating	point	bits.	

Here	is	another	example,	showing	that	the	entire	effect	of	an	operation	can	be	lost	as	
the	result	of	rounding.	
		
	   12.345	 =	1.2345	×	101	
	 +   .00000067891	 =	6.7891	×	10-7	
	   12.34500067891	 =	1.234500067891	×	101	

Rounding	to	a	value	with	the	same	precision	(either	rounding	down,	rounding	to	
zero,	or	rounding	to	the	nearest)	gives	the	initial	operand,	unchanged.	Here	is	the	
rounded	result:	

	   12.345	 =	1.2345	×	101	

The	Floating	Point	Extensions	

The	RISC-V	spec	describes	these	extensions	to	support	2loating	point	arithmetic	

	 F	–	Single	precision	2loating	point	(32	bit	values)	
	 D	–	Double	precision	2loating	point	(64	bit	values)	
	 Q	–	Quad	precision	2loating	point	(128	bit	values)	

The	“D”	extension	is	a	superset	of	“F”;	when	double	precision	is	implemented,	all	
instructions	operating	on	single	precision	values	will	also	be	included.	

Likewise,	the	“Q”	is	a	superset	of	“D”;	when	the	“Q”	extension	is	implemented,	all	“F”	
and	“D”	instructions	will	also	be	implemented.	
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In	this	document,	we	intermix	the	descriptions	of	“F”,	“D”,	and	“Q”	extensions,	rather	
than	describe	one	after	the	other.	

Floating	Point	Registers	

There	are	32	2loating	point	registers,	named	f0,	f1,	…	f31.	

In	the	“F”	extension,	each	register	can	hold	one	single	precision	2loating	point	value.	
Thus,	each	register	is	32	bits	wide.	All	registers	function	identically;	there	is	nothing	
special	about	f0,	as	there	is	with	x0	of	the	integer	registers.	

In	the	“D”	extension,	these	registers	are	all	64	bits	wide	and	can	hold	either	a	single	
precision	value	or	a	double	precision	value.	If	the	register	contains	a	single	precision	
2loating	point,	then	the	most	signi2icant	32	bits	of	the	register	will	all	be	1.	When	
interpreted	as	a	double,	such	a	value	will	be	recognized	as	a	NaN.	

In	the	“Q”	extension,	the	registers	are	128	bits	wide.	Each	register	can	hold	either	a	
single,	double,	or	quad	precision	2loating	point	value.	In	the	case	of	smaller	values,	
the	upper	bits	will	be	set	to	1	so	that	the	value	will	appear	to	be	NaN	if	interpreted	
as	a	larger	precision	value.	

In	addition	there	is	a	“Floating	Point	Control	and	Status	Register”	(called	“FCSR”).	

The	FCSR	is	divided	into	the	following	2ields:	

	 Bits	 Width	in	bits	 Description	
	 0	 1	 NX:	Inexact	
	 1	 1	 UF:	Under2low	
	 2	 1	 OF:	Over2low	
	 3	 1	 DZ:	Divide	By	Zero	
	 4	 1	 NV:	Invalid	Operation	
	 5:7	 3	 Floating	Point	Rounding	Mode	(FRM)	
	 8:31	 24	 (unused)	

The	Floating	Point	Control	and	Status	Register	(FCSR)	is	one	of	the	“Control	and	
Status	Registers	(CSRs),	which	are	discussed	elsewhere	in	this	document.	This	
particular	register	is	freely	accessible	regardless	of	the	operating	mode	(user,	
supervisor,	or	machine	mode),	so	this	need	not	be	a	concern	here.	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	120 323



Chapter	4:	Floating	Point	Instructions	

There	are	some	general	purpose	instructions	used	for	reading	and	writing	the	CSRs	
and	these	are	discussed	elsewhere.	

Collectively,	the	5	single	bit	2ields	are	referred	to	as	the	“Floating	Point	
Flags”	(FFLAGS):	
	 	

FFLAGS	(Floating	Point	Flags):	
	 	 NX:	Inexact	
	 	 UF:	Under2low	
	 	 OF:	Over2low	
	 	 DZ:	Divide	By	Zero	
	 	 NV:	Invalid	Operation	

These	5	2lags	can	be	reset	to	zero	by	writing	to	the	Floating	Point	Control	and	Status	
Register	(FCSR).	They	may	be	set	to	one	from	time-to-time	as	2loating	point	
instructions	are	executed.	Once	set,	they	will	remain	set.	Therefore,	these	bits	can	be	
queried	after	a	sequence	of	instructions	to	determine	if	any	of	several	unusual	
conditions	has	occurred	during	the	previous	instruction	sequence.	

The	meaning	of	each	bit	is	straightforward.	

If	the	result	of	an	operation	had	to	be	rounded,	then	the	“NX:	Inexact”	bit	will	be	set.	
If	the	result	is	too	small	to	2it	in	a	normalized	form	and	is	also	inexact,	then	the	“UF:	
Under2low”	bit	will	be	set	and	the	result	will	be	returned	as	a	denormalized	value.	If	
the	result	is	too	large	to	be	represented,	then	the	“OF:	Over2low”	bit	will	be	set	and	
+∞	or	-∞	will	usually	be	returned	as	the	result.		The	“DZ:	Divide	By	Zero”	bit	is	set	
for	operations	like	1/0	and	log(0)	and	+∞	or	-∞	will	be	returned	as	the	result.	
Certain	operations	are	considered	invalid,	such	as	“square	root	of	a	negative	
number”.	The	“NV:	Invalid	Operation”	bit	will	be	set	and	NaN	(by	default,	quiet	NaN)	
will	be	returned.	

Floating	Point	instructions	that	have	problems	will	set	the	FFLAGS	bits	but	will	
never	cause	a	trap	or	exception.	Instead,	instruction	execution	will	continue	
uninterrupted.	

If	the	result	of	an	instruction	is	NaN,	then	a	quiet	NaN	will	be	inserted,	unless	
otherwise	documented.	RISC-V	will	insert	the	following	representation	for	a	quiet	
NaN:	
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	 Single	Precision	quiet	NaN:	
	 	 0x7FC00000		=		0 11111111 10000000000000000000000	

The	“unused”	zero	bits	may	be	used	for	other	RISC-V	extensions,	but	normally	they	
will	appear	to	be	zero	when	read.	Floating	point	code	should	ignore	the	value	of	this	
2ield	and	not	attempt	to	change	it.	

There	are	several	different	ways	that	a	2loating	point	result	can	be	rounded	to	2it	into	
the	available	precision:	

	 •	Round	to	the	nearest	number	
	 	 (For	a	tie,	the	value	with	a	zero	in	the	least	signi2icant	bit	is	chosen.)	
	 •	Round	toward	zero	(i.e.,	truncate)	
	 •	Round	toward	negative	in2inity	(i.e.,	round	down)	
	 •	Round	toward	positive	in2inity	(i.e.,	round	up)	

The	rounding	mode	can	be	either	static	or	dynamic.	

There	is	a	“Rounding	Mode”	(RM)	2ield	in	each	2loating	point	instruction.	In	static	
mode,	the	rounding	method	to	be	used	is	encoded	in	the	RM	bits	within	the	
instruction,	according	to	these	codes:	

	 000		 Round	to	the	nearest	number	
	 	 	 (For	a	tie,	the	value	with	a	zero	in	the	least	signi2icant	bit	is	chosen.)	
	 001		 Round	toward	zero	(i.e.,	truncate)	
	 010		 Round	toward	negative	in2inity	(i.e.,	round	down)	
	 011		 Round	toward	positive	in2inity	(i.e.,	round	up)	
	 100		 Round	to	the	nearest	number	
	 	 	 (For	a	tie,	round	away	from	zero.)	
	 101	 invalid	
	 110	 invalid	
	 111	 Use	dynamic	mode:	Consult	the	CSR	for	the	rounding	method.	

With	the	dynamic	mode,	the	rounding	mode	will	be	determined	by	the	Floating	
Point	Rounding	Mode	(FRM)	bits	in	the	Floating	Point	Control	and	Status	Register	
(FCSR).	If	the	instructions	RM	2ield	contains	111,	then	the	rounding	mode	to	be	used	
is	determined	dynamically	when	the	instruction	is	executed	by	consulting	the	FCSR.	
The	FRM	bits	in	the	FCSR	tell	which	rounding	method	to	use,	according	to	the	
following	table.	This	table	is	the	same	as	above,	except	for	the	last	line.	
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	 000		 Round	to	the	nearest	number	
	 	 	 (For	a	tie,	the	value	with	a	zero	in	the	least	signi2icant	bit	is	chosen.)	
	 001		 Round	toward	zero	(i.e.,	truncate)	
	 010		 Round	toward	negative	in2inity	(i.e.,	round	down)	
	 011		 Round	toward	positive	in2inity	(i.e.,	round	up)	
	 100		 Round	to	the	nearest	number	
	 	 	 (For	a	tie,	round	away	from	zero.)	
	 101	 invalid	
	 110	 invalid	
	 111	 invalid	

If	a	2loating	point	instruction	will	not	need	to	perform	rounding	but	contains	an	RM	
2ield	(for	example,	the	FNEG	instruction),	the	RM	2ield	should	be	set	to	000.	

The	RISC-V	spec	does	not	indicate	or	suggest	how	the	rounding	mode	should	be	
written	in	assembly	code.	???	

The	2lags	portion	(NX,	UF,	OF,	DZ,	NV)	of	the	Floating	Point	Status	Register	(FCSR)	is	
accessible	and	mirrored	in	a	second	CSR	called	(FFLAGS).	Likewise,	the	rounding	
mode	bits	of	the	Floating	Point	Status	Register	(FCSR)	are	accessible	and	mirrored	in	
a	third	CSR	called	(FRM).	

Control	and	Status	Registers	are	covered	elsewhere,	but	the	register	concerned	with	
the	2loating	point	extension	are:	

CSR	Addr	 Name	 Description	
001	 f=lags	 Floating	pointing	2lags	
002	 frm	 Dynamic	rounding	mode	
003	 fcsr	 Concatenation	of	frm	+	f2lags	

These	regs	are	read/write	in	any	privilege	mode.	

Separate	assembler	instructions	are	de2ined	to	access	these	registers,	but	these	are	
just	shorthand	(syntactic	sugar)	for	other,	more	general	instructions.	The	
instructions	are:	

	 FRFLAGS	-	Read	the	FFLAGS	register	
FRFLAGS RegD RegD=CSR[FFLAGS]

	 FSFLAGS	-	Swap	the	FFLAGS	register	
FSFLAGS RegD,Reg1 RegD=CSR[FFLAGS];CSR[FFLAGS]=Reg1
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	 FRRM	-	Read	the	FRM	(Rounding	Mode)	register	
FRRM RegD RegD=CSR[FRM]

	 FSRM	-	Swap	the	FRM	(Rounding	Mode)	register	
FSRM RegD,Reg1 RegD=CSR[FRM];CSR[FRM]=Reg1

Not-A-Number	-	NaN	

The	spec	says	that	the	“canonical	NaN”	is	0x7fc00000.	Presumably,	they	mean	a	
quiet	NaN.	The	RISC-V	spec	mentions	the	existence	of	a	signaling	NaN,	saying	that	if	
one	is	encountered	in	an	operation,	an	invalid	instruction	exception	will	occur.	
However,	the	spec	does	not	say	how	a	signaling	NaN	is	distinguished.	???	

Floating	Point	Load	and	Store	Instructions	

The	following	instructions	will	move	data	between	memory	and	a	2loating	point	
register.	

We	use	the	notation	FReg1,	FReg2,	and	FRegD	to	indicate	2loating	point	registers,	
just	as	we	use	Reg1,	Reg2,	and	RegD	to	indicate	integer	registers.	

Floating	Load	(Word)	

General	Form:	
FLW    FRegD,Immed-12(Reg1)

Example:	
FLW    f4,1234(x9)    # f4 = Mem[x9+1234]

Description:	
A	32-bit	value	is	fetched	from	memory	and	moved	into	2loating	register	FRegD.	
The	memory	address	is	formed	by	adding	the	offset	to	the	contents	of	Reg1.	

Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	

The	address	of	the	memory	location	is	not	required	to	be	properly	aligned	(i.e.	
word-aligned),	but	it	is	assumed	that	this	instruction	will	execute	faster	with	
properly	aligned	addresses.	
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This	instruction	is	guaranteed	to	execute	atomically	if	the	address	is	properly	
aligned.	If	the	address	is	not	aligned,	there	is	no	guarantee	of	atomic	
operation.	

RISC-V	Extensions:	
This	instruction	requires	the	“F”	extension.	

Encoding:	
	 This	is	an	I-type	instruction.	

Floating	Load	(Double)	

General	Form:	
FLD    FRegD,Immed-12(Reg1)

Example:	
FLD    f4,1234(x9)    # f4 = Mem[x9+1234]

Description:	
A	64-bit	value	is	fetched	from	memory	and	moved	into	2loating	register	FRegD.	
The	memory	address	is	formed	by	adding	the	offset	to	the	contents	of	Reg1.	

Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	

The	address	of	the	memory	location	is	not	required	to	be	properly	aligned	(i.e.	
doubleword-aligned),	but	it	is	assumed	that	this	instruction	will	execute	faster	
with	properly	aligned	addresses.	

This	instruction	is	guaranteed	to	execute	atomically	if	the	address	is	properly	
aligned.	If	the	address	is	not	aligned,	there	is	no	guarantee	of	atomic	
operation.	

RISC-V	Extensions:	
This	instruction	requires	the	“D”	extension.	

Encoding:	
	 This	is	an	I-type	instruction.	

Floating	Load	(Quad)	

General	Form:	
FLQ    FRegD,Immed-12(Reg1)  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Comment:	
	 Analogous;	Only	available	in	“Q”	quad	precision	2loating	point	extension.	

Floating	Store	(Word)	

General	Form:	
FSW    FReg2,Immed-12(Reg1)

Example:	
FSW    f4,1234(x9),f4    # Mem[x9+1234] = f4

Description:	
A	32-bit	value	is	copied	from	register	FReg2	to	memory.	The	memory	address	
is	formed	by	adding	the	offset	to	the	contents	of	Reg1.	

Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	

The	address	of	the	memory	location	is	not	required	to	be	properly	aligned	(i.e.	
word-aligned),	but	it	is	assumed	that	this	instruction	will	execute	faster	with	
properly	aligned	addresses.	

This	instruction	is	guaranteed	to	execute	atomically	if	the	address	is	properly	
aligned.	If	the	address	is	not	aligned,	there	is	no	guarantee	of	atomic	
operation.	

RISC-V	Extensions:	
This	instruction	requires	the	“F”	extension.	

Encoding:	
	 This	is	an	I-type	instruction.	

Floating	Store	(Double)	

General	Form:	
FSD    FReg2,Immed-12(Reg1)

Example:	
FSD    f4,1234(x9)    # Mem[x9+1234] = f4

Description:	
A	64-bit	value	is	copied	from	register	FReg2	to	memory.	The	memory	address	
is	formed	by	adding	the	offset	to	the	contents	of	Reg1.  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Comment:	
The	target	location	given	by	the	12-bit	offset	must	be	within	the	range	of	
-2,048	..	2,047	relative	to	the	value	in	Reg1.	

The	address	of	the	memory	location	is	not	required	to	be	properly	aligned	(i.e.	
doubleword-aligned),	but	it	is	assumed	that	this	instruction	will	execute	faster	
with	properly	aligned	addresses.	

This	instruction	is	guaranteed	to	execute	atomically	if	the	address	is	properly	
aligned.	If	the	address	is	not	aligned,	there	is	no	guarantee	of	atomic	
operation.	

RISC-V	Extensions:	
This	instruction	requires	the	“D”	extension.	

Encoding:	
	 This	is	an	I-type	instruction.	

Floating	Store	(Quad)	

General	Form:	
FSQ    FReg2,Immed-12(Reg1)

Comment:	
	 Analogous;	Only	available	in	“Q”	quad	precision	2loating	point	extension.	

Basic	Floating	Point	Arithmetic	Instructions	

Floating	Add	

General	Form:	
FADD.S   FRegD,FReg1,FReg2  (single precision)
FADD.D   FRegD,FReg1,FReg2  (double precision)
FADD.Q   FRegD,FReg1,FReg2  (quad precision)

Example:	
FADD.S   f4,f9,f13     # f4 = f9+f13  (32 bits)
FADD.D   f4,f9,f13     # f4 = f9+f13  (64 bits)
FADD.Q   f4,f9,f13     # f4 = f9+f13  (128 bits) 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Description:	
The	value	in	FReg1	is	added	to	the	value	in	FReg2	and	the	result	is	placed	in	
FRegD.	

Rounding	Mode:	
This	instruction	contains	a	3	bit	Rounding	Mode	(RM)	2ield,	which	will	
determine	the	rounding	method	to	be	used.	

RISC-V	Extensions:	
FADD.S	requires	the	“F”	extension.	
FADD.D	requires	the	“D”	extension.	
FADD.Q	requires	the	“Q”	extension.	

Encoding:	
	 This	is	an	R-type	instruction.	

Floating	Subtract	

General	Form:	
FSUB.S   FRegD,FReg1,FReg2  (single precision)
FSUB.D   FRegD,FReg1,FReg2  (double precision)
FSUB.Q   FRegD,FReg1,FReg2  (quad precision)

Example:	
FSUB.S   f4,f9,f13     # f4 = f9-f13  (32 bits)
FSUB.D   f4,f9,f13     # f4 = f9-f13  (64 bits)
FSUB.Q   f4,f9,f13     # f4 = f9-f13  (128 bits)

Description:	
The	value	in	FReg1	is	subtracted	from	the	value	in	FReg2	and	the	result	is	
placed	in	FRegD.	

Rounding	Mode:	
This	instruction	contains	a	3	bit	Rounding	Mode	(RM)	2ield,	which	will	
determine	the	rounding	method	to	be	used.	

RISC-V	Extensions:	
FSUB.S	requires	the	“F”	extension.	
FSUB.D	requires	the	“D”	extension.	
FSUB.Q	requires	the	“Q”	extension.	

Encoding:	
	 This	is	an	R-type	instruction.	
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Floating	Multiply	

General	Form:	
FMUL.S   FRegD,FReg1,FReg2  (single precision)
FMUL.D   FRegD,FReg1,FReg2  (double precision)
FMUL.Q   FRegD,FReg1,FReg2  (quad precision)

Example:	
FMUL.S   f4,f9,f13     # f4 = f9*f13  (32 bits)
FMUL.D   f4,f9,f13     # f4 = f9*f13  (64 bits)
FMUL.Q   f4,f9,f13     # f4 = f9*f13  (128 bits)

Description:	
The	value	in	FReg1	is	multiplied	by	the	value	in	FReg2	and	the	result	is	placed	
in	FRegD.	

Rounding	Mode:	
This	instruction	contains	a	3	bit	Rounding	Mode	(RM)	2ield,	which	will	
determine	the	rounding	method	to	be	used.	

RISC-V	Extensions:	
FMUL.S	requires	the	“F”	extension.	
FMUL.D	requires	the	“D”	extension.	
FMUL.Q	requires	the	“Q”	extension.	

Encoding:	
	 This	is	an	R-type	instruction.	

Floating	Divide	

General	Form:	
FDIV.S   FRegD,FReg1,FReg2  (single precision)
FDIV.D   FRegD,FReg1,FReg2  (double precision)
FDIV.Q   FRegD,FReg1,FReg2  (quad precision)

Example:	
FDIV.S   f4,f9,f13     # f4 = f9/f13  (32 bits)
FDIV.D   f4,f9,f13     # f4 = f9/f13  (64 bits)
FDIV.Q   f4,f9,f13     # f4 = f9/f13  (128 bits)

Description:	
The	value	in	FReg1	is	divided	by	the	value	in	FReg2	and	the	result	is	placed	in	
FRegD. 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Rounding	Mode:	
This	instruction	contains	a	3	bit	Rounding	Mode	(RM)	2ield,	which	will	
determine	the	rounding	method	to	be	used.	

RISC-V	Extensions:	
FDIV.S	requires	the	“F”	extension.	
FDIV.D	requires	the	“D”	extension.	
FDIV.Q	requires	the	“Q”	extension.	

Encoding:	
	 This	is	an	R-type	instruction.	

Floating	Minimum	

General	Form:	
FMIN.S   FRegD,FReg1,FReg2  (single precision)
FMIN.D   FRegD,FReg1,FReg2  (double precision)
FMIN.Q   FRegD,FReg1,FReg2  (quad precision)

Example:	
FMIN.S   f4,f9,f13     # f4 = Min(f9,f13) (32 bits)
FMIN.D   f4,f9,f13     # f4 = Min(f9,f13) (64 bits)
FMIN.Q   f4,f9,f13     # f4 = Min(f9,f13) (128 bits)

Description:	
The	values	in	FReg1	and	FReg2	are	compared	and	the	smaller	one	is	placed	in	
FRegD.	

RISC-V	Extensions:	
FMIN.S	requires	the	“F”	extension.	
FMIN.D	requires	the	“D”	extension.	
FMIN.Q	requires	the	“Q”	extension.	

Encoding:	
	 This	is	an	R-type	instruction.	

Floating	Maximum	

General	Form:	
FMAX.S   FRegD,FReg1,FReg2  (single precision)
FMAX.D   FRegD,FReg1,FReg2  (double precision)
FMAX.Q   FRegD,FReg1,FReg2  (quad precision)

Example:	
FMAX.S   f4,f9,f13     # f4 = Max(f9,f13) (32 bits)
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FMAX.D   f4,f9,f13     # f4 = Max(f9,f13) (64 bits)
FMAX.Q   f4,f9,f13     # f4 = Max(f9,f13) (128 bits)

Description:	
The	values	in	FReg1	and	FReg2	are	compared	and	the	larger	one	is	placed	in	
FRegD.	

RISC-V	Extensions:	
FMAX.S	requires	the	“F”	extension.	
FMAX.D	requires	the	“D”	extension.	
FMAX.Q	requires	the	“Q”	extension.	

Encoding:	
	 This	is	an	R-type	instruction.	

Floating	Square	Root	

General	Form:	
FSQRT.S   FRegD,FReg1  (single precision)
FSQRT.D   FRegD,FReg1  (double precision)
FSQRT.Q   FRegD,FReg1  (quad precision)

Example:	
FSQRT.S   f4,f9 # f4 = sqrt(f9) (32 bits)
FSQRT.D   f4,f9 # f4 = sqrt(f9) (64 bits)
FSQRT.Q   f4,f9 # f4 = sqrt(f9) (128 bits)

Description:	
The	square	root	of	the	value	in	FReg1	is	computed	and	the	result	is	placed	in	
FRegD.	

Rounding	Mode:	
This	instruction	contains	a	3	bit	Rounding	Mode	(RM)	2ield,	which	will	
determine	the	rounding	method	to	be	used.	

RISC-V	Extensions:	
FSQRT.S	requires	the	“F”	extension.	
FSQRT.D	requires	the	“D”	extension.	
FSQRT.Q	requires	the	“Q”	extension.	

Encoding:	
	 This	is	a	R-type	instruction,	in	which	the	Reg2	2ield	is	all	zeros.	
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Floating	Fused	Multiply-Add	

General	Form:	
FMADD.S    FRegD,FReg1,FReg2,FReg3  (single precision)
FNMADD.S   FRegD,FReg1,FReg2,FReg3  (single precision)
FMADD.D    FRegD,FReg1,FReg2,FReg3  (double precision)
FNMADD.D   FRegD,FReg1,FReg2,FReg3  (double precision)

Example:	
FMADD.S    f2,f5,f6,f7    # f2 = (f5*f6)+f7
FNMADD.S   f2,f5,f6,f7    # f2 = (-(f5*f6))+f7
FMADD.D    f2,f5,f6,f7    # f2 = (f5*f6)+f7
FNMADD.D   f2,f5,f6,f7    # f2 = (-(f5*f6))+f7

Description:	
This	instruction	performs	a	multiplication	and	an	addition.	A	variation	(which	
is	shown	here	with	the	opcode	FNMADD)	will	optionally	negate	the	product	
before	the	addition.	See	the	spec	concerning	cases	when	the	arguments	are	0,	
∞,	and	NaN.	

Rounding	Mode:	
This	instruction	contains	a	3	bit	Rounding	Mode	(RM)	2ield,	which	will	
determine	the	rounding	method	to	be	used.	

RISC-V	Extensions:	
FMADD.S	and	FNMADD.S	require	the	“F”	extension.	
FMADD.D	and	FNMADD.D	require	the	“D”	extension.	

Encoding:	
	 This	instruction	is	unusual	in	that	it	has	four	operands,	all	of	which	are	

registers.	Thus,	it	does	not	2it	into	any	of	the	instruction	formats	that	were	
described	earlier.	This	instruction	type	is	called	an	R4-type	instruction.	The	
R4-type	instruction	format	is	used	only	for	this	and	the	fused	multiply-
subtract	instructions.	

Floating	Fused	Multiply-Subtract	

General	Form:	
FMSUB.S    FRegD,FReg1,FReg2,FReg3  (single precision)
FNMSUB.S   FRegD,FReg1,FReg2,FReg3  (single precision)
FMSUB.D    FRegD,FReg1,FReg2,FReg3  (double precision)
FNMSUB.D   FRegD,FReg1,FReg2,FReg3  (double precision)
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Example:	
FMSUB.S    f2,f5,f6,f7    # f2 = (f5*f6)-f7
FNMSUB.S   f2,f5,f6,f7    # f2 = (-(f5*f6))-f7
FMSUB.D    f2,f5,f6,f7    # f2 = (f5*f6)-f7
FNMSUB.D   f2,f5,f6,f7    # f2 = (-(f5*f6))-f7

Description:	
This	instruction	performs	a	multiplication	and	a	subtraction.	A	variation	
(which	is	shown	here	with	the	opcode	FNMSUB)	will	optionally	negate	the	
product	before	the	subtraction.	See	the	spec	concerning	cases	when	the	
arguments	are	0,	∞,	and	NaN.	

Rounding	Mode:	
This	instruction	contains	a	3	bit	Rounding	Mode	(RM)	2ield,	which	will	
determine	the	rounding	method	to	be	used.	

RISC-V	Extensions:	
FMSUB.S	and	FNMSUB.S	require	the	“F”	extension.	
FMSUB.D	and	FNMSUB.D	require	the	“D”	extension.	

Encoding:	
	 This	instruction	is	unusual	in	that	it	has	four	operands,	all	of	which	are	

registers.	Thus,	it	does	not	2it	into	any	of	the	instruction	formats	that	were	
described	earlier.	This	instruction	type	is	called	an	R4-type	instruction.	The	
R4-type	instruction	format	is	used	only	for	this	and	the	fused	multiply-add	
instructions.	

Floating	Fused	Multiply-Add	/	Subtract	(Quad)	

General	Form:	
FMADD.Q    FRegD,FReg1,FReg2,FReg3
FNMADD.Q   FRegD,FReg1,FReg2,FReg3
FMSUB.Q    FRegD,FReg1,FReg2,FReg3
FNMSUB.Q   FRegD,FReg1,FReg2,FReg3

Comment:	
	 Analogous;	Only	available	in	“Q”	quad	precision	2loating	point	extension.	

Floating	Point	Conversion	Instructions	
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There	is	a	set	of	instructions	for	converting	from	one	representation	to	another.	The	
following	codes	are	used	to	name	the	different	formats:	

	 W	 32-bit	signed	integer	
	 WU	 32-bit	unsigned	integer	
	 L	 64-bit	signed	integer	
	 LU	 64-bit	unsigned	integer	
	 S	 Single-precision	2loating	point	number	
	 D	 Double-precision	2loating	point	number	

Floating	Point	Conversion	(Integer	to/from	Single	Precision)	

General	Forms:	
FCVT.W.S    RegD,FReg1
FCVT.WU.S   RegD,FReg1
FCVT.L.S    RegD,FReg1   (available	in	RV64	or	RV128	only)
FCVT.LU.S   RegD,FReg1   (available	in	RV64	or	RV128	only)
FCVT.S.W    FRegD,Reg1
FCVT.S.WU   FRegD,Reg1
FCVT.S.L    FRegD,Reg1   (available	in	RV64	or	RV128	only)
FCVT.S.LU   FRegD,Reg1   (available	in	RV64	or	RV128	only)

Examples:	
FCVT.W.S    r2,f5        # r2(int32)  = f5(float)
FCVT.WU.S   r2,f5        # r2(uint32) = f5(float)
FCVT.L.S    r2,f5        # r2(int64)  = f5(float)
FCVT.LU.S   r2,f5        # r2(uint64) = f5(float)
FCVT.S.W    f4,r7        # f4(float) = r7(int32)
FCVT.S.WU   f4,r7        # f4(float) = r7(uint32)
FCVT.S.L    f4,r7        # f4(float) = r7(int64)
FCVT.S.LU   f4,r7        # f4(float) = r7(uint64)

Description:	
These	instructions	perform	a	conversion	of	a	single	precision	2loating	format	
to/from	an	integer	format.		

Rounding:	
These	instructions	contain	Rounding	Mode	(RM)	bits	which	determine	how	
rounding	is	to	be	done.	

When	converting	to	an	integer,	the	values	+∞,	NaN,	and	values	that	are	too	
large	to	be	represented	in	the	target	format	are	stored	as	the	largest	integer	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	134 323



Chapter	4:	Floating	Point	Instructions	

value	that	can	be	represented.	The	value	–∞	and	values	that	are	too	negative	
to	be	represented	in	the	target	format	are	converted	into	the	smallest	integer	
value	that	can	be	represented.	

RISC-V	Extensions:	
These	instructions	require	the	“F”	extension.	Furthermore,	the	instructions	
involving	64	bit	integers	are	not	available	in	RV32,	as	noted	in	the	general	
forms	above.	

Encoding:	
	 This	is	an	R-type	instruction,	in	which	the	Reg2	2ield	is	used	for	additional	

opcode	bits.	

Floating	Point	Conversion	(Integer	to/from	Double	Precision)	

General	Forms:	
FCVT.W.D    RegD,FReg1
FCVT.WU.D   RegD,FReg1
FCVT.L.D    RegD,FReg1   (available	in	RV64	or	RV128	only)
FCVT.LU.D   RegD,FReg1   (available	in	RV64	or	RV128	only)
FCVT.D.W    FRegD,Reg1
FCVT.D.WU   FRegD,Reg1
FCVT.D.L    FRegD,Reg1   (available	in	RV64	or	RV128	only)
FCVT.D.LU   FRegD,Reg1   (available	in	RV64	or	RV128	only)

Examples:	
FCVT.W.D    r2,f5        # r2(int32)  = f5(double)
FCVT.WU.D   r2,f5        # r2(uint32) = f5(double)
FCVT.L.D    r2,f5        # r2(int64)  = f5(double)
FCVT.LU.D   r2,f5        # r2(uint64) = f5(double)
FCVT.D.W    f4,r7        # f4(double) = r7(int32)
FCVT.D.WU   f4,r7        # f4(double) = r7(uint32)
FCVT.D.L    f4,r7        # f4(double) = r7(int64)
FCVT.D.LU   f4,r7        # f4(double) = r7(uint64)

Description:	
These	instructions	perform	a	conversion	of	a	double	precision	2loating	format	
to/from	an	integer	format.		

Rounding:	
These	instructions	contain	Rounding	Mode	(RM)	bits	which	determine	how	
rounding	is	to	be	done.	
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When	converting	to	an	integer,	the	values	+∞,	NaN,	and	values	that	are	too	
large	to	be	represented	in	the	target	format	are	stored	as	the	largest	integer	
value	that	can	be	represented.	The	value	–∞	and	values	that	are	too	negative	
to	be	represented	in	the	target	format	are	converted	into	the	smallest	integer	
value	that	can	be	represented.	

RISC-V	Extensions:	
These	instructions	require	the	“D”	extension.	Furthermore,	the	instructions	
involving	64	bit	integers	are	not	available	in	RV32,	as	noted	in	the	general	
forms	above.	

Encoding:	
	 This	is	an	R-type	instruction,	in	which	the	Reg2	2ield	is	used	for	additional	

opcode	bits.	

Programming	Hint:	To	store	+0.0	in	a	2loating	register,	use	these	instructions:	

	 FCVT.S.W    FRegD,x0    # Single precision
FCVT.D.W    FRegD,x0    # Double precision	

Floating	Point	Conversion	(Integer	to/from	Quad	Precision)	

General	Forms:	
FCVT.W.Q    RegD,FReg1
FCVT.WU.Q   RegD,FReg1
FCVT.L.Q    RegD,FReg1   (available	in	RV64	or	RV128	only)
FCVT.LU.Q   RegD,FReg1   (available	in	RV64	or	RV128	only)
FCVT.Q.W    FRegD,Reg1
FCVT.Q.WU   FRegD,Reg1
FCVT.Q.L    FRegD,Reg1   (available	in	RV64	or	RV128	only)
FCVT.Q.LU   FRegD,Reg1   (available	in	RV64	or	RV128	only)

Comment:	
	 Analogous;	Only	available	in	“Q”	quad	precision	2loating	point	extension.	

Floating	Point	Conversion	(Single/Double	to/from	Quad	Precision)	

General	Forms:	
FCVT.S.Q    FRegD,FReg1
FCVT.Q.S    FRegD,FReg1
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FCVT.D.Q    FRegD,FReg1
FCVT.Q.D    FRegD,FReg1

Comment:	
	 Analogous;	Only	available	in	“Q”	quad	precision	2loating	point	extension.	

Floating	Point	Move	Instructions	

The	next	three	instructions	copy	a	signed	value	from	one	register	to	another	register,	
while	modifying	the	sign	bit	based	on	the	sign	from	another	value.	

Floating	Sign	Injection	(Single	Precision)	

General	Forms:	
FSGNJ.S     FRegD,FReg1,FReg2   (inject)
FSGNJN.S    FRegD,FReg1,FReg2   (negate)
FSGNJX.S    FRegD,FReg1,FReg2   (exclusive-or)

Examples:	
FSGNJ.S     f2,f5,f6        # f2 = sign(f6) * |f5|
FSGNJN.S    f2,f5,f6        # f2 = -sign(f6) * |f5|
FSGNJX.S    f2,f5,f6        # f2 = sign(f6) * f5

Description:	
Each	of	these	instructions	copies	the	value	in	FReg1	into	FRegD.	However	the	
sign	of	the	result	is	changed,	based	on	the	sign	of	the	value	in	FReg2.	In	the	
“inject”	instruction,	the	sign	from	FReg2	is	used	for	the	result.	In	the	“negate”	
instruction,	the	sign	from	FReg2	is	2irst	2lipped	and	then	used	for	the	result.	In	
the	“exclusive-or”	instruction,	the	signs	from	FReg1	and	FReg2	are	XOR-ed	
together	and	then	used	for	the	result.	

Comments:	
These	instructions	are	useful	as	implementations	of	special	cases	for	the	
instructions	FNEG.S,	FABS.S,	and	FMV.S.	In	addition,	the	IEEE	754-2008	spec	
calls	for	a	“copy	sign”	operation.	These	operations	may	also	have	use	in	some	
math	library	functions.	

RISC-V	Extensions:	
These	instructions	require	the	“F”	extension.	Presumably,	in	the	“D”	extension,	
this	instruction	will	only	modify	the	lower	order	32	bits,	but	it	is	possible	that	
it	will	also	set	the	upper	32	bits	to	all	ones.	??? 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Encoding:	
	 This	is	an	R-type	instruction.	

Floating	Sign	Injection	(Double	Precision)	

General	Forms:	
FSGNJ.D     FRegD,FReg1,FReg2   (inject)
FSGNJN.D    FRegD,FReg1,FReg2   (negate)
FSGNJX.D    FRegD,FReg1,FReg2   (exclusive-or)

Examples:	
FSGNJ.D     f2,f5,f6        # f2 = sign(f6) * |f5|
FSGNJN.D    f2,f5,f6        # f2 = -sign(f6) * |f5|
FSGNJX.D    f2,f5,f6        # f2 = sign(f6) * f5

Description:	
Each	of	these	instructions	copies	the	value	in	FReg1	into	FRegD.	However	the	
sign	of	the	result	is	changed,	based	on	the	sign	of	the	value	in	FReg2.	In	the	
“inject”	instruction,	the	sign	from	FReg2	is	used	for	the	result.	In	the	“negate”	
instruction,	the	sign	from	FReg2	is	2irst	2lipped	and	then	used	for	the	result.	In	
the	“exclusive-or”	instruction,	the	signs	from	FReg1	and	FReg2	are	XOR-ed	
together	and	then	used	for	the	result.	

Comments:	
These	instructions	are	useful	as	implementations	of	special	cases	for	the	
instructions	FNEG.D,	FABS.D,	and	FMV.D.	In	addition,	the	IEEE	754-2008	spec	
calls	for	a	“copy	sign”	operation.	These	operations	may	also	have	use	in	some	
math	library	functions.	

RISC-V	Extensions:	
These	instructions	require	the	“D”	extension.		

Encoding:	
	 This	is	an	R-type	instruction.	

Floating	Sign	Injection	(Double	Precision)	

General	Forms:	
FSGNJ.Q     FRegD,FReg1,FReg2   (inject)
FSGNJN.Q    FRegD,FReg1,FReg2   (negate)
FSGNJX.Q    FRegD,FReg1,FReg2   (exclusive-or)

Comment:	
	 Analogous;	Only	available	in	“Q”	quad	precision	2loating	point	extension.	
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Floating	Move	

General	Forms:	
FMV.S       FRegD,FReg1  (single precision)
FMV.D       FRegD,FReg1  (double precision)
FMV.Q       FRegD,FReg1  (quad precision)

Examples:	
FMV.S       f2,f5           # f2 = f5   (32 bits)
FMV.D       f2,f5           # f2 = f5   (64 bits)
FMV.Q       f2,f5           # f2 = f5   (128 bits)

Description:	
The	value	in	FReg1	is	copied	into	FRegD.	

RISC-V	Extensions:	
FMV.S	requires	the	“F”	extension.		
FMV.D	requires	the	“D”	extension.		
FMV.Q	requires	the	“Q”	extension.		

Encoding:	
These	instructions	are	special	cases	of	more	general	instructions.	They	are	
assembled	identically	to:	

FSGNJ.S       FRegD,FReg1,FReg1    (inject)	
	 FSGNJ.D       FRegD,FReg1,FReg1    (inject)	

Floating	Negate	

General	Forms:	
FNEG.S       FRegD,FReg1  (single precision)
FNEG.D       FRegD,FReg1  (double precision)
FNEG.Q       FRegD,FReg1  (quad precision)

Examples:	
FNEG.S       f2,f5           # f2 = -(f5) (32 bits)
FNEG.D       f2,f5           # f2 = -(f5) (64 bits)
FNEG.Q       f2,f5           # f2 = -(f5) (128 bits)

Description:	
The	value	in	FReg1	is	negated	and	then	copied	into	FRegD.	
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RISC-V	Extensions:	
FNEG.S	requires	the	“F”	extension.		
FNEG.D	requires	the	“D”	extension.		
FNEG.Q	requires	the	“Q”	extension.		

Encoding:	
These	instructions	are	special	cases	of	more	general	instructions.	They	are	
assembled	identically	to:	

FSGNJN.S       FRegD,FReg1,FReg1    (negate)	
	 FSGNJN.D       FRegD,FReg1,FReg1    (negate)	

Floating	Absolute	Value	

General	Forms:	
FABS.S       FRegD,FReg1  (single precision)
FABS.D       FRegD,FReg1  (double precision)
FABS.Q       FRegD,FReg1  (quad precision)

Examples:	
FABS.S       f2,f5           # f2 = |f5|   (32 bits)
FABS.D       f2,f5           # f2 = |f5|   (64 bits)
FABS.Q       f2,f5           # f2 = |f5|   (128 bits)

Description:	
The	absolute	value	of	the	quantity	in	FReg1	is	copied	into	FRegD.	

RISC-V	Extensions:	
FABS.S	requires	the	“F”	extension.		
FABS.D	requires	the	“D”	extension.		
FABS.Q	requires	the	“Q”	extension.		

Encoding:	
These	instructions	are	special	cases	of	more	general	instructions.	They	are	
assembled	identically	to:	

FSGNJX.S       FRegD,FReg1,FReg1    (exclusive-or)	
	 FSGNJX.D       FRegD,FReg1,FReg1    (exclusive-or)	

Floating	Move	To/From	Integer	Register	(Single	Precision)	

General	Forms:	
FMV.X.W       RegD,FReg1
FMV.W.X       FRegD,Reg1
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Examples:	
FMV.X.W       x2,f5           # x2 = f5
FMV.W.X       f5,x2           # f5 = x2

Description:	
32-bits	are	copied	from	a	2loating	point	register	to	an	integer	register,	or	from	
an	integer	register	to	a	2loating	point	register.	The	bits	are	unaltered;	i.e.,	no	
conversion	is	performed.	

In	the	case	of	RV64	and	RV	128	(where	the	integer	registers	are	larger	than	32	
bits),	when	the	destination	is	an	integer	register,	the	upper	bits	of	the	integer	
register	will	be	2illed	with	zeros.	When	the	source	is	an	integer	register,	the	
upper	bits	will	be	ignored.	

No	error	conditions	can	arise.	

In	an	older	version	of	the	spec,	the	letter	“S”	was	used	in	place	of	“W”	in	the	
opcode,	i.e.,	“FMV.X.S”	and	“FMV.S.X”.	

RISC-V	Extensions:	
These	instructions	require	the	“F”	extension.		

Encoding:	
	 This	is	an	R-type	instruction.	

Floating	Move	To/From	Integer	Register	(Double	Precision)	

General	Forms:	
FMV.X.D       RegD,FReg1
FMV.D.X       FRegD,Reg1

Examples:	
FMV.X.D       x2,f5           # x2 = f5
FMV.D.X       f5,x2           # f5 = x2

Description:	
64-bits	are	copied	from	a	2loating	point	register	to	an	integer	register,	or	from	
an	integer	register	to	a	2loating	point	register.	The	bits	are	unaltered;	i.e.,	no	
conversion	is	performed.	

In	the	case	of	RV	128	(where	the	integer	registers	are	larger	than	64	bits),	
when	the	destination	is	an	integer	register,	the	upper	bits	of	the	integer	
register	will	be	2illed	with	zeros.	When	the	source	is	an	integer	register,	the	
upper	bits	will	be	ignored.	
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No	error	conditions	can	arise.	
RISC-V	Extensions:	

These	instructions	require	the	“D”	extension.		
Encoding:	
	 This	is	an	R-type	instruction.	

Note:	The	“Q”	extension	does	not	provide	the	following	instructions.	This	is	
intentional.	

FMV.X.Q       RegD,FReg1
FMV.Q.X       FRegD,Reg1

In	order	to	move	a	quad	precision	value	from	a	2loating	point	register	to	an	integer	
register,	you’ll	need	to	move	it	to	memory	2irst,	then	move	it	to	the	integer	register.

Floating	Point	Compare	and	Classify	Instructions	

Floating	Point	Comparison	

General	Forms:	
FLT.S         RegD,FReg1,FReg2    (single precision)
FLE.S         RegD,FReg1,FReg2    (single precision)
FEQ.S         RegD,FReg1,FReg2    (single precision)

FLT.D         RegD,FReg1,FReg2    (double precision)
FLE.D         RegD,FReg1,FReg2    (double precision)
FEQ.D         RegD,FReg1,FReg2    (double precision)

FLT.Q         RegD,FReg1,FReg2    (quad precision)
FLE.Q         RegD,FReg1,FReg2    (quad precision)
FEQ.Q         RegD,FReg1,FReg2    (quad precision)
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Examples:	
FLT.S         x2,f5,f6         # x2 = (f5<f6) ? 1 : 0
FLE.S         x2,f5,f6         # x2 = (f5≤f6) ? 1 : 0
FEQ.S         x2,f5,f6         # x2 = (f5=f6) ? 1 : 0

FLT.D         x2,f5,f6         # x2 = (f5<f6) ? 1 : 0
FLE.D         x2,f5,f6         # x2 = (f5≤f6) ? 1 : 0
FEQ.D         x2,f5,f6         # x2 = (f5=f6) ? 1 : 0

FLT.Q         x2,f5,f6         # x2 = (f5<f6) ? 1 : 0
FLE.Q         x2,f5,f6         # x2 = (f5≤f6) ? 1 : 0
FEQ.Q         x2,f5,f6         # x2 = (f5=f6) ? 1 : 0

Description:	
Two	2loating	point	values	in	the	2loating	point	registers	are	compared	and	a	
value	indicating	the	result	is	stored	in	an	integer	register.	The	instructions	
store	a	“1”	if	the	relationship	(<,	≤,	or	=)	holds	true	and	“0”	if	the	relationship	
does	not	hold.	

There	is	no	need	for	>	or	≥	instructions	since	the	programmer	can	achieve	the	
same	result	by	using	the	<	and	≤	instructions	by	simply	swapping	the	two	
register	operands.	

Error	Conditions:	
If	either	operand	is	a	Not-a-Number	(NaN)	value	then	a	“0”	will	be	stored	in	
the	destination	register.	This	applies	to	all	three	comparison	instructions	(<,	≤,	
and	=).	

The	IEEE	spec	requires	that	the	<	or	≤	should	result	in	a	“signaling	NaN”	if	
either	operand	is	a	NaN.	For	RISC-V,	the	instruction	execution	will	never	be	
interrupted,	so	a	signaling	NaN	cannot	be	implemented	by	interrupting	the	
instruction	2low.	RISC-V	handles	this	case	as	follows:	For	<	and	≤	comparisons,	
if	either	operand	is	NaN,	then	the	NV	(invalid	operation)	bit	in	the	Floating	
Pointer	Control	and	Status	Register	(FCSR)	will	be	set	to	1.	Otherwise,	the	bit	
will	be	left	unchanged.	

The	IEEE	spec	treats	the	=	comparison	differently,	saying	that	if	either	
operand	is	NaN,	then	the	result	should	be	a	“quiet	NaN”.	The	RISC-V	
implements	this	a	follows:	For	the	=	comparison,	the	NV	(invalid	operation)	
bit	will	never	be	modi2ied.	

RISC-V	Extensions:	
The	“.S”	instructions	require	the	“F”	extension.		
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The	“.D”	instructions	require	the	“D”	extension.		
The	“.Q”	instructions	require	the	“Q”	extension.		

Encoding:	
	 This	is	an	R-type	instruction.	

Floating	Point	Classify	

General	Forms:	
FCLASS.S      RegD,FReg1    (single precision)
FCLASS.D      RegD,FReg1    (double precision)
FCLASS.Q      RegD,FReg1    (quad precision)

Examples:	
FCLASS.S      x2,f5         # x2 = class(f5)
FCLASS.D      x2,f5         # x2 = class(f5)
FCLASS.Q      x2,f5         # x2 = class(f5)

Description:	
The	instruction	looks	at	a	2loating	point	value	and	determines	what	sort	of	a	
number	it	is.	For	example,	does	the	value	represent	+0.0,	-0.0,	Nan,	+∞,	-∞,	
etc?		

The	result	of	the	classi2ication	of	the	2loating	point	value	will	be	stored	in	an	
integer	register,	as	follows:	All	bits	of	the	integer	register	will	be	cleared	to	“0”,	
except	that	exactly	one	bit	will	be	set	to	“1”,	to	indicate	what	sort	of	thing	the	
2loating	point	register	contains.	

Here	are	the	possible	results	that	can	be	stored	into	the	integer	register:	

Bit	Set	 Value	Stored	 Meaning	
0	 1	 FReg1	contains	−∞.	
1	 2	 FReg1	contains	a	negative	normal	number.	
2	 4	 FReg1	contains	a	negative	subnormal	number.	
3	 8	 FReg1	contains	−0.	
4	 16	 FReg1	contains	+0.	
5	 32	 FReg1	contains	a	positive	subnormal	number.	
6	 64	 FReg1	contains	a	positive	normal	number.	
7	 128	 FReg1	contains	+∞.	
8	 256	 FReg1	contains	a	signaling	NaN.	
9	 512	 FReg1	contains	a	quiet	NaN.	
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RISC-V	Extensions:	
The	“.S”	instructions	require	the	“F”	extension.		
The	“.D”	instructions	require	the	“D”	extension.		
The	“.Q”	instructions	require	the	“Q”	extension.		

Encoding:	
	 This	is	an	R-type	instruction.	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	145 323



Chapter	5:	Register	and	Calling	
Conventions	

Standard	Usage	of	General	Purpose	Registers	

The	32	bit	version	of	the	RISC-V	architecture	treats	all	registers	identically	so	the	
assembly	language	programmer	is	free	to	use	any	register	as	he/she	wishes.	The	
only	exception	is	register	x0,	which	always	contains	zero,	and	can	be	used	as	a	
destination	when	the	data	should	be	discarded.	

However,	there	is	a	RISC-V	“standard	calling	convention”	which	speci2ies	how	
registers	will	normally	be	used	by	the	compiler	and	most	assembly	language	
programmers	will	follow	this	convention.	

In	the	“C”	(Compressed	Instructions)	extension,	16	bit	instructions	are	supported,	
and	each	compressed	instruction	is	a	shorter,	abbreviated	form	of	a	32-bit	
instruction.	The	compressed	instruction	set	was	designed	under	the	assumption	
that	the	registers	will	be	used	in	the	standard	ways	and	only	the	most	common	
instructions	are	given	16	bit	equivalents.	As	such,	the	registers	are	not	treated	
identically	in	the	compressed	instruction	set.	

For	example,	the	32	bit	“call”	instruction	(JAL)	can	save	the	return	address	in	any	
register,	although	the	standard	conventions	mandate	that	register	x1	will	always	be	
used	to	save	the	return	address.	Making	use	of	this	convention,	the	16	bit	version	of	
the	instruction	(C.JAL)	saves	the	return	address	in	x1	and	only	this	register.	There	is	
no	compressed	instruction	to	save	the	return	address	in	any	other	register,	which	is	
reasonable	since	this	is	not	something	normally	done.	

The	names	of	the	general	purpose	registers	are	x0,	x1,	…	x31.	The	registers	are	also	
given	second,	alternate	names.	The	assembler	will	accept	either	name,	so	the	
programmer	can	use	whichever	name	seems	clearest.	

Here	are	the	registers:	
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	 	 Other	 	 Saved	Across	
	 Name	 Name	 Description	 									Calls									
	 x0	 zero	 Zero	 	
	 x1 ra	 Return	Address	 	
	 x2 sp	 Stack	Pointer	 yes	 /	callee	saved	
	 x3 gp	 Global	Pointer	 	
	 x4 tp	 Thread	Pointer	
	 x5 t0	 Temp	
	 x6 t1	 Temp	

x7 t2	 Temp	
	 x8 s0,fp	 Saved	Reg	/	Frame	Pointer	 yes	/	callee	saved	
	 x9 s1	 Saved	Reg	 yes	/	callee	saved	
	 x10 a0	 Function	argument	 	
	 x11 a1	 Function	argument	 	
	 x12 a2	 Function	argument	 	
	 x13 a3	 Function	argument	 	
	 x14 a4	 Function	argument	 	
	 x15 a5	 Function	argument	 	
	 x16 a6	 Function	argument	 	
	 x17 a7	 Function	argument	 	
	 x18 s2	 Saved	Reg	 yes	 /	callee	saved	
	 x19 s3	 Saved	Reg	 yes	 /	callee	saved	
	 x20 s4	 Saved	Reg	 yes	 /	callee	saved	
	 x21 s5	 Saved	Reg	 yes	 /	callee	saved	
	 x22 s6	 Saved	Reg	 yes	 /	callee	saved	
	 x23 s7	 Saved	Reg	 yes	 /	callee	saved	
	 x24 s8	 Saved	Reg	 yes	 /	callee	saved	
	 x25 s9	 Saved	Reg	 yes	 /	callee	saved	
	 x26 s10	 Saved	Reg	 yes	 /	callee	saved	
	 x27 s11	 Saved	Reg	 yes	 /	callee	saved	
	 x28 t3	 Temp	 	 	
	 x29 t4	 Temp	 	 	
	 x30 t5	 Temp	 	 	
	 x31 t6	 Temp	 	 	

The	compressed	instructions	are	designed	to	allow	easy	access	to	8	registers,	
namely	x8,	x9,	…	x15.	In	the	above	table,	these	8	registers	are	highlighted.	
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Saving	Registers	Across	Calls	

By	convention,	some	registers	are	saved	across	function	calls.	For	programs	that	
follow	the	standard	calling	conventions	(and	we	assume	that	almost	all	do),	a	
function	(say	“foo”)	will	call	another	function	(say	“bar”).	The	“caller”	is	foo	and	the	
“callee”	is	bar.	

We	normally	use	the	terminology	“callee	saved”	to	indicate	that	a	register	will	be	
preserved	across	a	call.	For	example,	function	bar	will	not	modify	the	register	(or	if	it	
does,	it	will	2irst	save	and	then	restore	the	register),	so	that	the	caller	foo	can	rely	on	
its	value	remaining	unchanged	by	bar.	

Presumably	the	caller	foo	will	have	local	variables	whose	values	must	be	preserved	
across	a	call	to	bar.	Presumably	the	callee	bar	will	need	some	temporary	variables	to	
complete	its	task	and	compute	its	result.	If	foo	cannot	trust	bar	to	preserve	its	local	
variables,	then	foo	will	need	to	save	registers	and,	after	bar	returns,	restore	their	
values.	This	saving	and	restoring	is	done	to	main	memory	(typically	to	the	local	
stack	frame),	and	such	memory	references	are	very	slow.	If	foo	relies	on	bar	to	do	
the	saving	and	restoring	the	registers,	then	the	burden	is	placed	on	bar	to	perform	
these	slow	memory	tasks.	

There	are	tradeoffs	and	generating	optimal	code	is	tricky.	It	may	be	most	ef2icient	for	
the	caller	foo	to	save	the	registers,	since	it	may	be	the	case	that	caller	foo	can	save	a	
register	just	once,	make	a	number	of	calls	to	bar,	and	then	restore	the	register.	If	the	
register	had	been	saved	in	the	callee	bar,	there	would	have	been	multiple	saves	and	
restores.	On	the	other	hand,	it	may	be	best	for	the	saving	and	restoring	to	be	
performed	in	the	callee	bar.	Perhaps	bar	will	often	take	an	execution	path	that	does	
not	disrupt	the	register,	so	the	saving	and	restoring	can	be	avoided	altogether	in	
many	cases.	

The	tradeoff	(whether	to	perform	the	saving	in	the	caller	or	callee)	is	a	decision	that	
must	be	made	for	each	of	the	registers	in	the	caller	foo.	If	both	functions	are	
programmed	simultaneously	by	a	clever	programmer,	then	he/she	can	make	ad	hoc	
decisions	about	the	saving	and	restoring	of	resisters	in	an	attempt	to	produce	
optimal	code.	

However,	almost	all	code	is	compiled	and	most	compilers	look	at	each	function	in	
complete	isolation.	Effectively,	each	function	is	separately	compiled,	so	there	is	no	
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possibility	of	coordinating	and	optimizing	the	saving	of	registers	between	multiple	
functions.	

Instead,	the	approach	is	to	create	a	standard	convention	mandating	which	registers	
are	saved	by	the	callee	bar	and	which	are	not.	Registers	that	are	not	required	by	the	
convention	to	be	preserved	across	a	call	are	termed	“caller	saved”,	which	means	that	
it	is	up	to	the	caller	foo	to	save	and	restore	the	registers,	if	they	contain	data	that	
must	be	preserved	across	the	function	call	to	bar.	

The	convention	dictates	which	registers	are	required	to	be	preserved	across	a	call,	
and	it	is	assumed	that	compilers	and	programmers	will	follow	the	calling	
conventions.	If	they	do,	then	the	separately	compiled	or	separately	written	code	is	
interoperable.	

Assuming	that	the	conventions	are	to	be	followed	when	compiling	some	function	
foo,	the	compiler/programmer	is	free	to	use	whichever	register	makes	most	sense.	
For	example,	a	variable	that	must	be	preserved	across	function	calls	(e.g.,	to	other	
functions	like	bar)	will	most	likely	be	placed	in	a	“callee	saved”	register.	Therefore,	
the	save	and	restore	instructions	are	avoided	in	the	caller’s	code,	and	might	be	
avoided	altogether	if	bar	doesn’t	even	use	the	register	in	question.	On	the	other	
hand,	the	compiler/programmer	might	prefer	to	use	a	temporary	(caller	saved)	
register,	especially	if	there	are	no	calls	within	foo,	or	if	the	variable	does	not	need	to	
be	saved	across	any	calls	that	do	occur.	

By	establishing	a	calling	conventions	about	which	registers	are	callee	saved	and	
which	are	not,	the	designers	are	making	the	important	decision	about	the	ratio	
between	temporary	callee	saved	registers.	Assuming	that	there	are	enough	registers	
in	each	class,	then	no	register	saving/restoring	will	be	necessary.	

But	note	that	with	recursive	routines,	there	can	be	a	con2lict.	Consider	a	local	
variable	that	must	be	preserved	across	a	recursive	call.	By	placing	the	variable	in	a	
temporary	(caller	saved)	register	there	can	be	a	problem.	Since	this	register	will	not	
be	saved	across	the	recursive	call,	the	function	must	save	it	before	the	call	and	
restore	it	afterwards.	On	the	other	hand,	if	it	is	placed	in	a	callee	saved	register	we	
don’t	have	to	bother	with	saving/restoring	it	around	the	recursive	call.	But	since	the	
function	will	be	using	a	callee	saved	register,	the	function	itself	must	save	the	
previous	value	upon	entry	and	restore	it	before	return.	

So	either	way,	the	register	must	be	save	and	restored.	This	makes	sense	for	recursive	
functions	that	have	local	variables	that	must	be	preserved	across	the	recursive	call.	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	149 323



Chapter	5:	Register	and	Calling	Conventions	

The	only	question	is	whether	to	perform	the	save	before	the	call	instruction	or	after	
the	call	instruction,	and	likewise	perform	the	restore	after	the	return	instruction	or	
before	the	return	instruction.	The	compiler	makes	this	decision	when	it	chooses	to	
place	the	variable	in	a	callee-	or	caller-saved	register.	

Note	that	compilers/programmers	are	sometimes	free	to	violate	the	calling	
conventions	order	to	produce	superior	code.	This	is	only	feasible	when	the	
compiler/programmer	has	access	to	both	the	called	function	(bar)	and	all	potential	
callers	(such	as	foo).	In	such	cases,	the	compiler/programmer	can	choose	to	use	the	
registers	in	a	non-standard	way	to	improve	ef2iciency.	For	example,	it	may	be	that	
bar	would	bene2it	from	having	more	temporary	registers	and	none	of	the	callers	
have	data	that	must	be	preserved	across	the	call	to	bar,	so	the	compiler/programmer	
can	use	registers	that	would	otherwise	be	“callee	saved”	as	“caller	saved”.	Compilers	
can	keep	all	the	details	straight	but	programmers	should	be	careful.	Many	assembly	
language	programming	bugs	are	the	result	of	mistakes	involving	the	proper	saving	
and	restoring	of	registers.	

Register	x0	-	The	Zero	Register	(“zero”)	

As	mentioned	earlier,	register	x0	is	a	dummy	register.	When	read,	its	value	is	always	
zero;	when	stored	into,	the	data	is	simply	discarded.	

Register	x1	-	The	Return	Address	(“ra”)	

When	a	function	is	called,	the	return	address	must	be	saved	so	that	the	RETURN	
instruction	can	return	to	the	correct	location	in	the	caller’s	code.	In	older	computers,	
the	CALL	instruction	stored	the	return	address	in	memory	on	the	stack;	in	modern	
ISAs	(including	RISC-V)	the	CALL	instruction	saves	the	return	address	in	a	register.	
The	RETURN	instruction	retrieves	the	value	from	this	register.	The	RETURN	
instruction	is	then	nothing	more	than	a	JR	(jump	through	register)	instruction.	

By	convention,	register	x1	is	used	for	this	purpose.	

Saving	the	return	address	in	a	register	is	faster	than	saving	it	on	the	stack	since	the	
memory	WRITE	and	READ	operations	are	avoided.	This	scheme	is	ideal	for	leaf	
functions.	(“Leaf”	functions	do	not	call	other	functions	and	are	thus	leaf	nodes	in	the	
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activation/calling	tree.)	Many	function	calls	are	to	leaf	functions	so	this	saves	a	lot	
memory	activity.	

For	non-leaf	functions,	the	return	address	must	be	saved	somewhere	else.	Since	x1	
will	be	used	in	subsequent	calls,	the	return	address	in	x1	must	be	moved	somewhere	
else	to	avoid	getting	clobbered	before	it	can	be	used	in	the	RETURN	instruction.	The	
value	can	either	be	saved	in	a	callee	saved	register	or	on	the	stack.	(Moving	the	
return	address	to	a	callee	saved	register	may	necessitate	other	register	saving	
elsewhere,	forcing	a	save	to	stack	memory	elsewhere.	For	recursive	functions,	there	
is	no	way	to	avoid	using	the	in-memory	stack;	we	can	only	shift	around	when	the	
memory	READs/WRITEs	occurs.)	

Register	x2	-	The	Stack	Pointer	(“sp”)	

RISC-V	assumes	that	x2	contains	the	stack	top	pointer	and	that	the	stack	grows	
downward.	The	stack	is	assumed	to	always	be	quadword	(16	byte)	aligned.	Some	
functions/methods	may	operate	entirely	using	registers	and	may	not	need	any	stack	
space.	The	RISC-V	design	tries	to	facilitate	such	functions	since	they	make	no	
memory	accesses.	However,	many	functions	will	allocate	stack	space	to	hold	return	
addresses,	local	variables,	saved	registers,	etc.	The	local	variables,	etc.,	are	stored	in	
a	“stack	frame”,	which	is	sometimes	called	an	“activation	record.”	Recursive	
functions	are	known	for	needing	stack	space	and	allocating	a	new	stack	frame	for	
each	invocation.	

A	function	that	requires	stack	storage	will	grow	the	stack	(always	by	a	multiple	of	
16)	by	subtracting	from	the	stack	top	pointer	sp.	Variables	within	the	stack	frame	
can	be	addressed	using	positive	offsets	from	register	x2.	This	organization	motivates	
several	of	the	compressed	instructions,	in	which	the	offset	must	be	positive	and	is	
never	sign	extended.	

Register	x2	is	callee-saved,	which	means	that	any	function	that	grows	the	stack	to	
create	a	stack	frame	must	also	shrink	it	by	an	equal	amount	before	returning.	In	
other	words,	a	function	must	have	the	net	effect	of	popping	everything	that	it	
pushed,	leaving	the	stack	as	it	found	it,	and	effectively	preserving	the	value	of	x2.	
Thus,	x2	is	said	to	be	“callee-saved”.	
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Register	x3	-	The	Global	Pointer	(“gp”)	

Global	variables	are	also	called	static	variables,	and	are	contrasted	with	local	
variables.	Global	variables	are	shared	by	all	functions.	Global	variables	remain	in	
existence	throughout	the	entire	program,	while	local	variables	come	into	existence	
when	a	function	is	called	and	go	out	of	existence	when	the	function	returns.	

While	local	variables	are	often	kept	in	registers	or	on	the	stack	at	unpredictable	
locations,	global	variables	are	placed	at	2ixed	locations	in	memory.	Unfortunately	
these	locations	are	often	far	away	from	the	code	that	accesses	them.	PC-relative	
addressing	can	be	used,	but	is	often	ineffective	since	the	required	offsets	can	be	
large.	Absolute	addresses	can	often	be	problematic	too,	since	the	absolute	addresses	
can	also	be	large,	which	would	necessitate	using	extra	instructions.	

The	solution	supported	by	the	RISC-V	calling	convention	is	to	place	the	global	
variables	together	and	initialize	a	register	to	point	to	this	area.	By	convention,	
register	x3	is	used	for	this.	Then	the	individual	variables	can	be	conveniently	
addressed	by	using	a	small	offset	from	the	global	pointer.	

The	global	pointer	is	typically	initialized	early	in	the	program	and	never	changed.	So,	
in	some	sense,	it	is	“callee-saved”	although	we	didn’t	mark	it	as	such	in	the	table	
above.	

Not	all	programs	will	use	this	technique,	so	this	register	may	actually	be	used	for	
something	completely	different.	

Register	x4	-	The	Thread	Base	Pointer	(“tp”)	

In	multi-threaded	programs,	each	thread	may	have	a	collection	of	“thread-speci2ic”	
variables,	which	are	not	local	to	any	function.	Instead,	they	are	shared	by	all	code	
running	in	this	thread,	but	are	invisible	to	other	threads.	

Thread-speci2ic	variables	are	distinct	from	global	variables.	There	is	only	one	copy	of	
each	global	variable	and	each	variable	has	a	unique	offset	from	the	global	base	
register,	x3/gp.	The	thread	base	register	(tp)	has	the	same	value	in	all	code	running	
in	all	threads,	which	causes	all	code	to	access	that	same	set	of	variables,	regardless	
of	which	thread	it	is	executing	in.	
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In	a	multi-threaded	program,	each	thread	has	a	unique	register	set.	When	the	OS	
switches	from	one	thread	to	another,	all	registers	from	the	previously	running	
thread	will	be	saved	to	some	area	of	memory	and	the	newly	active	thread	will	have	
its	registers	restored	from	a	different	memory	area.	In	general,	the	registers	in	one	
thread	will	be	completely	different	from	the	registers	in	another	thread,	even	though	
the	threads	are	cooperating	and	executing	in	the	exact	same	address	space.	For	
example,	each	thread	will	have	its	own	stack,	so	the	x2	(sp)	register	in	each	thread	
will	contain	a	different	value.	

Since	all	threads	share	the	global	variables,	register	x3	(gp)	will	have	the	same	value	
in	all	threads.	In	addition,	each	thread	can	have	its	own	private	set	of	variables,	
which	are	called	“thread-speci2ic”	variables.	By	convention,	this	block	of	variables	
will	be	pointed	to	by	register	x4	(tp),	so	each	thread	will	have	a	different	value	in	its	
x4	register.	A	single	section	of	code	that	accesses	thread-speci2ic	variables	will	
access	a	different	set	of	variables,	depending	on	which	thread	it	is	running	in,	and	
this	works	because	each	thread	has	a	unique	value	in	its	x4	(tp)	register.	

Many	applications	are	not	multi-threaded,	or	contain	no	thread-speci2ic	variables.	In	
such	cases,	it	seems	the	convention	leaves	unspeci2ied	how	x4	is	to	be	used.	

The	thread	pointer	is	typically	initialized	early	in	the	execution	of	a	new	thread	and	
never	changed.	So,	in	some	sense,	it	is	“callee-saved”	although	we	didn’t	mark	it	as	
such	in	the	table	above.	

Register	x5-x7,x28-x31	-	Temp	Registers	(“t0-t6”)	

By	convention,	there	are	7	registers	which	are	free	to	be	used	by	any	function	
without	saving	their	previous	contents.	Typically	the	compiler	will	place	the	
intermediate	results	of	computation	into	temp	registers.	In	some	cases,	the	compiler	
may	place	local	variables	in	the	temp	registers.	

The	temp	registers	are	“caller	saved”,	which	means	that	the	code	within	a	function	
“foo”	is	not	required	to	save	their	previous	contents	before	using	them.	On	the	other	
hand,	since	this	rule	applies	to	all	functions,	it	must	be	assumed	that	calling	any	
other	function	(such	as	“bar”)	may	result	in	these	registers	being	changed.	Thus,	if	
the	caller	(foo)	cares	about	the	value	of	a	temp	register,	it	must	save	the	register	
before	calling	bar.	
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Register	x8,x9,x18-x27	-	Saved	Registers	(“s0-s11”)	

By	convention,	there	are	12	registers	which	are	designated	as	callee-saved	registers.	
The	convention	is	that	a	function	must	not	modify	these	registers.	If	some	function	
wishes	or	needs	to	use	one	of	these	registers,	that	function	must	2irst	save	its	
previous	value	and	then	restore	that	value	before	returning.	

This	makes	these	register	especially	useful	in	storing	local	variables	that	must	be	
preserved	across	calls	to	other	functions.	There	is	a	reasonable	chance	that	the	
called	function	will	not	touch	these	registers	at	all,	so	saving/restoring	to	main	
memory	is	often	avoided	completely.	

Two	of	these	registers	(x8/s0	and	x9/s1)	are	especially	easy	to	access	using	the	16	
bit	compressed	instructions.	Therefore	the	compiler	should	prefer	to	use	one	of	
these	two	registers	whenever	possible.	

Register	x8	-	Frame	Pointer	(“fp”)	

Register	x8	(which	is	also	s0,	one	of	the	callee-saved	registers)	is	designated	as	the	
frame	pointer	and	given	a	second	name,	“fp”.	

Not	every	function	will	need	a	frame	pointer	and,	for	a	function	that	does	not	need	a	
frame	pointer,	this	register	can	be	viewed	as	s0,	just	another	callee-saved	register.	

To	understand	the	purpose	of	a	frame	pointer,	consider	two	sorts	of	function.	

The	2irst	sort	of	function	will	have	a	small	number	of	local	variables.	Furthermore,	
each	of	the	local	variables	will	have	a	2ixed	size,	known	at	compile-time.	For	such	a	
function,	the	stack	frame	can	be	laid	out	by	the	compiler	and	all	offsets	within	the	
stack	frame	will	be	known,	small	numbers.	This	sort	of	function	can	access	its	
variables	in	the	stack	frame	by	using	positive	offsets	from	the	stack	top	pointer	(x2).	
This	sort	of	a	function	will	not	need	a	frame	pointer.	

The	second	sort	of	function	may	have	a	large	number	of	local	variables	or	may	create	
a	local	variable	(such	as	a	dynamic	array)	whose	size	is	not	known	until	runtime	
when	the	function	is	actually	called.	In	such	a	function,	the	compiler	will	not	know	
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the	layout	of	the	frame.	The	local	variables	cannot	be	accessed	using	small	positive	
offsets	from	the	stack	pointer	register,	x2.	

The	idea	with	using	a	frame	pointer	is	this:	Upon	entry	to	the	function,	the	frame	
pointer	register	will	be	set	to	a	known,	2ixed	value.	Typically,	this	would	be	the	old	
value	of	the	stack	pointer	before	the	new	stack	frame	is	allocated.	Then,	the	stack	
frame	is	allocated	in	a	couple	of	steps.	First	the	2ixed	sized	variables	are	allocated	by	
adjusting	the	stack	top	pointer.	Then	the	dynamically	sized	variables	are	allocated,	
by	decrementing	the	stack	top	pointer	by	values	determined	at	runtime.	After	this	
initialization	and	creation	of	local	variables,	the	frame	pointer	is	left	pointing	to	one	
end	(the	top,	higher	end)	of	the	frame	(or	more	precisely	to	the	2irst	byte	of	the	
previous	frame)	and	the	stack	pointer	is	left	pointing	to	the	bottom,	lower	end	of	the	
frame.	Offsets	relative	to	the	stack	top	pointer	are	problematic,	since	the	compiler	
will	not	know	exactly	how	much	the	stack	pointer	was	adjusted.	Instead,	the	local	
variables	will	be	accessed	using	negative	offsets	relative	to	the	frame	pointer.	

(	In	another	approach,	the	local	variables	can	be	pushed	onto	the	stack	2irst.	Then	
the	frame	pointer	is	initialized	to	the	current	stack	top.	Finally,	the	dynamically	sized	
variables	are	pushed	on	to	the	stack.	This	allows	the	local	variables	to	be	accessed	
using	a	positive	offset	to	the	frame	pointer.	In	the	RISC-V	design,	positive	offsets	are	
preferred	in	the	16	bit	compressed	instruction	format,	so	this	might	be	a	better	
approach.	)	

The	frame	pointer	is	callee	saved.	This	means	that	the	value	of	the	register	must	be	
restored	before	the	function	returns.	Typically,	the	function	prologue	will	store	the	
previous	value	of	the	fp	register	in	the	frame	and	the	function	epilogue	will	restore	
fp	right	before	returning.	

Register	x10-x17	-	Argument	Registers	(“a0-a7”)	

Typically,	arguments	to	functions	are	passed	in	registers	and	this	group	of	registers	
is	meant	to	be	used	for	that	purpose.	

Also,	a	value	that	is	to	be	returned	from	a	function	will	usually	be	returned	in	a	
register.	
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The	return	value	will	be	returned	in	x10	(a0),	or	if	the	value	is	too	large	to	2it	into	a	
single	register,	it	will	be	returned	in	the	register	pair	x10-x11	(a0-a1).	This	is	the	
same	register(s)	that	is	used	to	pass	in	the	2irst	argument.	

Calling	Conventions	for	Arguments	

Arguments	are	normally	passed	to	a	function	in	registers	and	the	calling	convention	
details	exactly	how	argument	values	are	to	be	placed	in	registers.	

If	there	are	too	many	arguments,	then	the	2irst	arguments	are	passed	in	the	
registers,	and	the	remainder	are	passed	on	the	stack.	Also,	if	an	individual	argument	
is	too	large,	it	will	be	passed	in	memory	and	the	register	will	contain	a	pointer	to	
this	memory	region.	

If	the	returned	value	is	small	enough,	it	will	be	returned	in	a0-a1,	otherwise	it	is	
returned	in	memory.	

Here,	we	summarize	the	calling	conventions	for	RV32,	the	32	bit	architecture.	

•	 Floats	are	passed	in	the	2loating	point	registers,	if	they	exist.	Otherwise,	2loats	
are	passed	in	the	general	purpose	registers,	just	like	ints.	

•	 Other	values	brides	2loats	(e.g.,	ints,	chars,	bools,	pointers,	structs)	are	passed	
in	the	8	general	purpose	registers	a0-a7,	as	long	as	they	are	no	larger	than	64	
bits.	So,	if	the	value	will	2it	into	one	or	two	registers,	they	will	be	passed	in	
registers.	

•	 Values	smaller	than	32	bits	are	sign-extended	to	32	bits	and	passed	in	a	
register.	[	Apparently,	they	are	“widened	according	to	the	sign	of	their	type,	
then	sign	extended”;	my	interpretation	may	be	incorrect.		???	]	

•	 Values	of	32	bits	are	passed	in	a	single	register.	

•	 Values	of	up	to	64	bits	in	size	are	passed	in	a	register	pair.	The	least	signi2icant	
32-bits	will	be	placed	in	the	register	with	the	smaller	number,	in	little	endian	
style.	
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•	 Values	larger	than	64	bits	are	always	passed	“by	reference”.	This	means	that	
the	value	is	placed	in	a	region	of	memory.	This	region	is	either	in	the	caller’s	
stack	frame	or	is	pushed	on	to	the	stack	at	the	time	of	the	function	call.	The	
address	to	this	region	appears	in	the	list	of	arguments	and	is	passed	in	a	
register,	in	place	of	the	value.	[	It	seems	that	an	address	is	always	used,	
regardless	of	whether	or	not	there	is	room	in	the	registers	for	the	address.	]		

•	 If	there	are	not	enough	registers,	only	the	2irst	few	arguments	will	be	passed	
in	registers	and	the	remainder	will	be	passed	in	memory.	The	extra,	remaining	
arguments	will	pushed	on	to	the	stack,	so	they	will	be	at	known	offsets	from	
the	stack	top	pointer	upon	entry	to	the	called	function.	Thus,	they	can	be	
easily	accessed	using	positive	offsets	from	the	frame	pointer	register	(fp).	

•	 If	there	are	not	quite	enough	registers,	a	64	bit	value	can	be	split	into	two	32-
bit	parts,	with	the	least	signi2icant	word	passed	in	a	register	and	the	most	
signi2icant	word	passed	in	memory.	

•	 Following	the	“C”	language	convention,	arguments	are	always	“passed	by	
value”,	which	means	they	are	effectively	local	variables	which	can	be	modi2ied;	
after	the	function	returns,	the	modi2ied	value	is	lost.	For	example,	structs	
passed	as	arguments	will	be	copied	and	any	changes	to	the	stucco	will	be	lost.	
If	this	is	not	what	the	programmer	wants,	then	he/she	can	explicitly	pass	an	
address,	in	which	case	the	pointer	is	“passed	by	value”,	and	the	value	pointed	
to	is	effectively	“passed	by	reference”.	

•	 All	values	passed	in	memory	(e.g.,	arguments	in	the	stack	frame)	are	aligned,	
according	to	the	size	of	the	value.	

•	 If	the	returned	value	is	64	bits	or	less,	it	will	be	returned	in	register	a0-a1	(or	
the	2loating	point	registers,	if	applicable).	

•	 If	the	returned	value	is	larger	than	64	bits,	the	caller	will	allocate	memory	
space	for	the	returned	value	(in	the	caller’s	stack	frame)	and	will	pass	a	
pointer	to	this	block	of	memory.	The	pointer	will	be	passed	as	the	2irst	
argument,	implicitly	inserted	in	front	of	the	other	arguments.	

Six	of	these	registers	(x10-x15,	i.e.	a0-a5)	are	especially	easy	to	access	using	the	16	
bit	compressed	instructions.	Therefore,	the	majority	of	functions	(which	have	6	or	
fewer	arguments)	can	be	called	using	registers	alone.	
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Commentary:	The	argument	registers	are	otherwise	treated	like	temporaries,	in	
that	they	are	caller	saved,	i.e.,	not	preserved	across	calls.	If	an	argument	register	is	
not	used	for	passing	arguments,	then	it	it	is	free	to	be	used	as	a	temporary	work	
register.	

It	is	unclear	why	it	is	necessary	to	differentiate	between	these	two	classes.	Why	can’t	
temp	registers	be	used	to	pass	arguments	in	cases	where	there	are	a	lot	of	
arguments?	If	a	function	with	many	arguments	truly	needs	a	temporary	register,	
then	it	can	save	some	of	its	arguments	in	its	stack	frame.	This	is	no	extra	work,	since	
the	caller	would	have	had	to	save	the	values	in	its	frame	otherwise.	And	it	will	
probably	be	the	case	that	the	callee	function	can	be	a	bit	smarter	about	what	has	to	
be	saved	in	memory	than	the	caller.	

Floating	Point	Registers	

Here	are	the	2loating	point	registers,	with	their	intended	usage.	The	16	bit	
compressed	instructions	favor	registers	f8	-	f15	and	these	are	highlighted	below.	
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	 	 Other	 	 Saved	Across	
	 Name	 Name	 Description	 									Calls									
	 f0 ft0	 Temp	 	
	 f1 ft1	 Temp	 	 	
	 f2 ft2	 Temp	 	
	 f3 ft3	 Temp	 	 	
	 f4 ft4	 Temp	 	
	 f5 ft5	 Temp	 	
	 f6 ft6	 Temp	 	

f7 ft7	 Temp	
	 f8 fs0	 Saved	Reg	 yes	/	callee	saved	
	 f9 fs1	 Saved	Reg	 yes	/	callee	saved	
	 f10 fa0	 Function	argument	 	
	 f11 fa1	 Function	argument	 	
	 f12 fa2	 Function	argument	 	
	 f13 fa3	 Function	argument	 	
	 f14 fa4	 Function	argument	 	
	 f15 fa5	 Function	argument	 	
	 f16 fa6	 Function	argument	 	
	 f17 fa7	 Function	argument	 	
	 f18 fs2	 Saved	Reg	 yes	 /	callee	saved	
	 f19 fs3	 Saved	Reg	 yes	 /	callee	saved	
	 f20 fs4	 Saved	Reg	 yes	 /	callee	saved	
	 f21 fs5	 Saved	Reg	 yes	 /	callee	saved	
	 f22 fs6	 Saved	Reg	 yes	 /	callee	saved	
	 f23 fs7	 Saved	Reg	 yes	 /	callee	saved	
	 f24 fs8	 Saved	Reg	 yes	 /	callee	saved	
	 f25 fs9	 Saved	Reg	 yes	 /	callee	saved	
	 f26 fs10	 Saved	Reg	 yes	 /	callee	saved	
	 f27 fs11	 Saved	Reg	 yes	 /	callee	saved	
	 f28 ft8	 Temp	 	 	
	 f29 ft9	 Temp	 	 	
	 f30 ft10	 Temp	 	 	
	 f31 ft11	 Temp	
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Compressed	Instructions	

Normally,	RISC-V	instructions	are	32	bits	in	length.	However,	the	“C”	(Compressed	
Instructions)	extension	adds	instructions	which	are	16	bits	long.	

The	“C”	extension	merely	adds	instructions	to	the	ISA;	all	the	other	32	bit	
instructions	remain	valid,	unchanged	and	fully	functional.	

Each	16	bit	instruction	is	an	abbreviation	for	a	longer	32	bit	instruction.	Thus,	no	
new	functionality	is	added.	The	purpose	of	the	16	bit	instructions	is	to	reduce	code	
size:	by	replacing	longer	instructions	with	their	equivalent	shorter	versions,	code	
size	is	reduced.	

Not	all	32	bit	instructions	have	an	equivalent	16	bit	counterpart.	The	goal	of	the	
RISC-V	design	is	to	provide	16	bit	instructions	for	the	most	popular	and	frequently	
occurring	32	bit	instructions,	thereby	reducing	the	code	size	as	much	as	possible.	A	
block	of	code	in	which	all	32	bit	instructions	happen	to	have	16	bit	counterparts	can	
be	reduced	to	half	its	size.	But	typical	code	sequences	will	contain	some	instructions	
which	have	no	16	bit	counterparts,	so	the	reduction	in	size	will	not	be	as	great.	The	
designers	estimate	an	25%	reduction	in	code	size.	

In	other	ISA	designs	there	is	a	“compressed	mode”:	When	the	processor	is	placed	in	
compressed	mode,	the	shorter	instructions	are	executed.	RISC-V	does	not	work	this	
way.	The	RISC-V	design	has	carefully	encoded	the	instructions	so	that	the	length	of	
the	instruction	can	be	determined	and	the	bytes	fetched	from	memory	can	be	
unambiguously	interpreted	as	either	16	bit	or	32	bit	instructions.	Thus,	the	
programmer	can	freely	intermix	long	and	short	instructions.	
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Instruction	Formats	

There	are	several	instruction	formats	used	for	the	compressed	instructions.	In	
listing	the	formats	below,	we	will	use	these	abbreviations	for	2ields:	

------ Opcode	Bits
DDDDD RegD
DDD	 RegD	(x8..x15	only)	

	 aaaaa	 Reg	1
aaa	 Reg1	(x8..x15	only)	
bbbbb	 Reg2
bbb	 Reg2	(x8..x15	only)
VVVVV	 Immediate	Value
XXXXX		 Offset	

Here	are	the	main	instruction	forms.	(Each	character	indicates	a	single	bit.)	

Register	Format
----aaaaabbbbb--
----DDDDDbbbbb--

Immediate	Format
---VaaaaaVVVVV--
---VDDDDDVVVVV--

Wide	Immediate	Format
---VVVVVVVVDDD--

Stack-relative	Store	Format
---VVVVVVbbbbb--

Load	Format
---VVVaaaVVDDD--

Store	Format
---VVVaaaVVbbb--

Branch	Format
---XXXaaaXXXXX--

Jump	Format
---XXXXXXXXXXX--

These	formats	are	schematic.	For	the	individual	instructions	described	in	the	
following	sections,	we	give	the	exact	encoding,	including	the	actual	opcode	bits,	as	
well	as	other	encoding	constraints.	
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Load	Instructions	

C.LW	-	Load	Word	

General	Form:	
C.LW    RegD,Immed-6(Reg1)   

Description:	
Move	a	32	bit	value	from	memory	into	register	RegD.	To	form	the	address,	the	
Immed-6	value	is	zero-extended,	multiplied	by	4,	and	added	as	a	positive	
offset	to	the	base	address	in	register	Reg1.	

Since	the	Immed-6	value	is	scaled	by	4,	this	gives	an	effective	range	of	0	..	252,	
in	multiples	of	4.	

Registers	RegD	and	Reg1	are	restricted	to	x8	..	x15.	
Encoding:	

010VVVaaaVVDDD00	
Where	DDD	=	RegD.	

	 	 Where	aaa	=	Reg1.	
Where	VVVVVV	=	Immed-6.	

Availability:	
Requires	“C”	(Compressed	Instruction)	extension.	

Equivalent	32	Bit	Instruction:	
LW        RegD,Offset(Reg1)	

C.LW	-	Load	Doubleword	

General	Form:	
C.LD    RegD,Immed-6(Reg1)   

Description:	
Move	a	64	bit	value	from	memory	into	register	RegD.	To	form	the	address,	the	
Immed-6	value	is	zero-extended,	multiplied	by	8,	and	added	as	a	positive	
offset	to	the	base	address	in	register	Reg1.	
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Since	the	Immed-6	value	is	scaled	by	8,	this	gives	an	effective	range	of	0	..	504,	
in	multiples	of	8.	

Registers	RegD	and	Reg1	are	restricted	to	x8	..	x15.	
Encoding:	

011VVVaaaVVDDD00	
Where	DDD	=	RegD.	

	 	 Where	aaa	=	Reg1.	
Where	VVVVVV	=	Immed-6.	

Availability:	
Requires	“C”	(Compressed	Instruction)	extension.	
Only	available	for	RV64	and	RV128.		

Equivalent	32	Bit	Instruction:	
LD        RegD,Offset(Reg1)	

C.LQ	-	Load	Quadword	

General	Form:	
C.LQ    RegD,Immed-6(Reg1)   

Description:	
Move	a	128	bit	value	from	memory	into	register	RegD.	To	form	the	address,	
the	Immed-6	value	is	zero-extended,	multiplied	by	16,	and	added	as	a	positive	
offset	to	the	base	address	in	register	Reg1.	

Since	the	Immed-6	value	is	scaled	by	16,	this	gives	an	effective	range	of	0	..	
1,008,	in	multiples	of	16.	

Registers	RegD	and	Reg1	are	restricted	to	x8	..	x15.	
Encoding:	

001VVVaaaVVDDD00	
	 	 Where	aaa	denotes	Reg1.		

Where	VVVVVV	=	Immed-6.	
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Only	available	for	RV128.		

Equivalent	32	Bit	Instruction:	
LQ        RegD,Offset(Reg1)	
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C.FLW	-	Load	Single	Float	

General	Form:	
C.FLW      FRegD,Immed-6(Reg1)    

Description:	
Move	a	32	bit	value	from	memory	into	2loating	point	register	FRegD.	To	form	
the	address,	the	Immed-6	value	is	zero-extended,	multiplied	by	4,	and	added	
as	a	positive	offset	to	the	base	address	in	general	purpose	register	Reg1.	

Since	the	Immed-6	value	is	scaled	by	4,	this	gives	an	effective	range	of	0	..	252,	
in	multiples	of	4.	

Register	FRegD	is	restricted	to	f8	..	f15.	

Register	Reg1	is	restricted	to	x8	..	x15.	
Encoding:	

011VVVaaaVVDDD00	
	 	 Where	aaa	denotes	Reg1.		

Where	VVVVVV	=	Immed-6.	
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Requires	“F”	(Single	Precision	Floating	Point)	extension.	
Only	available	for	RV32.	

Equivalent	32	Bit	Instruction:	
FLW        FRegD,Offset(Reg1)	

C.FLD	-	Load	Double	Float	

General	Form:	
C.FLD      FRegD,Immed-6(Reg1)    

Description:	
Move	a	64	bit	value	from	memory	into	2loating	point	register	FRegD.	To	form	
the	address,	the	Immed-6	value	is	zero-extended,	multiplied	by	8,	and	added	
as	a	positive	offset	to	the	base	address	in	general	purpose	register	Reg1.	

Since	the	Immed-6	value	is	scaled	by	8,	this	gives	an	effective	range	of	0	..	504,	
in	multiples	of	8.	

Register	FRegD	is	restricted	to	f8	..	f15.	
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Register	Reg1	is	restricted	to	x8	..	x15.	
Encoding:	

001VVVaaaVVDDD00
	 	 Where	aaa	denotes	Reg1.		

Where	VVVVVV	=	Immed-6.	
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Requires	“D”	(Double	Precision	Floating	Point)	extension.	
Only	available	for	RV32	and	RV64.	

Equivalent	32	Bit	Instruction:	
FLD        FRegD,Offset(Reg1)	

C.LWSP	-	Load	Word	from	Stack	Frame	

General	Form:	
C.LWSP    RegD,Immed-6    

Description:	
Move	a	32	bit	value	from	memory	into	register	RegD.	To	form	the	address,	the	
Immed-6	value	is	zero-extended,	multiplied	by	4,	and	added	to	the	stack	
pointer	(x2).	

Since	the	Immed-6	value	is	scaled	by	4,	this	gives	an	effective	range	of	0	..	252,	
in	multiples	of	4.	

The	destination	register	can	be	any	of	the	32	registers,	except	x0.	
Encoding:	

010VDDDDDVVVVV10
Where	DDDDD	=	RegD	and	cannot	be	x0=00000.	
Where	VVVVVV	=	Immed-6.	

Availability:	
Requires	“C”	(Compressed	Instruction)	extension.	

Equivalent	32	Bit	Instruction:	
LW        RegD,Offset(x2)	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	165 323



Chapter	6:	Compressed	Instructions	

C.LDSP	-	Load	Doubleword	from	Stack	Frame	

General	Form:	
C.LDSP    RegD,Immed-6    

Description:	
Move	a	64	bit	value	from	memory	into	register	RegD.	To	form	the	address,	the	
Immed-6	value	is	zero-extended,	multiplied	by	8,	and	added	to	the	stack	
pointer	(x2).	

Since	the	Immed-6	value	is	scaled	by	8,	this	gives	an	effective	range	of	0	..	504,	
in	multiples	of	8.	

The	destination	register	can	be	any	of	the	32	registers,	except	x0.	
Encoding:	

011VDDDDDVVVVV10	
Where	DDDDD	=	RegD	and	cannot	be	x0=00000.	
Where	VVVVVV	=	Immed-6.	

Availability:	
Requires	“C”	(Compressed	Instruction)	extension.	
Only	available	for	RV64	and	RV128.	

Equivalent	32	Bit	Instruction:	
LD        RegD,Offset(x2)	

C.LQSP	-	Load	Quadword	from	Stack	Frame	

General	Form:	
C.LQSP    RegD,Immed-6    

Description:	
Move	a	128	bit	value	from	memory	into	register	RegD.	To	form	the	address,	
the	Immed-6	value	is	zero-extended,	multiplied	by	16,	and	added	to	the	stack	
pointer	(x2).	

Since	the	Immed-6	value	is	scaled	by	16,	this	gives	an	effective	range	of	0	..	
1008	in	multiples	of	16.	

The	destination	register	can	be	any	of	the	32	registers,	except	x0.	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	166 323



Chapter	6:	Compressed	Instructions	

Encoding:	
001VDDDDDVVVVV10	

Where	DDDDD	=	RegD	and	cannot	be	x0=00000.	
Where	VVVVVV	=	Immed-6.	

Availability:	
Requires	“C”	(Compressed	Instruction)	extension.	
Only	available	for	RV128.	

Equivalent	32	Bit	Instruction:	
LQ        RegD,Offset(x2)	

C.FLWSP	-	Load	Single	Float	from	Stack	Frame	

General	Form:	
C.FLWSP    FRegD,Immed-6    

Description:	
Move	a	32	bit	value	from	memory	into	2loating	point	register	FRegD.	To	form	
the	address,	the	Immed-6	value	is	zero-extended,	multiplied	by	4,	and	added	
to	the	stack	pointer	(x2).	

Since	the	Immed-6	value	is	scaled	by	4,	this	gives	an	effective	range	of	0	..	252,	
in	multiples	of	4.	

The	destination	register	can	be	any	of	the	32	2loating	point	registers.	
Encoding:	

011VDDDDDVVVVV10	
Where	DDDDD	=	FRegD.	
Where	VVVVVV	=	Immed-6.	

Availability:	
Requires	“C”	(Compressed	Instruction)	extension.	
Requires	“F”	(Single	Precision	Floating	Point)	extension.	
Only	available	for	RV32.	

Equivalent	32	Bit	Instruction:	
FLW        FRegD,Offset(x2)	
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C.FLDSP	-	Load	Double	Float	from	Stack	Frame	

General	Form:	
C.FLDSP    FRegD,Immed-6    

Description:	
Move	a	64	bit	value	from	memory	into	2loating	point	register	FRegD.	To	form	
the	address,	the	Immed-6	value	is	zero-extended,	multiplied	by	8,	and	added	
to	the	stack	pointer	(x2).	

Since	the	Immed-6	value	is	scaled	by	8,	this	gives	an	effective	range	of	0	..	504,	
in	multiples	of	8.	

The	destination	register	can	be	any	of	the	32	2loating	point	registers.	
Encoding:	

001VDDDDDVVVVV10	
Where	DDDDD	=	FRegD.	
Where	VVVVVV	=	Immed-6.	

Availability:	
Requires	“C”	(Compressed	Instruction)	extension.	
Requires	“D”	(Double	Precision	Floating	Point)	extension.	
Only	available	for	RV32	and	RV64.	

Equivalent	32	Bit	Instruction:	
FLD        FRegD,Offset(x2)	

Store	Instructions	

C.SW	-	Store	Word	

General	Form:	
C.SW      Reg2,Immed-6(Reg1)    

Description:	
Move	a	32	bit	value	from	register	Reg2	to	memory.	To	form	the	address,	the	
Immed-6	value	is	zero-extended,	multiplied	by	4,	and	added	as	a	positive	
offset	to	the	base	address	in	register	Reg1.	
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Since	the	Immed-6	value	is	scaled	by	4,	this	gives	an	effective	range	of	0	..	252,	
in	multiples	of	4.	

Registers	Reg1	and	Reg2	are	restricted	to	x8	..	x15.	
Encoding:	

110VVVaaaVVbbb00	
	 	 Where	aaa	denotes	Reg1	and	bbb	denotes	Reg2.		

Where	VVVVVV	=	Immed-6.	
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

SW        Reg2,Offset(Reg1)	

C.SD	-	Store	Doubleword	

General	Form:	
C.SD      Reg2,Immed-6(Reg1)    

Description:	
Move	a	64	bit	value	from	register	Reg2	to	memory.	To	form	the	address,	the	
Immed-6	value	is	zero-extended,	multiplied	by	8,	and	added	as	a	positive	
offset	to	the	base	address	in	register	Reg1.	

Since	the	Immed-6	value	is	scaled	by	8,	this	gives	an	effective	range	of	0	..	504,	
in	multiples	of	8.	

Registers	Reg1	and	Reg2	are	restricted	to	x8	..	x15.	
Encoding:	

111VVVaaaVVbbb00	
	 	 Where	aaa	denotes	Reg1	and	bbb	denotes	Reg2.		

Where	VVVVVV	=	Immed-6.	
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Only	available	for	RV64	and	RV128.	

Equivalent	32	Bit	Instruction:	
SD        Reg2,Offset(Reg1)	
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C.SQ	-	Store	Quadword	

General	Form:	
C.SQ      Reg2,Immed-6(Reg1)    

Description:	
Move	a	128	bit	value	from	register	Reg2	to	memory.	To	form	the	address,	the	
Immed-6	value	is	zero-extended,	multiplied	by	16,	and	added	as	a	positive	
offset	to	the	base	address	in	register	Reg1.	

Since	the	Immed-6	value	is	scaled	by	16,	this	gives	an	effective	range	of	0	..	
1,008,	in	multiples	of	16.	

Registers	Reg1	and	Reg2	are	restricted	to	x8	..	x15.	
Encoding:	

101VVVaaaVVbbb00	
	 	 Where	aaa	denotes	Reg1	and	bbb	denotes	Reg2.		

Where	VVVVVV	=	Immed-6.	
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Only	available	for	RV128.	

Equivalent	32	Bit	Instruction:	
SQ        Reg2,Offset(Reg1)	

C.FSW	-	Store	Single	Float	

General	Form:	
C.FSW      FReg2,Immed-6(Reg1)    

Description:	
Move	a	32	bit	value	from	2loating	point	register	FReg2	to	memory.	To	form	the	
address,	the	Immed-6	value	is	zero-extended,	multiplied	by	4,	and	added	as	a	
positive	offset	to	the	base	address	in	general	purpose	register	Reg1.	

Since	the	Immed-6	value	is	scaled	by	4,	this	gives	an	effective	range	of	0	..	252,	
in	multiples	of	4.	

Register	Reg1	is	restricted	to	x8	..	x15.	Register	FReg2	is	restricted	to	f8	..	f15.	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	170 323



Chapter	6:	Compressed	Instructions	

Encoding:	
111VVVaaaVVbbb00	

	 	 Where	aaa	denotes	Reg1	and	bbb	denotes	FReg2.		
Where	VVVVVV	=	Immed-6.	

Availability:	
Requires	“C”	(Compressed	Instruction)	extension.	
Requires	“F”	(Single	Precision	Floating	Point)	extension.	
Only	available	for	RV32.	

Equivalent	32	Bit	Instruction:	
FSW        FReg2,Offset(Reg1)	

C.FSD	-	Store	Double	Float	

General	Form:	
C.FSD      FReg2,Immed-6(Reg1)    

Description:	
Move	a	64	bit	value	from	2loating	point	register	FReg2	to	memory.	To	form	the	
address,	the	Immed-6	value	is	zero-extended,	multiplied	by	8,	and	added	as	a	
positive	offset	to	the	base	address	in	general	purpose	register	Reg1.	

Since	the	Immed-6	value	is	scaled	by	8,	this	gives	an	effective	range	of	0	..	504,	
in	multiples	of	8.	

Register	Reg1	is	restricted	to	x8	..	x15.	Register	FReg2	is	restricted	to	f8	..	f15.	
Encoding:	

101VVVaaaVVbbb00	
	 	 Where	aaa	denotes	Reg1	and	bbb	denotes	FReg2.		

Where	VVVVVV	=	Immed-6.	
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Requires	“D”	(Double	Precision	Floating	Point)	extension.	
Only	available	for	RV32	and	RV64.	

Equivalent	32	Bit	Instruction:	
FSD        FReg2,Offset(Reg1)	
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C.SWSP	-	Store	Word	to	Stack	Frame	

General	Form:	
C.SWSP    Reg2,Immed-6    

Description:	
Move	a	32	bit	value	from	register	Reg2	to	memory.	To	form	the	address,	the	
Immed-6	value	is	zero-extended,	multiplied	by	4,	and	added	to	the	stack	
pointer	(x2).	

Since	the	Immed-6	value	is	scaled	by	4,	this	gives	an	effective	range	of	0	..	252,	
in	multiples	of	4.	

The	source	register	can	be	any	of	the	32	general	purpose	registers.	
Encoding:	

110VVVVVVbbbbb10	
	 	 Where	bbbbb	denotes	Reg2.		

Where	VVVVVV	=	Immed-6.	
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

SW        Reg2,Offset(x2)	

C.SDSP	-	Store	Doubleword	to	Stack	Frame	

General	Form:	
C.SDSP    Reg2,Immed-6    

Description:	
Move	a	64	bit	value	from	register	Reg2	to	memory.	To	form	the	address,	the	
Immed-6	value	is	zero-extended,	multiplied	by	8,	and	added	to	the	stack	
pointer	(x2).	

Since	the	Immed-6	value	is	scaled	by	8,	this	gives	an	effective	range	of	0	..	504,	
in	multiples	of	8.	

The	source	register	can	be	any	of	the	32	general	purpose	registers.	
Encoding:	

111VVVVVVbbbbb10	
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	 	 Where	bbbbb	denotes	Reg2.		
Where	VVVVVV	=	Immed-6.	

Availability:	
Requires	“C”	(Compressed	Instruction)	extension.	
Only	available	for	RV64	and	RV128.	

Equivalent	32	Bit	Instruction:	
SD        Reg2,Offset(x2)	

C.SQSP	-	Store	Quadword	to	Stack	Frame	

General	Form:	
C.SQSP    Reg2,Immed-6    

Description:	
Move	a	128	bit	value	from	register	Reg2	to	memory.	To	form	the	address,	the	
Immed-6	value	is	zero-extended,	multiplied	by	16,	and	added	to	the	stack	
pointer	(x2).	

Since	the	Immed-6	value	is	scaled	by	16,	this	gives	an	effective	range	of	0	..	
1,016,	in	multiples	of	16.	

The	source	register	can	be	any	of	the	32	general	purpose	registers.	
Encoding:	

101VVVVVVbbbbb10	
	 	 Where	bbbbb	denotes	Reg2.		

Where	VVVVVV	=	Immed-6.	
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Only	available	for	RV128.	

Equivalent	32	Bit	Instruction:	
SQ        Reg2,Offset(x2)	

C.FSWSP	-	Store	Single	Float	to	Stack	Frame	

General	Form:	
C.FSWSP    FReg2,Immed-6    
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Description:	
Move	a	32	bit	value	from	register	FReg2	to	memory.	To	form	the	address,	the	
Immed-6	value	is	zero-extended,	multiplied	by	4,	and	added	to	the	stack	
pointer	(x2).	

Since	the	Immed-6	value	is	scaled	by	4,	this	gives	an	effective	range	of	0	..	252,	
in	multiples	of	4.	

The	source	register	can	be	any	of	the	32	2loating	point	registers.	
Encoding:	

111VVVVVVbbbbb10	
	 	 Where	bbbbb	denotes	FReg2.		

Where	VVVVVV	=	Immed-6.	
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Requires	“F”	(Single	Precision	Floating	Point)	extension.	
Only	available	for	RV32.		

Equivalent	32	Bit	Instruction:	
FSW        FReg2,Offset(x2)	

C.FSDSP	-	Store	Double	Float	to	Stack	Frame	

General	Form:	
C.FSDSP    FReg2,Immed-6    

Description:	
Move	a	64	bit	value	from	register	FReg2	to	memory.	To	form	the	address,	the	
Immed-6	value	is	zero-extended,	multiplied	by	8,	and	added	to	the	stack	
pointer	(x2).	

Since	the	Immed-6	value	is	scaled	by	8,	this	gives	an	effective	range	of	0	..	504,	
in	multiples	of	8.	

The	source	register	can	be	any	of	the	32	2loating	point	registers.	
Encoding:	

101VVVVVVbbbbb10	
	 	 Where	bbbbb	denotes	FReg2.		

Where	VVVVVV	=	Immed-6.	
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
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Requires	“D”	(Double	Precision	Floating	Point)	extension.	
Only	available	for	RV32	and	RV64.		

Equivalent	32	Bit	Instruction:	
FSD        FReg2,Offset(x2)	

Jump,	Call,	and	Conditional	Branch	Instructions	

C.J	-	Jump	(PC-relative)	

General	Form:	
C.J       Immed-11    

Description:	
A	jump	is	taken	using	a	PC-relative	offset.	The	11	bit	immediate	value	is	
multiplied	by	two	(since	instructions	must	be	halfword	aligned),	sign-
extended,	and	added	to	the	program	counter	(PC),	to	give	the	target	address.		

Since	the	Immed-11	value	is	scaled	by	2,	this	gives	an	effective	range	of	
-2,048	..	+2,046,	in	multiples	of	2.	

Encoding:	
101XXXXXXXXXXX01	

	 	 Where	XXXXXXXXXXX	denotes	the	Immed-11	offset.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

JAL        x0,Offset	

C.JAL	-	Jump	and	Link	/	Call	(PC-relative)	

General	Form:	
C.JAL     Immed-11    

Description:	
A	function	call	is	taken	using	a	PC-relative	offset.	The	11	bit	immediate	value	is	
multiplied	by	two	(since	instructions	must	be	halfword	aligned),	sign-
extended,	and	added	to	the	program	counter	(PC),	to	give	the	target	address.		
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Since	the	Immed-11	value	is	scaled	by	2,	this	gives	an	effective	range	of	
-2,048	..	+2,046,	in	multiples	of	2.	

The	return	address	(i.e.,	the	address	of	the	instruction	following	the	C.JAL)	is	
saved	in	register	x1	(also	known	as	register	ra).	

Encoding:	
001XXXXXXXXXXX01	

	 	 Where	XXXXXXXXXXX	denotes	the	Immed-11	offset.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Only	available	for	RV32.	

Equivalent	32	Bit	Instruction:	
JAL        x1,Offset	

C.JR	-	Jump	Register	

General	Form:	
C.JR       Reg1    

Description:	
A	jump	is	taken	to	the	address	in	register	Reg1.	

Register	Reg1	can	be	x1,	x2,	…	x31,	i.e.,	any	general	purpose	register	except	x0.	
Encoding:	

1000aaaaa0000010	
	 	 Where	aaaaa	denotes	Reg1	and	cannot	be	x0=00000.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

JAL        x0,Reg1,0	

C.JALR	-	Jump	Register	and	Link	/	Call	
General	Form:	

C.JALR     Reg1    
Description:	

A	function	call	is	taken	to	the	address	in	register	Reg1.	

The	return	address	(i.e.,	the	address	of	the	instruction	following	the	C.JALR)	is	
saved	in	register	x1	(also	known	as	register	ra).	
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Register	Reg1	can	be	x1,	x2,	…	x31,	i.e.,	any	general	purpose	register	except	x0.	
Encoding:	

1001aaaaa0000010	
	 	 Where	aaaaa	denotes	Reg1	and	cannot	be	x0=00000.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

JALR        x1,Reg1,0	

C.BEQZ	-	Branch	if	Zero	(PC-relative)	

General	Form:	
C.BEQZ       Reg1,Immed-8    

Description:	
A	conditional	branch	is	taken	using	a	PC-relative	offset.	The	branch	is	taken	if	
the	value	in	register	Reg1	is	zero.	

The	8	bit	immediate	value	is	multiplied	by	two	(since	instructions	must	be	
halfword	aligned),	sign-extended,	and	added	to	the	program	counter	(PC),	to	
give	the	target	address.		

Since	the	Immed-8	value	is	scaled	by	2,	this	gives	an	effective	range	of	-256	..	
+254,	in	multiples	of	2.	

Encoding:	
110XXXaaaXXXXX01	

	 	 Where	XXXXXXXX	denotes	the	Immed-8	offset.		
	 	 Where	aaa	denotes	Reg1.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

BEQ        Reg1,x0,Offset	

C.BNEQZ	-	Branch	if	Not	Zero	(PC-relative)	

General	Form:	
C.BNEQZ       Reg1,Immed-8    

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	177 323



Chapter	6:	Compressed	Instructions	

Description:	
A	conditional	branch	is	taken	using	a	PC-relative	offset.	The	branch	is	taken	if	
the	value	in	register	Reg1	is	not	zero.	

The	8	bit	immediate	value	is	multiplied	by	two	(since	instructions	must	be	
halfword	aligned),	sign-extended,	and	added	to	the	program	counter	(PC),	to	
give	the	target	address.		

Since	the	Immed-8	value	is	scaled	by	2,	this	gives	an	effective	range	of	-256	..	
+254,	in	multiples	of	2.	

Encoding:	
111XXXaaaXXXXX01	

	 	 Where	XXXXXXXX	denotes	the	Immed-8	offset.		
	 	 Where	aaa	denotes	Reg1.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

BNE        Reg1,x0,Offset	

Load	Constant	into	a	Register	

C.LI	-	Load	Immediate		

General	Form:	
C.LI       RegD,Immed-6    

Description:	
Load	an	immediate	value	in	the	range	-32	..	+31	into	register	RegD.	

The	target	register	can	be	x1,	x2,	…	x31,	i.e.,	any	general	purpose	register	
except	x0.	

The	6	bit	immediate	value	is	sign-extended.	
Encoding:	

010VDDDDDVVVVV01	
	 	 Where	VVVVVV	denotes	the	Immed-6	value.		
	 	 Where	DDDDD	denotes	RegD,	and	cannot	be	x0=00000.	
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Availability:	
Requires	“C”	(Compressed	Instruction)	extension.	

Equivalent	32	Bit	Instruction:	
ADDI        RegD,x0,Value	

C.LUI	-	Load	Upper	Immediate	

General	Form:	
C.LUI       RegD,Immed-6    

Description:	
This	instruction	is	a	short	form	for	the	LUI	instruction,	but	with	a	restricted	
range	of	values.	This	instruction	loads	bits	[17:12]	of	the	destination	register.	
The	upper	bits	[…	:18]	are	2illed	with	the	sign	extension.	The	lower	12	bits	
[11:0]	are	2illed	with	zeros.	

To	put	it	another	way,	the	immediate	value	is	sign	extended,	multiplied	by	
4,096,	and	loaded	into	the	destination	register.	Since	the	Immed-6	value	is	
scaled	by	212	=	4,096,	this	gives	an	effective	range	of	values	of	-131,040	..	
+126,976,	in	multiples	of	4,096.	

The	target	register	can	be	any	general	purpose	register	except	x0	or	x2.	
(Register	x2	is	normally	used	for	the	stack	pointer.)	

Encoding:	
011VDDDDDVVVVV01	

	 	 Where	VVVVVV	denotes	the	Immed-6	value.		
	 	 Where	DDDDD	denotes	RegD,	and	cannot	be	x0=00000	or	x2=00010.	
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

LUI        RegD,Value	
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Arithmetic,	Shift,	and	Logic	Instructions	

C.ADDI	-	Add	Immediate		

General	Form:	
C.ADDI       RegD,Immed-6    

Description:	
Adds	an	immediate	value	in	the	range	-32	..	+31	to	register	RegD.	

The	register	can	be	x1,	x2,	…	x31,	i.e.,	any	general	purpose	register	except	x0.	

The	6	bit	immediate	value	is	sign-extended.	
Encoding:	

000VDDDDDVVVVV01	
	 	 Where	VVVVVV	denotes	the	Immed-6	value	and	cannot	be	zero.		
	 	 Where	DDDDD	denotes	RegD,	and	cannot	be	x0=00000.	
Comment:	
	 If	VVVVVV=000000	and	DDDDD=00000,	this	encoding	is	identical	to	C.NOP.	
	 If	VVVVVV≠000000	and	DDDDD=00000,	this	encoding	can	be	a	hint.	
	 If	VVVVVV=000000	and	DDDDD≠00000,	this	encoding	is	reserved.	
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

ADDI        RegD,RegD,Value	

C.ADDIW	-	Add	Immediate	(Word)		

General	Form:	
C.ADDIW      RegD,Immed-6    

Description:	
Adds	an	immediate	value	in	the	range	-32	..	+31	to	register	RegD.	

The	register	can	be	x1,	x2,	…	x31,	i.e.,	any	general	purpose	register	except	x0.	

The	6	bit	immediate	value	is	sign-extended.	

The	previously	described	C.ADDI	instruction	performs	the	addition	in	either	
32,	64,	or	128	bits,	as	determined	by	the	architecture,	RV32,	RV64,	or	RV128.	
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This	instruction	C.ADDIW	will	truncate	the	result	to	32	bits,	then	sign	
extended	the	32	bits	to	the	full	register	size.	

A	value	of	zero	is	allowed.	This	will	simply	force	a	larger	value	into	a	32	bit	
value,	sign	extending	to	the	full	register	size.	

Encoding:	
001VDDDDDVVVVV01	

	 	 Where	VVVVVV	denotes	the	Immed-6	value.	(Zero	is	allowed).		
	 	 Where	DDDDD	denotes	RegD,	and	cannot	be	x0=00000.	
Comment:	
	 If	DDDDD=00000,	this	encoding	can	be	a	hint.	
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Only	available	for	RV64	and	RV128.	

Equivalent	32	Bit	Instruction:	
ADDIW        RegD,RegD,Value	

C.ADDI16SP	-	Add	Immediate	to	Stack	Pointer	

General	Form:	
C.ADDI16SP      Immed-6    

Description:	
This	instruction	is	used	to	grow	or	shrink	the	stack	by	adjusting	the	stack	
pointer	register.	

The	6	bit	immediate	value	is	multiplied	by	16,	sign-extended,	and	added	to	the	
stack	pointer	register	(x2).	

It	is	assumed	that	the	stack	pointer	is	always	quadword	aligned,	i.e.,	a	multiple	
of	16.	Since	the	Immed-6	value	is	scaled	by	16,	this	gives	an	effective	
adjustment	value	of	-512	..	+496,	in	multiples	of	16.	

A	value	of	zero	is	not	allowed,	since	adjusting	the	stack	pointer	by	zero	is	
pointless.	

Encoding:	
011V00010VVVVV01	

	 	 Where	VVVVVV	denotes	the	Immed-6	value,	and	cannot	be	000000.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
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Equivalent	32	Bit	Instruction:	
ADDI        x2,x2,Value	

C.ADDI4SPN	-	Add	Immediate	to	Stack	Pointer	

General	Form:	
C.ADDI14SPN      RegD,Immed-8    

Description:	
This	instruction	is	used	to	load	the	address	of	a	local	stack	variable	into	a	
register.	We	assume	the	variable	is	located	with	the	stack	frame,	that	the	stack	
grows	downward,	and	that	the	stack	pointer	points	to	the	lowest	address.	
Therefore,	all	local	variables	(located	within	the	stack	frame)	will	be	accessed	
with	positive	offsets	from	register	x2	(the	stack	pointer).	

The	8	bit	immediate	value	is	multiplied	by	4,	zero-extended,	and	added	to	the	
stack	pointer	register	(x2),	and	moved	into	the	destination	register	RegD.	

Since	the	Immed-8	value	is	scaled	by	4,	this	gives	an	offset	in	the	range	-512	..	
+508,	in	multiples	of	4.	

The	destination	register	is	limited	to	x8,	x9,	…	x15.	

A	value	of	zero	is	not	allowed,	since	a	MV	instruction	can	be	used	instead.	
Encoding:	

000VVVVVVVVDDD00	
	 	 Where	VVVVVVVV	denotes	Immed-8,	and	cannot	be	00000000.		
	 	 Where	DDD	denotes	RegD.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Available	only	for	RV32	and	RV64.	

Equivalent	32	Bit	Instruction:	
ADDI        RegD,x2,Value	

C.SLLI	-	Shift	Left	Logical	(Immediate)	

General	Form:	
C.SLLI      RegD,Immed-6    
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Description:	
This	instruction	shifts	the	value	in	a	register	RegD	left	by	an	amount	speci2ied	
by	the	Immed-6	2ield.	

For	RV32	(32-bit	architectures),	the	shift	amount	must	be	1..31	(i.e.,	
000001-011111).	

For	RV64	(64-bit	architectures),	the	shift	amount	must	be	1..63	(i.e.,	
000001-111111).	

For	RV128	(128-bit	architectures),	the	shift	amount	may	be	1..64.	(Shift	
amounts	of	1..63	are	encoded	as	000001-111111;	a	shift	amount	64	is	
encoded	as	000000.)	

The	destination	register	can	be	x1,	x2,	…	x31,	i.e.,	any	general	purpose	register	
except	x0.	

Encoding:	
000VDDDDDVVVVV10	

	 	 Where	VVVVVV	denotes	Immed-6.	See	restrictions	in	the	description.		
	 	 Where	DDDDD	denotes	RegD,	and	cannot	be	x0=00000.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

SLLI        RegD,RegD,Value	

C.SRLI	-	Shift	Right	Logical	(Immediate)	

General	Form:	
C.SRLI      RegD,Immed-6    

Description:	
This	instruction	shifts	the	value	in	a	register	RegD	right	by	an	amount	
speci2ied	by	the	Immed-6	2ield.	This	is	a	“logical	shift,	i.e.,	zeros	are	shifted	in	
from	the	left.	

For	RV32	(32-bit	architectures),	the	shift	amount	must	be	1..31	(i.e.,	
000001-011111).	

For	RV64	(64-bit	architectures),	the	shift	amount	must	be	1..63	(i.e.,	
000001-111111).	
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For	RV128	(128-bit	architectures),	the	possible	shift	amounts	are	1..31,	64,	
and	96-127.	[	My	reading	of	the	spec	suggests	that	the	encoding	of	the	shift	
amount	is	this:	000001-011111	means	1-31.	000000	means	64.	
100000-111111	is	interpreted	as	a	signed	value	in	the	range	-32..-1,	which	we	
can	call	X.	The	shift	amount	is	right	by	128-X	bits.	This	gives	a	range	of	96..127,	
resp.	]	

The	destination	register	can	be	x8,	x9	,…	x15.	
Encoding:	

100V00DDDVVVVV01	
	 	 Where	VVVVVV	denotes	Immed-6.	See	restrictions	in	the	description.		
	 	 Where	DDD	denotes	RegD.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

SRLI        RegD,RegD,Value	

C.SRAI	-	Shift	Right	Arithmetic	(Immediate)	

General	Form:	
C.SRAI      RegD,Immed-6    

Description:	
This	instruction	shifts	the	value	in	a	register	RegD	right	by	an	amount	
speci2ied	by	the	Immed-6	2ield.	This	is	a	“arithmetic	shift,	i.e.,	the	sign	bit	is	
repeatedly	shifted	in	from	the	left.	

For	RV32	(32-bit	architectures),	the	shift	amount	must	be	1..31	(i.e.,	
000001-011111).	

For	RV64	(64-bit	architectures),	the	shift	amount	must	be	1..63	(i.e.,	
000001-111111).	

For	RV128	(128-bit	architectures),	the	possible	shift	amounts	are	1..31,	64,	
and	96-127.	[	My	reading	of	the	spec	suggests	that	the	encoding	of	the	shift	
amount	is	this:	000001-011111	means	1-31.	000000	means	64.	
100000-111111	is	interpreted	as	a	signed	value	in	the	range	-32..-1,	which	we	
can	call	X.	The	shift	amount	is	right	by	128-X	bits.	This	gives	a	range	of	96..127,	
resp.	]	
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The	destination	register	can	be	x8,	x9	,…	x15.	
Encoding:	

100V01DDDVVVVV01	
	 	 Where	VVVVVV	denotes	Immed-6.	See	restrictions	in	the	description.		
	 	 Where	DDD	denotes	RegD.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

SRAI        RegD,RegD,Value	

C.ANDI	-	Logical	AND	(Immediate)	

General	Form:	
C.ANDI      RegD,Immed-6    

Description:	
This	instruction	performs	the	logical	AND	operation	with	the	value	in	a	
register	and	writes	the	result	to	that	same	register.	

The	Immed-6	value	is	sign-extended.	

The	register	RegD	can	be	x8,	x9	,…	x15.	
Encoding:	

100V10DDDVVVVV01	
	 	 Where	VVVVVV	denotes	Immed-6.		
	 	 Where	DDD	denotes	RegD.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

ANDI        RegD,RegD,Value	

C.MV	-	Move	Register	to	Register	

General	Form:	
C.MV      RegD,Reg2    

Description:	
This	instruction	moves	a	value	from	Reg2	to	RegD.	
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The	registers	RegD	and	Reg2	can	be	x1,	x2,	…	x31,	i.e.,	any	general	purpose	
register	except	x0.	

Encoding:	
1000DDDDDbbbbb10	

	 	 Where	DDDDD	denotes	RegD.		
	 	 Where	bbbbb	denotes	Reg2.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

ADD        RegD,x0,Reg2	

C.ADD	-	Add	Register	to	Register	

General	Form:	
C.ADD      RegD,Reg2    

Description:	
This	instruction	adds	the	values	in	RegD	and	Reg2	and	places	the	result	in	
RegD.	

The	registers	RegD	and	Reg2	can	be	x1,	x2,	…	x31,	i.e.,	any	general	purpose	
register	except	x0.	

Encoding:	
1001DDDDDbbbbb10	

	 	 Where	DDDDD	denotes	RegD.		
	 	 Where	bbbbb	denotes	Reg2.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

ADD        RegD,RegD,Reg2	

C.AND	-	Add	Register	to	Register	

General	Form:	
C.AND      RegD,Reg2    

Description:	
This	instruction	logically	ANDs	the	values	in	RegD	and	Reg2	and	places	the	
result	in	RegD.	
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The	registers	RegD	and	Reg2	can	be	x8,	x9,	…	x15.	
Encoding:	

100011DDD11bbb01	
	 	 Where	DDD	denotes	RegD.		
	 	 Where	bbb	denotes	Reg2.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

AND        RegD,RegD,Reg2	

C.OR	-	Add	Register	to	Register	

General	Form:	
C.OR       RegD,Reg2    

Description:	
This	instruction	logically	ORs	the	values	in	RegD	and	Reg2	and	places	the	
result	in	RegD.	

The	registers	RegD	and	Reg2	can	be	x8,	x9,	…	x15.	
Encoding:	

100011DDD10bbb01	
	 	 Where	DDD	denotes	RegD.		
	 	 Where	bbb	denotes	Reg2.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

OR        RegD,RegD,Reg2	

C.XOR	-	Add	Register	to	Register	

General	Form:	
C.XOR      RegD,Reg2    

Description:	
This	instruction	logically	XORs	the	values	in	RegD	and	Reg2	and	places	the	
result	in	RegD.	

The	registers	RegD	and	Reg2	can	be	x8,	x9,	…	x15.	
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Encoding:	
100011DDD01bbb01	

	 	 Where	DDD	denotes	RegD.		
	 	 Where	bbb	denotes	Reg2.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

XOR        RegD,RegD,Reg2	

C.SUB	-	Add	Register	to	Register	

General	Form:	
C.SUB      RegD,Reg2    

Description:	
This	instruction	subtracts	the	value	in	Reg2	from	the	value	in	RegD	and	places	
the	result	in	RegD.	

The	registers	RegD	and	Reg2	can	be	x8,	x9,	…	x15.	
Encoding:	

100011DDD00bbb01	
	 	 Where	DDD	denotes	RegD.		
	 	 Where	bbb	denotes	Reg2.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Equivalent	32	Bit	Instruction:	

SUB        RegD,RegD,Reg2	

C.ADDW	-	Add	Register	to	Register	

General	Form:	
C.ADDW     RegD,Reg2    

Description:	
This	instruction	adds	the	value	in	Reg2	to	the	value	in	RegD	and	places	the	
result	in	RegD.	The	result	value	is	truncated	to	32	bits	and	then	sign	extended	
to	the	full	length	of	the	register.	

The	registers	RegD	and	Reg2	can	be	x8,	x9,	…	x15.	
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Encoding:	
100111DDD01bbb01	

	 	 Where	DDD	denotes	RegD.		
	 	 Where	bbb	denotes	Reg2.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Available	for	RV64	and	RV128	only.	

Equivalent	32	Bit	Instruction:	
ADDW       RegD,RegD,Reg2	

C.SUBW	-	Add	Register	to	Register	

General	Form:	
C.SUBW     RegD,Reg2    

Description:	
This	instruction	subtracts	the	value	in	Reg2	from	the	value	in	RegD	and	places	
the	result	in	RegD.	The	result	value	is	truncated	to	32	bits	and	then	sign	
extended	to	the	full	length	of	the	register.	

The	registers	RegD	and	Reg2	can	be	x8,	x9,	…	x15.	
Encoding:	

100111DDD00bbb01	
	 	 Where	DDD	denotes	RegD.		
	 	 Where	bbb	denotes	Reg2.		
Availability:	

Requires	“C”	(Compressed	Instruction)	extension.	
Available	for	RV64	and	RV128	only.	

Equivalent	32	Bit	Instruction:	
SUBW       RegD,RegD,Reg2	

Miscellaneous	Instructions	

C.NOP	-	Nop	Instruction	

General	Form:	
C.NOP    
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Description:	
This	instruction	does	nothing.	The	encoding	can	be	viewed	as	a	special	case	of	
the	C.ADDI	instruction	where	the	destination	is	x0	and	the	immediate	value	is	
0.		

Encoding:	
0000000000000001	

Availability:	
Requires	“C”	(Compressed	Instruction)	extension.	

Equivalent	32	Bit	Instruction:	
ADDI     x0,x0,0	

C.EBREAK	-	Debugging	Break	Instruction	

General	Form:	
C.EBREAK    

Description:	
This	instruction	is	used	by	debuggers.	The	idea	is	that	a	debugger	will	
temporarily	replace	some	instruction	with	this	instruction.	When	executed,	an	
exception	will	occur,	allowing	the	debugger	to	get	control.	

Encoding:	
1001000000000010	

Availability:	
Requires	“C”	(Compressed	Instruction)	extension.	

Equivalent	32	Bit	Instruction:	
EBREAK	

C.ILLEGAL	-	Illegal	Instruction	

General	Form:	
C.ILLEGAL  

It	is	doubtful	that	most	assemblers	would	recognize	the	opcode	“C.ILLEGAL”,	
but	we	include	it	anyway.	

Description:	
This	pattern	is	de2ined	as	being	illegal.	Any	attempt	to	execute	it	will	cause	an	
“illegal	instruction”	exception.	All	zeros	was	intentionally	chosen	so	that	any	
attempt	to	branch	into	unpopulated	or	dysfunctional	memory	(which	often	
reads	as	zeros)	will	result	in	an	immediate	trap.	
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Encoding:	
0000000000000000	

Availability:	
Requires	“C”	(Compressed	Instruction)	extension.	

Equivalent	32	Bit	Instruction:	
ILLEGAL	

Instruction	Encoding	

The	following	table	lists	all	the	compressed	instructions	and	is	ordered	in	an	
attempt	to	show	the	complete	coverage	of	the	16	bit	instruction	encoding	space.	

Some	bit	patterns	are	reserved	by	the	RISC-V	spec	for	future	use;	such	patterns	are	
marked	<Reserved>	and	should	not	be	used	by	implementors.	

Some	bit	patterns	are	unassigned	and	available	for	speci2ic	implementations	to	
de2ine	as	they	wish;	such	patterns	are	marked	<NSE>	(Nonstandard	Extension).		

Some	bit	patterns	are	marked	as	<Hint>;	implementors	are	free	to	use	these	bit	
patterns	to	encode	hints	to	the	processor	to	the	improve	execution	speed.	In	all	
cases,	the	patterns	marked	<Hint>	are	equivalent	to	instructions	that	involve	
modifying	a	register	and	that	speci2ically	disallow	the	use	of	register	x0	as	the	
destination	register.	Thus,	implementors	are	free	to	ignore	the	<Hint>	patterns	and	
execute	them	in	the	natural	way,	by	computing	a	result	but	sending	that	values	to	the	
zero	register	x0,	causing	these	instructions	to	behave	as	nop	instructions.	

Recall	that	the	least	signi2icant	2	bits	are	used	to	distinguish	16-bit	instructions	from	
longer	instructions.	If	the	least	signi2icant	2	bits	are	11,	then	the	instruction	is	not	a	
16	bit	compressed	instruction.	

This	table	is	more-or-less	sorted	on	least	signi2icant	2	bits	(00,	01,	10),	followed	by	
the	most	signi2icant	bits	in	order.	

C.ILLEGAL 0000000000000000

<Reserved> 00000000000DDD00 RegD	≠	0

C.ADDI4SPN 000VVVVVVVVDDD00 Value	≠	0
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C.FLD 001VVVaaaVVDDD00 RV32	and	RV64	only

C.LQ 001VVVaaaVVDDD00 RV128	only

C.LW 010VVVaaaVVDDD00

C.FLW 011VVVaaaVVDDD00 RV32	only

C.LD 011VVVaaaVVDDD00 RV64	and	RV128	only

<Reserved> 100XXXXXXXXXXX00

C.FSD 101VVVaaaVVbbb00 RV32	and	RV64	only

C.SQ 101VVVaaaVVbbb00 RV128	only

C.SW 110VVVaaaVVbbb00

C.FSW 111VVVaaaVVbbb00 RV32	only

C.SD 111VVVaaaVVbbb00 RV64	and	RV128	only

C.ADDI 000VDDDDDVVVVV01 RegD	≠	0;	Value	≠	0

<Reserved> 0000DDDDD0000001 RegD	≠	0;	Value	=	0

<Hint> 000V00000VVVVV01 RegD	=	0;	Value	≠	0

C.NOP 0000000000000001 RegD	=	0;	Value	=	0

C.JAL 001VVVVVVVVVVV01 RV32	only

C.ADDIW 001VDDDDDVVVVV01 Rv64	and	RV128	only;	RegD	≠	0

<Hint> 001V00000VVVVV01 Rv64	and	RV128	only;	RegD	=	0

C.LI 010VDDDDDVVVVV01 RegD	≠	0

<Hint> 010VDDDDDVVVVV01 RegD	=	0

C.LUI 011VDDDDDVVVVV01 RegD	≠	0,	2;	Value	≠	0

<Reserved> 011VDDDDDVVVVV01 RegD	≠	0,	2;	Value	=	0

<Hint> 011V00000VVVVV01 RegD	=	0

C.ADDI16SP 011V00010VVVVV01 RegD	=	2;	Value	≠	0

<Reserved> 011V00010VVVVV01 RegD	=	2,	Value	=	0

C.SRLI 100000DDDVVVVV01 RV32;	V	≠	0

<Hint> 100000DDD0000001 RV32;	V	=	0

<NSE> 100100DDDVVVVV01 RV32;
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C.SRLI 100V00DDDVVVVV01 RV64;	V	≠	0

<Hint> 100000DDD0000001 RV64;	V	=	0

C.SRLI 100V00DDDVVVVV01 RV128	only;	V	≠	0

C.SRLI64 100000DDD0000001 RV128	only;	V	=	0

C.SRAI 100001DDDVVVVV01 RV32;	V	≠	0

<Hint> 100001DDD0000001 RV32;	V	=	0

<NSE> 100101DDDVVVVV01 RV32;

C.SRAI 100V01DDDVVVVV01 RV64;	V	≠	0

<Hint> 100001DDD0000001 RV64;	V	=	0

C.SRAI 100V01DDDVVVVV01 RV128	only;	V	≠	0

C.SRAI64 100001DDD0000001 RV128	only;	V	=	0

C.SUB 100011DDD00bbb01

C.XOR 100011DDD01bbb01

C.OR 100011DDD10bbb01

C.AND 100011DDD11bbb01

C.SUBW 100111DDD00bbb01 RV64	and	RV128	only

<Reserved> 100111DDD00bbb01 RV32	only

C.ADDW 100111DDD01bbb01 RV64	and	RV128	only

<Reserved> 100111DDD01bbb01 RV32	only

<Reserved> 100111XXX10XXX01

<Reserved> 100111XXX11XXX01

C.ANDI 100V10DDDVVVVV01

C.J 101VVVVVVVVVVV01

C.BEQZ 110VVVaaaVVVVV01

C.BNEZ 111VVVaaaVVVVV01

C.SLLI 0000DDDDDVVVVV10 RV32	only;	RegD	≠	0;	V	≠	0

<Hint> 0000DDDDD0000010 RV32	only;	RegD	≠	0;	V	=	0

<NSE> 0001DDDDDVVVVV10 RV32	only;	RegD	≠	0
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<Hint> 000V00000VVVVV10 RV32	only;	RegD	=	0

C.SLLI 000VDDDDDVVVVV10 RV64	only;	RegD	≠	0;	V	≠	0

<Hint> 0000DDDDD0000010 RV64	only;	RegD	≠	0;	V	=	0

<Hint> 000V00000VVVVV10 RV64	only;	RegD	=	0

C.SLLI 000VDDDDDVVVVV10 RV128	only;	RegD	≠	0;	V	≠	0

C.SLLI64 0000DDDDD0000010 RV128	only;	RegD	≠	0;	V	=	0

<Hint> 000V00000VVVVV10 RV128	only;	RegD	=	0

C.FLDSP 001VDDDDDVVVVV10 RV32	and	RV64	only

C.LQSP 001VDDDDDVVVVV10 RV128	only;	RegD	≠	0

<Reserved> 001VDDDDDVVVVV10 RV128	only;	RegD	=	0

C.LWSP 010VDDDDDVVVVV10 RegD	≠	0

<Reserved> 010VDDDDDVVVVV10 RegD	=	0

C.LDSP 011VDDDDDVVVVV10 RV64	and	RV128	only;	RegD	≠	0

<Reserved> 011VDDDDDVVVVV10 RV64	and	RV128	only;	RegD	=	0

C.FLWSP 011VDDDDDVVVVV10 RV32	only

C.JR 1000aaaaa0000010 RegA	≠	0

<Reserved> 1000aaaaa0000010 RegA	=	0

C.MV 1000DDDDDbbbbb10 RegB	≠	0;	RegD	≠	0

<Hint> 1000DDDDDbbbbb10 RegB	≠	0;	RegD	=	0

C.EBREAK 1001000000000010

C.JALR 1001aaaaa0000010 RegA	≠	0

C.ADD 1001DDDDDbbbbb10 RegB	≠	0;	RegD	≠	0

<Reserved> 1001DDDDDbbbbb10 RegB	≠	0;	RegD	=	0

C.FSDSP 101VVVVVVbbbbb10 RV32	and	RV64	only

C.SQSP 101VVVVVVbbbbb10 RV128	only

C.SWSP 110VVVVVVbbbbb10

C.FSWSP 111VVVVVVbbbbb10 RV32	only

C.SDSP 111VVVVVVbbbbb10 RV64	and	RV128	only

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	194 323



Chapter	7:	Concurrency	and	Atomic	
Instructions	

Hardware	Threads	(HARTs)	

A	simple	processor	has	a	single	2low-of-control.	That	is,	it	operates	as	a	single	
“thread”,	with	a	FETCH-DECODE-EXECUTE	loop.	Instructions	are	executed	one-after-
the-other.	(In	the	case	of	pipelining,	several	instructions	may	be	in	some	stage	of	
execution	at	any	moment,	but	the	instructions	are	completed	(or	“retired”)	one-
after-the-other,	and	the	pipelined	behavior	is	exactly	the	same	as	if	each	instruction	
had	been	executed	alone	to	completion	in	the	order	they	appear	in	the	code.)	

Normally,	an	operating	system	will	multiplex	the	processor,	thereby	providing	many	
threads,	via	timeslicing.	For	clarity,	we	can	distinguish	between	“hardware	thread”	
and	“software	threads”.	The	OS	can	multiplex	a	single	hardware	thread	to	provide	
multiple	software	threads.	

In	a	multi-core	or	multiprocessor	system,	each	core	is	running	its	own	independent	
FETCH-DECODE-EXECUTE	cycle.	Thus,	there	will	be	a	number	of	hardware	threads	
equal	to	the	number	of	cores.	How	the	OS	implements	software	threads	on	top	of	the	
available	hardware	threads	is	a	complex	topic	which	concerns	the	kernel	design	and	
organization.	

In	a	“superscalar”	core,	there	is	more	than	one	instruction	stream.	There	is	a	2ixed	
number	(such	as	2	or	4)	of	independent	instruction	streams.	For	example,	some	
particular	superscalar	core	might	execute	two	independent	instruction	streams	
simultaneously.	Such	a	core	is	providing	two	hardware	threads.	Each	stream	has	its	
own	independent	set	of	registers	and	its	own	program	counter,	more-or-less	as	if	
they	were	separate	cores	in	a	multiprocessor	system.	

One	bene2it	of	the	superscalar	organization	is	that	expensive	and	rarely	used	circuits	
(e.g.,	2loating	point	divide)	can	be	provided	only	in	a	single	copy,	and	shared	by	both	
hardware	threads.	Also,	there	may	be	multiple	instantiations	of	more	critical	circuits	
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(e.g.,	integer	addition)	which	are	allocated	dynamically	to	those	instructions	that	
need	them.	

With	superscalar	organization,	it	is	possible	that	more	than	one	instruction	can	be	
retired	per	clock	cycle,	providing	greater	performance.	

De=inition	of	“HART”:	In	the	discussion	of	concurrency	control	and	
synchronization,	the	RISC-V	documentation	uses	the	term	“HART”	to	refer	to	a	
hardware	thread.	The	hardware	threads	(HARTs)	might	be	implemented	on	
distinct	processors	within	a	multiprocessor	system,	or	by	multiple	cores	in	a	single	
processor,	or	on	a	single	superscalar	core.	The	RISC-V	spec	covers	all	possibilities,	
including	hybrid	combinations.	

The	RISC-V	Memory	Model	

It’s	a	commonly	accepted	principle	in	processor	design	that,	within	a	single	
instruction	stream,	data	dependencies	are	respected.	In	other	words,	the	processor	
executes	instructions	in	order	and	will	not	reorder	instructions.	

For	example,	an	instruction	that	loads	a	register	with	a	value	from	memory	and	an	
instruction	that	stores	the	contents	of	that	same	register	in	memory	should	never	be	
reordered.	Assembly	language	programmers	are	free	to	assume	that	each	
instruction	is	executed	from	beginning	to	completion	in	the	order	it	was	speci2ied.	
Any	optimizations	or	reordering	done	by	the	hardware	must	preserve	this	
constraint.	For	example,	two	instructions	that	access	different	registers	and	different	
memory	addresses	can	safely	be	reordered	or	executed	simultaneously	to	achieve	
faster	execution.	

However,	between	different	hardware	threads,	the	order	in	which	operations	
execute	may	be	indeterminate.	For	example,	consider	two	independent	processors	
in	a	multiprocessor	system	with	shared	memory.	Imagine	two	instructions	which	
both	store	into	a	single	memory	location;	they	may	execute	in	arbitrary	order,	
resulting	in	a	different	value	being	stored	last.	

Here	is	one	common	requirement	for	proper	synchronization	in	a	system	of	
cooperating	processes.	(By	“cooperating	processes”,	we	mean	a	system	with	
multiple	threads	that	are	designed	to	work	together	concurrently	executing	to	
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complete	some	given	programming	task	correctly,	regardless	of	the	vagaries	of	
indeterminate	execution.)	

Synchronization	of	Readers	and	Writers:	With	a	potentially	shared	piece	of	data,	
a	writer	must	wait	to	write	the	data	until	all	previous	readers	are	2inished	reading	
the	old	value.	Likewise,	a	reader	must	wait	until	any	previous	writer	is	2inished	
writing	the	new	value.	

The	RISC-V	spec	assumes	that	reads	and	writes	issued	by	a	single	hardware	thread	
(HART),	must	be	visible	to	that	same	HART	in	the	order	executed.	That	is,	the	core’s	
actual	order	of	execution	of	a	HART’s	instructions	must	be	indistinguishable	from	
the	sequential	order	in	which	the	programmer	wrote	the	instructions.	Perhaps	the	
core	will	reorder	instructions	to	improve	performance,	but	any	reordering	must	be	
“safe”	in	the	sense	of	having	the	same	effect	as	being	issued	in	the	original	order.	

This	assumption	is	something	that	every	programmer	takes	for	granted:	the	
computer	will	execute	their	code	instructions	in	the	order	the	programmer	wrote	
them.	For	single	threads	executing	in	isolation,	there	is	nothing	much	more	to	talk	
about.	But	things	quickly	get	complicated	when	there	are	multiple	threads.	

As	far	as	the	apparent	order	of	the	operations	as	viewed	by	other	HARTs,	the	RISC-V	
spec	does	not	assume	anything.	In	fact,	the	RISC-V	spec	allows	the	following:	

It	may	appear	to	a	second	HART	that	the	instructions	executed	by	the	Zirst	
HART	are	done	out	of	order.	

So	it	is	possible	that	two	distinct	HARTs	will	see	the	same	set	of	operations	
happening	in	a	different	order.	This	is	a	very	real	possibility	on	some	systems	when	
the	operations	in	question	are	reads	and	writes	to	memory	and	the	individual	
HARTs	are	operating	with	private	caches.	

For	example,	consider	the	following	sequence	of	instructions	issued	by	HART	A	to	
memory	location	X.	

	 Write	X	!	4	
	 Read	X	
	 Write	X	!	5	
	 Read	X	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	197 323



Chapter	7:	Concurrency	and	Atomic	Instructions	

The	2irst	read	will	return	4	and	the	second	read	will	return	5.	However	HART	B	
might	execute	these	instructions:	

	 Read	X	
	 Read	X	

The	2irst	read	might	return	5	and	the	second	read	might	return	4.	It	appears	to	HART	
B	that	the	writes	were	executed	out	of	order,	probably	due	to	inconsistencies	
between	their	caches.	

Concurrency	Control	-	Review	and	Background	

This	section	is	not	speci2ic	to	RISC-V	and	can	be	safely	skipped	if	you	are	familiar	
with	concurrency	control.	

In	any	system	with	multiple	threads,	some	form	of	synchronization	and	concurrency	
control	is	required.	Without	it,	the	behavior	of	some	code	sequences	may	be	
nondeterministic	and	program	errors	may	result.	For	example,	each	of	several	
threads	may	need	to	periodically	query	and	update	a	shared	piece	of	data.	Without	
any	control,	two	or	more	threads	may	be	trying	to	read	and	update	the	shared	data	
simultaneously;	there	arises	a	possibility	that	some	threads	may	see	an	inconsistent	
state	of	the	data	or	that	some	updates	may	be	lost	or	that	several	concurrent	
updates	will	result	in	the	shared	data	being	put	into	a	invalid	or	inconsistent	state.	

In	one	common	approach	to	concurrency	control	—	particularly	among	software	
threads	—	a	“lock”	is	created	to	protect	the	shared	data.	Any	block	of	code	accessing	
the	shared	data	must	2irst	“acquire”	(or	“obtain”	or	“set”)	the	lock	before	accessing	
the	shared	data,	and	must	“release”	(i.e.,	“free”,	“clear”)	the	lock	after	the	access	is	
complete.	A	sequence	of	code	which	accesses	the	shared	data	is	called	a	“critical	
section”	and	the	programmer	must	remember	to	acquire	the	lock	at	the	beginning	
of	the	critical	section	and	release	the	lock	at	the	end	of	the	critical	section.	

Operating	systems	typically	provide	“locks”,	along	with	“acquire”	and	“release”	
operations.	Implementing	these	operations	on	a	single	processor	system	is	simple:	
the	OS	merely	has	to	avoid	a	thread-switch	occurring	during	the	acquire	and	release	
operations	themselves.	This	can	be	done	easily	and	ef2iciently	by	disabling	
interrupts	for	the	duration	of	the	acquire/release	operations.	
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Things	are	signi2icantly	more	complex	for	multi-core	systems	with	shared	memory.	
Now	there	is	“multiprocessing”	(true	concurrency)	and	not	just	
“multithreading”	(simulated	concurrency	using	time-slicing).	The	lock	itself	
becomes	shared	data	and	access	to	the	lock	in	effect	becomes	a	critical	section	of	its	
own.	Blocking	interrupts	on	one	processor	is	no	longer	adequate.	There	exist	
algorithms	to	solve	this	problem	purely	in	software	(Peterson’s	algorithm;	Dekker’s	
algorithm)	but	architectural	support	in	the	ISA	is	required	for	performance	reasons.	

In	the	past	there	have	been	a	couple	of	instructions	proposed	to	support	the	
“acquire”	and	“release”	operations	for	locks.	One	such	instruction	was	the	“test-and-
set”	instruction.	This	instruction	includes	two	operands:	an	address	and	a	register.	
The	instruction	reads	from	memory	at	the	address	given	and	stores	the	result	into	
the	register.	Then	the	instructions	stores	a	2ixed	known	value	(usually	“1”)	into	the	
same	memory	location.	Both	the	read-memory	and	the	write-memory	operation	are	
speci2ied	to	be	“atomic”,	which	means	that	there	is	a	guarantee	that	no	other	
instruction	will	occur	between	the	read-memory	and	write-memory	from	any	other	
source	(e.g.,	other	cores	or	I/O	devices).	

Historically,	hardware	can	enforce	the	atomicity	guarantee	by	somehow	blocking	all	
accesses	to	all	memory	locations	for	all	other	cores	between	the	read	and	write	
phases	of	the	test-and-set	instruction.	This	will	slow	other	parts	of	the	system	down	
a	little,	but	if	the	number	of	cores	is	small,	it’s	not	much	of	a	burden.	

The	test-and-set	instruction	can	be	used	to	implement	a	lock	very	simply.	Here’s	
how:	the	lock	is	represented	as	a	single	memory	location,	with	“0”	meaning	“not	
locked”	and	“1”	meaning	“locked”.	The	“acquire”	operation	consists	of	executing	the	
test-and-set	instruction.	After	the	instruction,	the	lock	will	be	in	the	“set”	state	and	
will	contain	“1”.	The	“acquire”	operation	then	examines	the	previous	lock	value,	
which	was	retrieved	from	memory	and	stored	in	a	register.	If	it	was	“0”,	then	all	is	
good:	the	lock	was	previously	free.	It	has	now	been	acquired	and	the	critical	section	
can	be	entered.	However,	if	the	previous	value	was	“1”,	then	the	lock	was	apparently	
already	set.	The	lock	has	not	been	acquired.	The	acquire	code	must	try	again,	either	
immediately,	or	after	a	wait,	or	after	thread	rescheduling.	The	“release”	operation	is	
implemented	by	simply	storing	a	“0”	into	the	memory	location	representing	the	lock.	

Another	approach	to	ISA	design	is	to	provide	a	“swap”	instruction,	instead	of	the	
test-and-set	instruction.	Like	the	test-and-set	instruction,	the	swap	instruction	has	a	
read-memory	phase	and	a	write-memory	phase.	The	instruction	is	takes	two	
operands:	a	register	and	a	memory	address.	The	instruction	swaps	the	values;	after	
the	instruction	the	register	contains	the	previous	value	from	the	memory	word	and	
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the	memory	word	contains	the	previous	value	in	the	register.	The	swap	instruction	
is	a	generalization	of	the	test-and-set	instruction:	by	placing	a	“1”	in	the	register	
before	the	swap	instruction	is	executed,	the	effect	will	be	identical	to	a	test-and-set	
instruction.	

Another	approach	is	the	“compare-and-swap”	(CAS)	instruction,	which	is	used	in	
the	X-86	architecture.	The	CAS	instruction	takes	four	operands:	a	memory	address,	a	
register	containing	an	“expected	value”,	and	a	register	containing	a	“new	value”,	and	
a	register	in	which	to	store	a	return	code.	The	instruction	does	several	things	
atomically,	i.e.,	without	the	possibility	of	interruption	or	interference	from	other	
threads.	First,	the	instruction	reads	a	value	from	memory	and	compares	it	to	the	
“expected	value.”	If	the	two	are	different,	the	instruction	fails	and	returns	a	code	to	
indicate	failure.	But	if	the	two	values	are	equal,	the	instruction	stores	the	“new	
value”	into	the	memory	location	and	returns	a	code	indicating	success.	

The	problem	with	all	these	instructions	is	that	each	requires	two	memory	
operations.	This	violates	the	general	RISC	principle	of	keeping	all	instructions	
simple,	minimal,	and	fast.	Two	memory	operations	in	a	single	instructions	is	too	
much	and	complicates	the	circuitry.	

Furthermore,	these	instructions	can	slow	other	cores	down	since	they	must	be	
executed	atomically	and	presumably	they	work	by	freezing	up	the	entire	memory	
system	during	their	execution.	

The	problems	with	atomically	executing	both	a	read	and	write	together	get	worse	
with	more	cores.	These	problems	also	get	worse	with	more	frequent	locking	
operations.	To	support	increased	concurrency,	it’s	a	good	idea	to	have	2iner-grained	
locking,	i.e.,	to	have	more	locks,	having	each	lock	protect	less	data.	Finer-grained	
locking	implies	more	“acquire”	and	“release”	operations,	even	if	the	locks	are	usually	
found	to	be	free.	The	problems	also	get	worse	with	increased	sharing	of	data,	a	
generalized	trend	we	are	seeing	in	many	contexts.	

A	Review	of	Caching	Concepts	

This	section	is	not	speci2ic	to	RISC-V	and	can	be	safely	skipped	if	you	are	familiar	
with	caching.	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	200 323



Chapter	7:	Concurrency	and	Atomic	Instructions	

The	problem	of	synchronization	between	multiple	processors	(e.g.,	cores	or	HARTs)	
gets	much	more	complex	in	the	presence	of	cache	memories.	In	short,	the	problem	
stems	from	the	fact	that	a	single	location	in	memory	can	have	multiple	values	at	
once,	because	the	data	can	be	present	in	several	caches	with	inconsistent	values.	
Let’s	review	the	basic	ideas	behind	cache	memories	before	we	discuss	the	RISC-V	
instructions.	

In	many	computers,	the	bandwidth	between	main	memory	and	the	processor	core	is	
a	performance	bottleneck.	To	increase	performance,	a	“cache”	memory	is	placed	
between	main	memory	and	the	core.	

Whenever	the	core	tries	to	fetch	data	from	memory,	the	cache	is	checked	and,	if	it	
contains	the	data,	the	data	can	be	sent	to	the	core	immediately.	Otherwise,	the	data	
must	be	fetched	from	main	memory,	which	takes	more	time.	The	data	will	be	sent	to	
the	core	as	well	as	being	stored	in	cache	memory	to	speed	future	requests	for	the	
same	data.	

When	data	is	written	from	the	core	to	memory,	the	data	will	sometimes	be	written	
to	the	cache	memory,	which	speeds	future	accesses	if	the	core	wants	to	read	the	data	
again	soon	(“write	allocate”).	Some	systems	avoid	caching	the	updated	data	(“no-
write-allocate”).	In	either	case,	the	updated	data	must	be	copied	to	main	memory	at	
some	point.	The	write	to	main	memory	may	occur	immediately,	at	the	time	the	core	
2irst	writes	the	data	to	cache,	and	this	is	called	“write-through”.	Alternatively,	write	
to	main	memory	can	be	delayed	until	later.	At	some	later	time,	when	space	in	the	
cache	is	needed	for	some	other	data,	the	updated	modi2ied	data	value	will	2inally	be	
written	to	main	memory.	This	policy	is	called	“write-back”.	

Caches	do	not	operate	on	bytes	individually;	instead	they	store	data	in	units	of	
“cache	block”.	A	cache	line	is	a	block	of	contiguous	data	bytes	(typically	64	bytes)	
which	are	copied	together	as	a	unit	in	and	out	of	the	cache.	In	a	request	for	a	single	
byte	or	halfword	(for	example),	the	entire	cache	block	containing	the	desired	bytes	
will	either	be	in	the	cache	(a	“cache	hit”)	or	not	(a	“cache	miss”).	

The	typical	alignment	requirements	ensure	that	a	multiple	data	unit	(such	as	a	
halfword)	will	never	cross	a	cache	block	boundary;	the	data	will	either	be	entirely	in	
one	block	or	entirely	in	another	block.	Misaligned	data	will	occasionally	cross	cache	
block	boundaries	and	the	process	of	reading	into	or	writing	from	the	core	to	the	
memory	system	will	be	complicated	and	generally	require	about	twice	as	much	time.	
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Caches	are	often	organized	into	levels.	For	example,	a	three-level	cache	might	consist	
of:	

	 L1	 Closest	to	the	core.	Fastest,	smallest	in	capacity.	
	 L2	 Intermediate	
	 L3	 Closest	to	main	memory.	Slowest,	largest	in	capacity.	

In	a	system	with	multiple	cores	on	a	single	chip,	each	individual	core	might	possess	
its	own	private	L1	and	L2	caches,	while	all	cores	will	share	a	larger	L3	cache.	

There	are	differences	between	instruction	and	regular	data.	In	particular,	
instructions	are	always	read-only.	Since	the	data	is	never	modi2ied	by	the	core,	there	
is	no	need	to	provide	hardware	to	implement	the	write-allocate/write-no-allocate	or	
write-back/write-through	policies.	

As	a	typical	example,	each	core	will	have	two	L1	caches;	one	for	data	and	one	for	
instructions.	The	term	“uni=ied	cache”	means	that	the	cache	holds	both	instructions	
and	data.	Typically	the	slower,	larger	cache	(e.g.,	L3)	is	uni2ied.	

In	many	ISAs,	including	RISC-V,	all	access	to	I/O	devices	is	“memory-mapped	I/O”	
which	means	that	the	I/O	devices	are	assigned	addresses	in	the	physical	memory	
map.	To	send	data	or	commands	to	an	I/O	device,	the	core	will	issue	“store”	
instructions	and	to	retrieve	data	or	status	information	from	an	I/O	device,	the	core	
will	execute	“load”	instructions.	

Many	I/O	devices	also	access	main	memory	directly.	For	example,	the	core	might	
move	data	into	memory	and	then	issue	commands	to	an	I/O	device	which	
subsequently	cause	the	device	to	retrieve	the	same	data	directly	from	memory.	

Thus,	the	main	memory	system	may	have	several	“ports”	allowing	data	to	be	read	
and	written	separately	by:	

	 •	Different	cores	on	a	single	chip	
	 •	Different	processor	chips	
	 •	Various	I/O	devices		

A	modern	computer	system	will	consist	of	a	number	of	busses	and	a	number	of	
different	devices	sitting	on	each	bus.	
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Which	all	this	complexity,	there	is	a	problem	of	synchronization	and	data	
consistency.	For	example,	a	core	may	write	a	byte	of	data	to	memory	and	expect	
some	I/O	device	or	other	core	to	fetch	that	byte.	In	the	presence	of	caches,	there	may	
be	several	different	values	for	the	same	memory	address	at	the	same	instant.	
Without	further	control,	a	“reader”	may	not	see	the	value	written	by	a	“writer”	even	
though	the	write	occurs	earlier	in	time.	

Note	that	the	data	consistency	problem	does	not	occur	for	read-only	data.	If	a	
particular	byte	of	data	never	changes,	then	there	is	not	a	problem.	Perhaps	the	data	
is	cached	or	perhaps	it	must	be	fetched	from	main	memory.	But	since	there	is	only	
one	value,	there	is	never	a	possibility	that	the	cache	contains	an	outdated	value.	A	
synchronization	problem	can	only	occur	when	data	is	updated.	

Note	that	all	data	is	written	at	some	point,	except	perhaps	data	stored	in	Read-Only	
Memory	(ROM).	We	must	assume	that	when	any	computer	is	powered	up,	the	
contents	of	dynamic	memory	are	unde2ined;	even	read-only	data	must	involve	an	
initial	write	to	the	memory	so	care	must	be	taken	to	avoid	reading	the	initial	
unde2ined	data.	

The	synchronization	problem	occurs	because	multiple	values	for	a	given	memory	
location	can	be	stored	in	various	caches.	If	the	caches	are	eliminated,	then	the	data	
must	necessarily	be	consistent;	but	caches	yield	tremendous	performance	bene2its,	
so	support	for	synchronization	in2luences	ISA	design.	

We	can	make	a	distinction	between	private	caches	and	shared	(i.e.,	memory-side	
or	global)	caches.	Consider	a	system	with	several	cores	and	a	single	shared	main	
memory.	Each	core	may	have	its	own	private	memory	cache,	in	which	case	a	single	
byte	of	memory	may	be	cached	simultaneously	in	several	different	private	caches.	
An	update	by	any	single	core	to	this	byte	ought	to	be	visible	to	all	cores	but	(without	
synchronization)	other	cores	might	read	outdated	values	from	their	private	caches.	

If,	instead	there	is	only	a	single	shared	cache	sitting	between	main	memory	and	all	
cores,	then	the	synchronization	problem	goes	away.	A	given	byte	can	only	be	cached	
in	one	place,	namely	the	shared	cache.	Since	all	cores	are	using	this	shared	cache,	
any	update	to	the	byte	will	be	re2lected	in	the	shared	cache,	and	therefore	seen	by	all	
other	cores.	

Modern	systems	often	use	a	mixed	of	private	and	shared	caches.	

A	cache	memory	consists	of	a	set	of	“cache	lines”.	
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Each	line	in	a	cache	contains	a	couple	bits	identifying	what	data	is	contained	in	the	
line	and	whether	the	data	is	“valid”	or	“invalid”.	More	precisely,	a	cache	line	generally	
contains	the	following	pieces	of	information:	

	 •	The	cache	line	data	(e.g.,	a	block	of	64	data	bytes)	
	 •	The	address	of	the	data	block	
	 •		A	“valid	bit”,	to	tell	whether	this	cache	line	is	meaningful	
	 •		A	“dirty	bit”,	to	tell	whether	the	data	has	been	modi2ied	

We	discuss	virtual	memory	and	address	translation	elsewhere.	But	here	we	point	
out	that	each	cache	line	must	contain	the	address	of	the	data	stored	in	that	cache	
line.	

In	the	easiest-to-understand	approach,	each	cache	line	contains	the	physical	address	
of	its	data	block.	The	cache	is	an	“associative	memory”	using	the	physical	address	
as	the	search	key	(i.e.,	the	associative	index).	However,	because	of	virtual	memory	
address	translation,	the	virtual	address	is	known	earlier	in	time	than	the	physical	
address,	so	it	makes	sense	to	index	the	cache	lines	by	virtual	address.	Real	designs	
are	more	complex,	but	for	our	purposes	we	do	not	need	to	go	further	here.	

A	crude	solution	to	the	cache	consistency	problem	is	to	periodically	empty	the	entire	
cache.	

“Flushing	the	cache”	means	writing	all	updated	data	back	to	main	memory	and	
marking	all	cache	lines	“invalid”.	So	a	simple	approach	is	to	2lush	all	caches	after	any	
write.	Flushing	the	entire	cache	after	any	write	is	overly	conservative	and	not	the	
most	ef2icient	approach,	but	it	will	solve	the	cache	consistency	problem.	

The	software	might	be	a	little	smarter	and	avoid	full	cache	2lushes	when	not	strictly	
required.	For	example,	when	one	core	writes	to	main	memory,	there	is	a	question	of	
whether	caches	belonging	to	other	cores	must	be	2lushed.	If	the	programmer	can	be	
certain	that	the	data	will	never	be	read	by	other	cores,	then	calling	for	a	cache	2lush	
can	be	avoided.	

The	RISC-V	designers	recognize	that	a	2iner-grained	control	over	caches	and	
memory	synchronization	is	required,	and	provide	the	FENCE	instruction,	which	will	
be	described	later.	
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RISC-V	Concurrency	Control	

RISC-V	supports	concurrency	control,	synchronization,	and	cache	consistency	with	
these	instructions:	

	 Always	available:	
	 	 FENCE	 Synchronize	data	reads	and	writes	
	 	 FENCE.I	 Synchronize	the	instruction	cache	

	 Available	in	the	“A”	extension	(for	“Atomic	Instructions”)	
	 	 LR	 Load	Reserved	
	 	 SC		 Store	Conditional	
	 	 AMOSWAP	 Atomically	swap	two	values	
	 	 AMOADD		 Atomically	add	two	values	
	 	 AMOAND		 Atomically	AND	two	values	
	 	 AMOOR		 Atomically	OR	two	values	
	 	 AMOXOR		 Atomically	XOR	two	values	
	 	 AMOMAX		 Atomically	MAX	two	values	
	 	 AMOMIN		 Atomically	MIN	two	values	

Under	Revision:	The	RISC-V	spec	states	that	their	memory	model	is	under	
revision,	implying	that	these	instructions	may	change.	

The	FENCE	Instructions	

There	are	two	fence	instructions:	FENCE	and	FENCE.I	and	these	instructions	are	
always	available.	They	do	not	require	the	“A”	(Atomic	Operations)	extension.	

The	general	idea	with	a	“fence”	is	that	all	operations	are	partitioned	into	two	sets:	
the	predecessor	set	and	the	successor	set.	

The	fence	requires	all	operations	in	the	predecessor	set	to	complete	before	any	of	
the	operations	in	the	successor	set	can	proceed.	In	the	case	of	RISC-V,	the	
predecessor	operations	are	the	instructions	that	must	complete	before	the	fence,	
and	the	successor	operations	are	those	that	may	not	begin	until	after	the	fence.	
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	As	an	analogy,	consider	the	Tour	de	France,	where	all	the	cyclists	must	complete	
each	stage	of	the	race,	before	any	rider	can	begin	the	next	stage.	Only	after	the	
slowest	rider	2inishes	the	previous	stage	of	the	race	are	any	riders	allowed	to	start	
the	next	stage.	The	stages	are	effectively	separate	by	“fences”.	

The	FENCE	instruction	in	RISC-V	may	only	affect	instructions	that	read	or	write	to	
the	memory	system.	It	is	used	to	control	concurrent	accesses	to	shared	memory.	

Recall	that	the	physical	memory	address	space	can	be	populated	with:	

	 •	Normal,	physical	memory	(containing	stored	data	bytes)	
	 •	Memory-mapped	I/O	devices	

A	hardware	thread	(HART)	can	either	read	or	write	values	to/from	the	memory	
space.	This	yields	these	combinations:	

	 R	 Read	–	read	data	from	physical	memory	
	 W	 Output	–	write	data	to	physical	memory	
	 I	 	Input	–	read	data	from	a	memory-mapped	I/O	device	
	 O	 Output	–	write	data	to	a	memory-mapped	I/O	device	

Of	course	many	operations	(such	as	a	movement	of	data	from	one	register	to	
another)	do	not	touch	memory	at	all.	Such	operations	do	not	fall	into	any	of	these	
four	classi2ications	and	are	ignored	by	the	FENCE	instruction.	

Imagine	that	some	HART	executes	two	memory	write	(“W”)	operations	in	
succession.	Perhaps	the	2irst	write	operation	is	setting	a	lock,	which	is	intended	to	
protect	some	piece	of	share	data.	Only	after	the	lock	has	been	set,	is	it	permissible	to	
update	the	shared	data.	(This	is	the	idea	behind	protecting	shared	data	with	locks;	
the	shared	data	should	only	be	accessed	when	the	lock	is	held	by	the	thread.)	

Of	course	the	HART	in	question	will	execute	the	write	to	the	lock	before	the	write	to	
the	data,	but	because	of	the	relaxed	memory	model	assumed	by	the	RISC-V	spec,	it	is	
possible	that	other	HARTs	will	see	the	data	write	appearing	to	come	before	the	lock	
write.	Other	HARTs	could	therefore	see	the	updated	data	before	seeing	the	lock	
getting	set,	thereby	violating	the	functionality	and	integrity	of	the	lock	protocol.	The	
FENCE	instruction	provides	a	way	to	prevent	this	disaster	and	allows	programmers	
to	implement	proper	concurrency	control	and	create	correct,	reliable	cooperating	
processes.	
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The	FENCE		instruction	can	be	used	to	make	sure	that	all	other	HARTs	will	see	the	
write	occurring	before	the	read.	In	this	example,	we	will	use	a	FENCE	instruction	to	
make	sure	that	all	writes	to	memory	that	were	executed	before	the	FENCE	
instruction	will	appear	to	execute	before	all	write	to	memory	that	will	be	executed	
after	the	FENCE	instruction.	

For	the	purposes	of	the	FENCE	instruction,	we	use	“P”	for	operations	occurring	prior	
to	the	FENCE	(predecessor	operations)	and	“S”	for	operations	occurring	after	the	
FENCE	instruction	(successor	operations).	Thus,	we	have:	

	 Predecessor	operations:	
	 PR	 Data	reads	occurring	before	the	FENCE	
	 PW	 Data	writes	occurring	before	the	FENCE	
	 PI	 Memory-mapped	reads	(inputs)	occurring	before	the	FENCE	
	 PO	 Memory-mapped	writes	(output)	occurring	before	the	FENCE	

Successor	operations:	
	 SR	 Data	reads	occurring	after	the	FENCE	
	 SW	 Data	writes	occurring	after	the	FENCE	
	 SI	 Memory-mapped	reads	(inputs)	occurring	after	the	FENCE	
	 SO	 Memory-mapped	writes	(output)	occurring	after	the	FENCE	

In	our	example,	we	want	to	force	all	writes	to	data	memory	that	were	issued	before	
the	FENCE	to	complete	before	all	write	to	data	memory	that	will	be	issued	after	the	
FENCE	instruction.	Thus,	we	can	insert	the	following	FENCE	instruction	between	the	
write	to	the	lock	and	the	read	from	the	shared	data:	

	 ...write	to	lock…	
FENCE   PW,SW    # Complete past writes before future writes	

	 …write	to	shared	data…	

FENCE	

General	Form:	
FENCE     PI,PO,PR,PW,SI,SO,SR,SW

Example:	
This	instruction	contains	8	single	bit	2ields.	Each	can	be	enabled	(set	to	1)	or	
disabled	(cleared	to	0).	The	2ields	are	called	PI,	PO,	PR,	PW,	SI,	SO,	SR,	SW.	The	
spec	does	not	indicate	how	this	instruction	is	to	be	coded	in	assembly.	Perhaps	
the	bits	can	be	set	by	being	mentioned	and	cleared	otherwise.	For	example:	
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FENCE    PR,PW,SR,SW
Description:	

See	text	above.	
Availability:	

This	instruction	does	not	require	the	“A”	extension	(Atomic	Instructions).	It	is	
always	available.	

Encoding:	
	 This	is	a	variation	of	an	I-type	instruction,	where	the	RegD	and	Reg2	2ields	are	

not	used	and	set	to	zero	and	only	8	of	the	Immed-12	bits	are	used.	

Implementation	of	FENCE:	One	simple	implementation	of	FENCE	is	for	the	
hardware	to	simply	ignore	the	distinction	between	R,	W,	I,	and	O	and	simply	
complete	all	operations	occurring	before	the	FENCE	before	starting	any	operations	
after	the	FENCE.	In	the	most	conservative	but	simplest	implementation,	the	
hardware	might	just	2lush	all	caches,	forcing	a	sort	of	hard,	system-wide	fence	
operation.	Hopefully	some	implementations	will	provide	the	2iner-grained	control	
permitted	by	the	instruction.	

The	FLUSH	instruction	is	the	main	tool	for	2lushing	the	cache,	but	is	intended	to	
operate	on	only	data	caches.	However,	instructions	may	be	cached	in	a	separate	
instruction	cache	and	there	is	a	need	to	update	this	cache	from	time	to	time.	This	is	
the	purpose	of	the	FENCE.I	instruction.	

Whenever	bytes	are	written	to	memory	and	these	bytes	are	intended	to	be	
subsequently	executed	as	instructions,	an	update	to	the	instruction	cache	may	be	
required.	For	example,	a	write	(e.g.,	the	ST	store	instruction)	to	memory	location	X	
may	be	executed.	Subsequently	the	core	will	execute	the	instruction	located	at	
address	X;	of	course	the	new	value	should	be	fetched.	However,	if	the	instruction	
cache	already	contains	the	previous	contents	for	location	X,	there	may	be	a	problem.	
The	core	cannot	simply	use	the	cached	value.	

The	effect	of	the	FENCE.I	instruction	is	equivalent	to	invalidating	the	entire	
instruction	cache,	thereby	forcing	all	future	fetches	to	go	to	memory.	This	guarantees	
that	the	newest	value	for	location	X	will	be	fetched.	

FENCE.I	–	(Instruction	Cache	Flushing)	

General	Form:	
FENCE.I
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Example:	
FENCE.I     # Flush the instruction cache

Description:	
Invalidate	the	entire	instruction	cache	local	to	the	current	HART,	or	at	least	do	
something	operationally	equivalent.	See	text.	

Availability:	
This	instruction	does	not	require	the	“A”	extension	(Atomic	Instructions).	It	is	
always	available.	

Encoding:	
	 This	is	a	variation	of	an	I-type	instruction,	where	the	RegD,	Reg2,	and	

Immed-12	2ields	are	not	used	and	set	to	zero.	

Note:	This	instruction	only	affects	the	current	HART.	In	a	multi-core	system,	it	is	
probable	that	instructions	will	be	cached	in	instruction	caches	that	are	private	to	
each	core.	If	core	A	writes	data	to	memory	location	X	and	expects	to	execute	that	
same	data	(e.g.,	jump	to	X),	then	it	should	execute	a	FENCE.I	instruction	to	make	
sure	that	its	cache	doesn’t	contain	an	obsolete	value	for	location	X.	

However,	this	will	not	help	other	cores,	which	may	have	cached	older	data	from	
location	X	in	their	private	instruction	caches.	In	order	to	2lush	the	instruction	
caches	of	other	cores,	software	on	core	A	will	have	to	somehow	signal	software	
running	on	the	other	cores,	which	will	then	each	need	to	execute	FENCE.I	
instructions,	to	2lush	their	own	private	caches.	

Implementation	Notes:	One	implementation	of	FENCE.I	is	simply	to	2lush	the	
entire	instruction	cache,	i.e.,	to	set	all	cache	lines	to	“invalid”.	

This	may	seem	like	a	coarse-grained	approach,	but	it	is	assumed	that	software	
typically	updates	a	large	block	of	instructions	in	memory	and,	only	after	writing	all	
the	data,	will	there	be	a	jump	to	the	newly	created	code.	For	example,	consider	a	
Just-In-Time	(JIT)	compiler,	which	only	compiles	a	function/method	at	the	time	it	
is	2irst	called/invoked.	There	is	a	clear	transition	from	compile-phase	to	execution-
phase.	Thus,	only	a	single	FENCE.I	instruction	would	be	needed,	and	the	previous	
contents	of	the	instruction	cache	are	likely	to	be	unneeded	in	the	near	future	
anyway,	so	invalidating	them	is	acceptable.	

Another	approach	assumes	that	the	data	and	instruction	caches	are	kept	
consistent.	For	example,	the	instruction	cache	might	be	“snooping”	writes	to	the	
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data	cache.	Every	write	to	the	data	cache	would	have	the	side-effect	of	updating	the	
instruction	cache	when	necessary.	Whenever	the	instruction	cache	happened	to	
contain	data	from	the	same	address	being	written	to,	that	cache	line	in	the	
instruction	cache	would	be	updated	or	at	least	invalidated.	If	the	caches	are	kept	
coherent,	then	the	FENCE.I	instruction	can	be	implemented	by	simply	2lushing	the	
pipeline,	which	may	potentially	contain	outdated	instruction	data.	

Load-Reserved	/	Store-Conditional	Semantics	

The	RISC-V	design	supports	an	approach	to	concurrency	control	called	load-
reserved/store-conditional	(LR/SC).	This	is	also	called	“load-link/store-conditional	
(LL/SC).	

We’ll	begin	by	describing	the	LR	and	SC	instructions,	which	are	only	available	in	the	
“A”	(Atomic	Operations)	extension	to	the	RISC-V	spec.	

The	idea	is	that	an	atomic	operation	such	as	test-and-set,	swap,	or	compare-and-set	
is	broken	into	two	separate	instructions.	The	2irst	instruction	(“load-reserved”)	
performs	the	read	phase	and	the	second	instruction	(“store-conditional”)	performs	
the	write	phase.	

The	LR	instruction	is	very	similar	to	a	typical	LOAD	instruction.	It	reads	a	value	from	
memory	and	stores	it	into	a	register.	But	in	addition,	the	instruction	also	“reserves”	
that	memory	location.	You	can	imagine	that	this	reservation	consists	of	making	a	
note	of	which	core	(or	“HART”	in	RISC-V	terminology)	touched	which	memory	
location	with	an	LR	instruction.	This	reservation	note	is	something	that	is	managed	
by	the	memory	synchronization/control	hardware	and	not	by	the	cores	attempting	
to	access	memory.	

At	some	later	time,	an	SC	instruction	will	be	executed.	It	will	store	a	value	from	a	
register	into	memory,	just	like	a	typical	STORE	instruction.	However,	the	instruction	
may	“succeed”	or	“fail”.	The	SC	instruction	has	three	operands:	a	register	containing	
the	value	to	be	stored	in	memory,	a	memory	address,	and	a	register	into	which	the	
return	code	will	be	stored.	

There	are	two	return	codes:	“0”	indicates	success	and	“non-zero”	indicates	failure.	
Failure	might	be	caused	by	misaligned	addresses,	access	violations,	etc.,	but	these	
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are	beside	the	point.	The	primary	use	of	the	success/failure	has	to	do	with	
concurrency	control.	

The	proper	way	to	use	these	instruction	is	to	execute	an	LR	instruction	on	some	
memory	location	and	then,	shortly	thereafter,	to	execute	an	SC	instruction	on	that	
same	memory	location.	If	no	other	core/HART	has	stored	into	that	memory	location	
since	the	LR	instruction,	then	the	SC	will	succeed	and	the	value	will	be	stored	into	
memory.	But	if	some	other	core/HART	has	stored	anything	into	that	memory	
location,	then	the	SC	will	fail	and	nothing	will	be	stored	into	memory.	Presumably,	
the	code	will	then	loop	and	retry	the	LR/SC	sequence	until	it	succeeds.	

A	reservation	is	made	by	a	LR	instruction	and	remains	valid	for	a	small,	2inite	
amount	of	time	(about	16	instructions)	speci2ied	by	the	RISC-V	spec.	The	SC	
instruction	must	be	executed	within	this	window	of	opportunity.	If	some	other	core/
HART	sneaks	in	an	executes	an	LR	on	the	same	memory	location,	then	the	
reservation	is	cancelled	and	the	SC	will	fail.	

Load	Reserved	(Word)	

General	Form:	
LR.W     RegD,(Reg1)

Example:	
LR.W     x4,(x9)    # x4 = Mem[x9] and reserve

Description:	
A	32-bit	value	is	fetched	from	memory	and	moved	into	register	RegD.	The	
memory	address	is	in	Reg1.	

Comment:	
This	instruction	places	a	“reservation”	on	a	block	of	memory	containing	this	
word.	See	comments	in	the	text	regarding	semantics.	

The	address	be	properly	aligned.	The	reservation	may	include	more	than	just	
the	bytes	addressed,	but	will	at	least	include	these	bytes.		

RV64	/	RV128:	
For	a	machine	with	a	register	width	larger	than	32-bits,	the	value	is	sign-
extended	to	the	full	length	of	the	register.	

Availability:	
This	instruction	is	only	available	in	the	“A”	extension	(Atomic	Instructions).	

Encoding:	
	 This	is	a	variation	of	an	R-type	instruction,	where	Reg2	is	00000.	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	211 323



Chapter	7:	Concurrency	and	Atomic	Instructions	

Load	Reserved	(Doubleword)	

General	Form:	
LR.D     RegD,(Reg1)

Example:	
LR.D     x4,(x9)    # x4 = Mem[x9] and reserve

Description:	
A	64-bit	value	is	fetched	from	memory	and	moved	into	register	RegD.	The	
memory	address	is	in	Reg1.	

Comment:	
See	LR.W.	

RV64	/	RV128:	
Only	available	on	RV64	and	RV128.	For	RV128,	the	value	is	sign-extended	to	
the	full	length	of	the	register.	

Availability:	
This	instruction	is	only	available	in	the	“A”	extension	(Atomic	Instructions).	

Encoding:	
	 This	is	a	variation	of	an	R-type	instruction,	where	Reg2	is	00000.	

Store	Conditional	(Word)	

General	Form:	
SC.W     RegD,Reg2,(Reg1)

Example:	
SC.W     x5,x4,(x9)    # Mem[x9]=x4; x5=success code

Description:	
A	32-bit	value	is	copied	from	register	Reg2	to	memory.	The	memory	address	is	
in	Reg1.	A	success/fail	code	is	placed	in	RegD	where	0=success	and	non-
zero=failure.	On	failure,	memory	is	not	changed.	

Comment:	
This	instruction	assumes	a	“reservation”	has	previously	been	made	by	an	LR	
instruction	on	a	block	of	memory	containing	this	word.	See	comments	in	the	
text	for	details.	

The	address	be	properly	aligned.	The	reservation	may	include	more	than	just	
the	bytes	addressed,	but	will	at	least	include	these	bytes.	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	212 323



Chapter	7:	Concurrency	and	Atomic	Instructions	

The	value	of	“1”	will	usually	be	used	to	indicate	failure,	but	there	is	a	
possibility	for	different	codes	to	be	used	to	indicate	different	reasons	for	
failure.	

RV64	/	RV128:	
For	a	machine	with	a	register	width	larger	than	32-bits,	the	upper	bits	of	the	
register	are	ignored.	

Availability:	
This	instruction	is	only	available	in	the	“A”	extension	(Atomic	Instructions).	

Encoding:	
	 This	is	an	R-type	instruction.	

Store	Conditional	(Doubleword)	

General	Form:	
SC.D     RegD,Reg2,(Reg1)

Example:	
SC.D     x5,x4,(x9)    # Mem[x9]=x4; x5=success code

Description:	
A	64-bit	value	is	copied	from	register	Reg2	to	memory.	The	memory	address	is	
in	Reg1.	A	success/fail	code	is	placed	in	RegD	where	0=success	and	non-
zero=failure.	On	failure,	memory	is	not	changed.	

Comment:	
See	SC.W	

RV64	/	RV128:	
Only	available	on	RV64	and	RV128.	For	RV128,	the	upper	bits	of	the	register	
are	ignored.	

Availability:	
This	instruction	is	only	available	in	the	“A”	extension	(Atomic	Instructions).	

Encoding:	
	 This	is	an	R-type	instruction.	

Atomic	Memory	Control	Bits:	“aq”	and	“rl”	

The	“A”	extension	provides	the	following	atomic	memory	operation	(AMO)	
instructions:	
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	 	 LR	 Load	Reserved	
	 	 SC		 Store	Conditional	
	 	 AMOSWAP	 Atomically	swap	two	values	
	 	 AMOADD		 Atomically	add	two	values	
	 	 AMOAND		 Atomically	AND	two	values	
	 	 AMOOR		 Atomically	OR	two	values	
	 	 AMOXOR		 Atomically	XOR	two	values	
	 	 AMOMAX		 Atomically	MAX	two	values	
	 	 AMOMIN		 Atomically	MIN	two	values	

Each	instruction	contains	two	additional	bits	to	control	their	operation	a	bit	further	
than	suggested	previously.	These	bits	are	called	“aq”	and	“rl”	(for	acquire	and	
release).	

The	bits	can	be	set	using	the	following	assembler	notation:	

lr.w.aq x5,(x6) # set the “aq” bit to 1
lr.w.rl x5,(x6) # set the “rl” bit to 1
lr.w.aq.rl x5,(x6) # set both bits

Sometimes	instructions	on	a	single	thread/HART	will	be	reordered	by	the	core	
execution	unit	to	achieve	greater	performance.	For	example,	imagine	two	
instructions	appearing	in	sequence:	2irst	a	store	instruction	followed	by	a	load	
instruction.	If	the	addresses	in	these	instructions	are	different,	then	the	execution	
unit	can	reasonably	perform	both	operations	in	any	order.	Perhaps,	the	core	will	
issue	both	instructions	simultaneously;	the	memory	unit	may	complete	the	
operation	of	the	instructions	in	any	order,	perhaps	due	to	the	chance	contents	of	the	
cache.	Since	the	two	instructions	are	touching	different	memory	locations,	they	can	
be	safely	reordered,	right?	

Usually	the	reordering	is	safe,	but	in	the	presence	of	other	concurrent	threads/
HARTs,	there	can	be	issues.	For	example,	imagine	that	one	of	the	two	memory	
locations	represents	a	lock	that	is	intended	to	control	access	to	the	other	location.	
Now,	it	becomes	critical	that	the	operations	are	executed	in	the	correct	order.	

(As	an	example	of	the	problem,	imagine	that	the	store	operation	is	being	used	to	set	
a	lock.	Only	after	the	lock	is	set,	is	it	allowable	to	load	values	from	the	shared	data.	
The	shared	data	is	only	guaranteed	to	be	in	a	consistent,	usable	state	by	other	
processes	when	the	lock	is	free;	whenever	some	process	holds	the	lock,	the	state	of	
the	data	may	be	in	an	inconsistent,	un2inished	state,	and	must	not	be	accessed	by	
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other	processes.	But	now	imagine	that	the	load	operation	is	performed	2irst,	before	
the	lock	is	set	with	the	store	instruction.	This	means	that	the	HART	has	accessed	
shared	memory	without	2irst	acquiring	the	lock.	This	might	allow	it	to	see	a	version	
or	state	of	the	data	that	it	should	not	see;	a	violation	of	the	convention	to	acquire	
locks	before	accessing	the	shared	data.)	

The	“aq”	and	“rl”	bits	control	the	ordering	of	instructions	on	a	single	HART.	They	do	
not	have	any	effect	on	the	scheduling	of	instructions	executed	on	different	HARTs.	In	
other	words,	the	bits	are	there	just	to	make	sure	that	reordering	of	instructions	on	
the	current	HART	(which	the	execution	unit	might	normally	do	to	increase	
performance)	are	to	be	suppressed	so	that	concurrency	control	code	will	function	
properly.	

The	“aq”	bit	has	the	following	meaning.	When	an	instruction	with	the	
“aq”	(acquire)	bit	set	is	executed,	it	means	that	any	instructions	that	follow	the	“aq”	
instruction	must	be	delayed	and	cannot	be	executed	before	the	“aq”	instruction.	The	
“aq”	instruction	will	be	executed	2irst,	before	the	instructions	that	follow	it	in	the	
sequential	2low	of	instructions	on	this	HART.	

The	“rl”	bit	has	the	following	meaning.	When	an	instruction	with	the	“rl”	(release)	
bit	set	is	executed,	it	means	that	any	instruction	that	precedes	the	“rl”	instruction	
must	be	done	and	executed	to	completion	before	the	“rl”	instruction.	The	“rl”	
instruction	will	be	executed	last,	after	the	instructions	that	precede	it	in	the	
sequential	2low	of	instructions	on	this	HART.	

While	we	have	just	described	the	bits	as	applying	to	only	one	HART,	this	was	a	
simpli2ication.	There	are	really	multiple	views	of	the	order	in	which	instructions	are	
executed.	First,	as	mentioned,	there	is	the	order	that	the	HART	itself	executes	the	
two	instructions.	But	second,	there	is	the	order	in	which	other	HARTs	observe	the	
execution.	Perhaps	due	to	caching	effects,	the	second	order	may	be	different.	

For	example,	imagine	that	there	are	two	store	instructions	to	be	executed	by	one	
HART.	The	2irst	instruction	is	used	to	set	a	lock	and	the	second	instruction	is	an	
update	to	the	shared	data.	Presumably,	any	update	should	only	be	done	privately	by	
a	HART	that	is	already	holding	the	lock.	The	concern	is	the	order	in	which	the	other	
HARTs	observe	these	two	memory	store	operations:	other	HARTs	must	observe	the	
store	to	the	lock	to	happen	2irst,	thus	signaling	that	the	lock	is	no	longer	free.	Other	
HARTs	must	not	be	allowed	to	see	a	view	in	which	the	second	store	appeared	to	
occur	before	the	lock	was	set,	otherwise	this	opens	the	door	to	allowing	some	HART	
to	access	data	that	should	not	be	accessible.	
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The	“aq”	and	“rl”	bits	impose	ordering	constraints	on	the	views	observed	by	all	
HARTs	of	the	instruction	stream	of	the	HART	using	them.	Other	HARTs	will	see	only	
the	legal	instruction	sequences.	

When	both	“aq”	and	“rl”	bits	are	set	in	some	instruction,	something	called	
“sequential	consistency”	is	imposed.	All	other	HARTs	will	see	the	same	ordering	as	
occurred	in	the	HART	containing	the	instruction:	All	instructions	that	were	executed	
before	the	instruction	in	question	will	appear	to	all	other	HARTs	as	happening	
before	the	instruction.	All	instructions	that	were	executed	after	the	instruction	will	
appear	to	all	other	HARTs	as	happening	after	the	instruction.	

RISC-V	divides	accesses	to	the	memory	system	into	two	categories:	

	 •	Accesses	to	physical	memory	
	 •	Accesses	to	memory-mapped	I/O	

Each	AMO	instruction	(i.e.,	LR,	SC,	AMOSWAP,	AMOADD,	AMOAND,	AMOOR,	
AMOXOR,	AMOMAX,	AMOMIN)	will	access	exactly	one	of	these	two	domains:	either	
memory	or	I/O.	

The	“aq”	and	“rl”	bits	apply	only	to	the	domain	that	is	being	accessed.	The	bits	
impose	ordering	constrains	on	all	accesses	to	the	domain	in	question,	but	impose	no	
constraints	on	the	other	domain.	

Commentary:	I’m	guessing	the	motivation	is	that	each	domain	(memory	or	I/O)	
will	have	a	separate	approach	to	implementing	the	synchronization	constraints	
imposed	by	the	“aq”	and	“rl”	bits.	The	use	of	the	bits	will	trigger	either	one	
mechanism	or	the	other.	

Or	perhaps	the	implementations	in	each	domain	will	impose	widely	different	
performance	hits.	Certainly	the	“aq”	and	“rl”	bits	will	be	required	to	work	properly	
in	the	memory	domain	and	presumably	the	implementation	will	endeavor	to	
provide	high	performance,	since	locks	in	memory	are	common.	But	maybe	their	
use	within	the	I/O	domain	will	be	rare	and	a	super-slow	implementation	is	
acceptable,	as	long	as	it	can	be	isolated	from	the	memory	system.	

Or	perhaps	it	is	envisioned	that,	in	some	implementations	of	the	standard,	the	
memory	system	will	support	the	“aq”	and	“rl”	semantics,	but	will	not	support	the	
speci2ied	behavior	for	accesses	to	the	I/O	system.	
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???	

Using	LR	and	SC	Instructions	

Take	a	look	at	the	following	code	sequence.	We	assume	that	there	is	a	lock,	whose	
address	is	in	register	x10.	When	the	lock	holds	“0”	the	lock	is	free;	the	value	of	“1”	is	
used	to	indicate	the	lock	is	set.	

In	line	2	we	load	the	current	value	of	the	lock	and	place	a	reservation	on	that	
location.	In	line	3,	we	check	to	see	if	the	lock	was	already	set.	If	so,	we	jump	to	some	
other	code.	This	code	might	simply	jump	back	to	“lock”	to	try	again	immediately;	
this	is	called	a	“spin”	lock	because	the	code	loops,	waiting	for	the	value	to	become	
zero.	Or	perhaps	the	other	code	will	wait,	reschedule	threads	or	whatever,	and	come	
back	to	try	again	sometime	later.	

Line	4	loads	the	value	“1”	into	a	temporary	register.	Line	5	is	the	STORE-
CONDITIONAL	instruction,	which	stores	the	“1”	(indicating	“locked”)	into	the	lock.	
This	instruction	will	succeed	or	fail	and	the	code	is	placed	into	x5	to	tell	which	
happened.	

If	some	other	HART	managed	to	store	into	the	lock,	then	the	SC	will	fail	and	will	not	
be	updated	by	this	HART.	Otherwise,	if	all	is	good	and	the	lock	reservation	is	still	
intact,	then	the	SC	will	succeed	and	“1”	(representing	“locked”)	will	be	stored	into	
the	lock.	

The	last	line	looks	at	the	return	code	from	the	SC	instruction.	If	the	SC	failed,	this	
code	loops	back	to	the	beginning	to	try	again.	

1 lock:
2 lr.w x5,(x10) # Grab the lock’s value
3 bnz x5,fail # If already locked, fail
4 li x7,1 # Store “1” into lock
5 sc.w x5,x7,(x10) #   to indicate “locked”
6 bnz x5,lock # If failure, try again
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To	release	a	lock,	all	we	need	to	do	is	store	a	“0”	into	the	lock	value.	See	the	following	
code.	Recall	that	x0	always	holds	“0”.	

7 unlock:
8 sw x0,(x10) # Set to “unlocked”

The	instruction	sequences	above	are	okay	in	one	respect,	but	2lawed	in	another.	
First,	they	will	atomically	acquired	the	lock	in	such	a	way	that	only	one	HART	at	a	
time	will	acquire	the	lock.	However,	it	is	assumed	that	locks	are	used	to	protect	
critical	sections	of	code.	The	critical	section	code	will	access	some	shared	data.	All	
accesses	to	the	shared	data	must	occur	after	a	lock	operation	and	before	an	unlock	
operation,	in	order	for	the	lock	to	be	meaningful.	

But	with	multiple	HARTs,	it	is	possible	that	(due	to	reordering	of	memory	operations	
and	different	views	of	the	order)	other	HARTs	might	experience	these	accesses	in	
the	critical	section	code	happening	either	before	the	lock	operation	or	after	the	
unlock	operation.	This	could	sabotage	the	lock’s	functionality.	

So	we	can	rewrite	this	code,	making	use	of	the	“aq”	and	“rl”	bits.	The	corrected	code	
is	shown	below.	

The	“rl”	bit	is	set	within	the	LR	instruction,	which	means	that	any	memory	
operations	that	came	earlier	in	the	sequence	will	be	completed	(in	the	sense	of	being	
visible	to	other	HARTs)	before	the	lock	sequence	is	begun.	We	don’t	want	anything	
we’ve	done	that	should	be	visible	outside	the	critical	section	to	be	accidentally	
hidden.	

The	“aq”	bit	is	set	within	the	SC	instruction,	which	means	that	anything	that	happens	
after	the	lock	sequence	(i.e.,	anything	in	the	critical	section	code)	will	be	seen	by	
other	HARTs	as	occurring	after	the	lock	sequence.	This	makes	sure	that	no	critical	
section	stuff	can	leak	out	in	front	of	the	lock	sequence.	

1 lock:
2 lr.w.rl x5,(x10) # Grab the lock’s value
3 bnz x5,fail # If already locked, fail
4 li x7,1 # Store “1” into lock
5 sc.w.aq x5,x7,(x10) #   to indicate “locked”
6 bnz x5,lock # If failure, try again

Likewise,	we	do	the	same	within	the	unlock	sequence,	shown	next.	
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7 unlock:
8 lr.w.rl x5,(x10) # Reserve the lock
9 sc.w.aq x5,x0,(x10) # Set to “unlocked”
10 bnz x5,unlock # If failure, try again

We	switch	from	using	a	STORE	WORD	instruction	to	using	a	LR/SC	combination,	so	
that	we	can	use	the	“rl”	and	“aq”	bits.	We	use	an	SC	instruction	to	store	the	unlock	
code	(“0”)	into	the	lock	and	we	use	an	LR	instruction,	because	the	SC	instruction	will	
fail	if	we	do	not	hold	a	reservation	on	the	memory	location.	The	“rl”	bit	forces	
everything	we	have	done	before	the	unlock	sequence	to	appear	to	other	HARTs	as	
occurring	before	the	lock	is	set	to	“0”	(unlocked).	The	“aq”	bit	on	the	SC	instruction	
forces	anything	we	do	next,	to	appear	as	occurring	after	the	unlock	sequence.	

We	don’t	bother	to	check	the	old	value	of	the	lock,	since	we	assume	that	(in	the	
absence	of	bugs),	we	would	never	try	to	unlock	a	lock	that	was	not	previously	
locked.	However,	we	must	test	for	the	failure	of	the	SC;	it	is	always	possible	that	
some	other	HART	tried	to	acquire	the	lock,	touched	the	memory	location	
representing	the	lock,	and	invalidated	our	reservation.	

Deadlock	and	Starvation	–	Background	

Deadlock	occurs	whenever	two	(or	more)	processes	are	each	holding	a	resource	
(e.g.,	they	have	each	acquired	a	lock)	and	each	is	waiting	for	a	resource	held	by	
another	process	(e.g.,	trying	to	acquire	another	lock).	Once	a	deadlock	situation	
occurs,	the	processes	will	be	frozen,	pending	some	outside	intervention.	Deadlock	is	
a	concern	addressed	by	the	OS	and	there	are	a	number	of	approaches	to	avoiding	or	
dealing	with	it.	

There	is	another	similar	problem	called	“starvation”.	(The	term	“livelock	is	
sometimes	used	to	mean	starvation.)	With	starvation,	the	processes	are	not	
necessarily	frozen	but,	due	to	the	vagaries	of	chance,	some	processes	never	make	
forward	progress.	

Deadlock	requires	at	least	two	resources	(such	as	locks)	that	are	being	fought	over.	
On	the	other	hand,	“starvation”	can	occur	with	only	one	resource.	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	219 323



Chapter	7:	Concurrency	and	Atomic	Instructions	

To	understand	starvation,	imagine	a	scenario	in	which	two	HARTs/processes	(called	
A	and	B)	compete	for	a	single	lock.	The	code	running	on	HART	A	2inds	that	the	lock	
is	currently	held	by	B	and	responds	by	waiting	and	then	retrying	to	acquire	the	lock.	
We	assume	that	no	thread/process	holds	a	lock	inde2initely	(i.e.,	we	assume	these	
are	cooperating	processes	without	any	program	bugs),	so	B	must	eventually	release	
the	lock.	But	what	if,	due	to	the	poor	luck	of	A,	HART	B	happens	to	re-acquire	the	
lock	again	before	A	has	a	chance	to	check	it.	When	A	checks	a	second	time,	A	once	
again	2inds	that	the	lock	is	still	unavailable.	Imagine	that	this	repeats	inde2initely:	B	
is	repeatedly	releasing	the	lock,	but	A	is	unable	to	make	any	forward	process,	
because	by	the	time	A	checks,	B	has	already	re-acquired	the	lock.	B	is	well-behaved,	
never	holding	the	lock	inde2initely,	yet	A	ends	up	being	frozen	and	unable	to	make	
progress.	This	is	starvation.	

It	seems	like	starvation	ought	to	eventually	resolve	itself	when	the	bad	luck	of	A	
2inally	ends	and	A	gets	a	chance	to	acquire	the	lock,	but	this	line	of	reasoning	is	
dangerous.	Funny	things	can	happen	when	processes/threads/HARTs	are	not	
behaving	purely	stochastically.	The	possibility	of	starvation	must	be	addressed.	

Starvation	and	LR/SC	Sequences	

Consider	the	code	sequence	to	acquire	a	lock	shown	earlier.	That	sequence	issues	a	
LR	instruction	and	then,	a	couple	of	instructions	later,	it	issues	an	SC	instruction.	The	
guarantee	made	by	the	RISC-V	spec	is	that,	if	the	SC	is	successful	then	no	other	
HARTs	have	written	to	the	location	(even	if	the	value	written	happens	to	be	the	same	
value).	If	another	HART	managed	to	execute	its	SC	2irst,	then	the	SC	on	this	HART	
will	fail.	The	SC	may	fail	for	other	reasons	as	well.	But	if	the	SC	succeeds,	we	can	be	
sure	that	the	location	in	question	has	not	been	modi2ied	since	the	LR	retrieved	the	a	
value.	

However,	the	RISC-V	spec	makes	an	additional,	much	stronger	guarantee,	and	it	is	
this:	If	you	keep	retrying	an	LR/SC	sequence,	it	will	eventually	succeed.	Starvation	
(i.e.,	livelock)	is	guaranteed	not	to	happen.	The	SC	may	fail	a	few	times,	but	it	will	
eventually	succeed.	The	idea	is	that	a	“denial	of	service	attack”	by	a	heavy	2low	of	
requests	from	other	HARTs	will	never	prevent	any	HART	from	making	progress.	

There	are	some	constraints	placed	on	the	LR/SC	sequence	in	order	for	this	
guarantee	to	be	made,	and	the	“lock”	code	sequence	shown	above	meets	them.	There	
can	be	code	between	the	LR	and	SC	(including	a	repeat	loop	to	keep	testing	until	it	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	220 323



Chapter	7:	Concurrency	and	Atomic	Instructions	

succeeds).	The	basic	restriction	is	that	the	sequence	of	instructions	cannot	be	too	
long,	namely	16	instructions.	Also	other	memory	operations	are	forbidden.	Also	
exception/trap	processing	is	forbidden.	Also	instructions	that	might	take	a	long	time	
to	complete	(such	as	integer	multiply	or	2loating	point	operations)	are	forbidden.	

Commentary:	Guaranteeing	that	starvation	will	not	occur	is	not	necessarily	
straightforward.	One	approach	involves	maintaining	a	queue	that	somehow	
re2lects	how	long	a	process	has	been	waiting,	and	giving	priority	to	the	process	
that	has	been	waiting	longest.	Another	approach	involves	passing	a	“baton”	around	
in	sequence	from	process	to	process.	Each	process	gets	the	baton	in	turn	and,	with	
it,	a	chance	to	move	forward.	But	after	a	limited	amount	of	time,	it	must	pass	the	
baton	on	to	the	next	process.	

The	Atomic	Memory	Operation	(AMO)	Instructions	

The	AMOSWAP	(Atomic	Swap)	instruction	can	be	used	to	simultaneously	read	a	
value	from	memory	and	store	a	new	value	into	that	same	location.	The	instruction	
can	do	this	atomically,	which	means	that	no	intervening	instruction	that	tries	to	
store	into	this	location	can	sneak	in	and	execute.	

Typically,	an	atomic	swap	instruction	is	used	to	set	a	lock.	The	instruction	sets	the	
lock	to	the	“locked”	value	while	at	the	same	time	reading	the	old	value	to	make	sure	
the	lock	was	previously	“unlocked.”	The	instruction	must	be	atomic	to	ensure	that	
two	concurrent	processes	don’t	simultaneously	store	the	“locked”	value	into	an	
“unlocked”	lock	without	realizing	it.	

Atomic	Swap	

General	Form:	
AMOSWAP.W.aq.rl    RegD,Reg2,(Reg1) # 32-bits
AMOSWAP.D.aq.rl    RegD,Reg2,(Reg1) # 64-bits

Examples:	
AMOSWAP.W      x5,x4,(x9)    # x5=Mem[x9]; Mem[x9]=x4
AMOSWAP.W.aq   x5,x4,(x9)    # x5=Mem[x9]; Mem[x9]=x4
AMOSWAP.D.rl   x5,x4,(x9)    # x5=Mem[x9]; Mem[x9]=x4

Description:	
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A	value	is	read	from	the	memory	location	whose	address	is	in	Reg1	and	the	
value	is	placed	into	RegD.	Then	the	value	from	Reg2	is	written	to	the	memory	
location.	In	the	case	that	Reg2	and	RegD	are	the	same	register,	the	values	are	
swapped,	i.e.,	the	value	stored	in	memory	is	the	previous	value	of	Reg2.		

This	instruction	contains	an	“aq”	bit	and	an	“rl”	bit,	which	control	the	ordering	
of	instructions	appearing	before	and	after	this	instruction.	

The	memory	address	must	be	properly	aligned	or	else	an	“AMO	Address	
misaligned”	exception	will	be	raised.	

RV64	/	RV128:	
AMOSWAP.D	is	only	available	on	RV64	and	RV128.	

Availability:	
This	instruction	is	only	available	in	the	“A”	extension	(Atomic	Instructions).	

Encoding:	
	 This	is	an	R-type	instruction.	

Code	Example:	The	AMOSWAP	instruction	can	be	used	to	implement	the	
“lock”	and	“unlock”	operations	on	a	lock,	as	we	show	here.	The	lock	will	be	
represented	as	

	 0	=	unlocked,	i.e.,	free	
	 1	=	locked	

We	assume	register	x10	contains	the	address	of	the	lock	and	x5	is	used	as	a	
temporary.	Here	is	code	to	set	the	lock:	

	 li x5,1 # x5 = 1
retry:

amoswap.w.aq x5,x5,(x10) # x5 = oldlock & lock = 1
bnez x5,retry # Retry if previously set

After	the	critical	section,	which	presumably	accesses	and	modi2ies	some	
shared	data,	we	have	the	following	code	to	release	(i.e.,	free)	the	lock:	

	 	 amoswap.w.rl x0,x0,(x10) # Release lock by storing 0

The	initial	AMOSWAP	has	the	“aq”	bit	set,	which	means	that	any	instructions	
that	follow	the	AMOSWAP	can	not	be	observed	by	other	HARTs	to	execute	
before	the	AMOSWAP.	This	prevents	code	from	the	critical	section	from	
“leaking”	out	before	the	lock	is	set.	
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The	2inal	AMOSWAP	has	the	“rl”	bit	set,	which	means	that	any	instructions	
that	precede	the	AMOSWAP	can	not	be	observed	by	other	HARTs	to	execute	
after	the	AMOSWAP.	This	prevents	code	from	the	critical	section	from	
“leaking”	out	after	the	lock	is	released.	

Atomic	Add	/	AND	/	OR	/	XOR	/	Max	/	Min	(Word)	

General	Form:	
AMOADD.W.aq.rl    RegD,Reg2,(Reg1) # addition
AMOAND.W.aq.rl    RegD,Reg2,(Reg1) # logical AND
AMOOR.W.aq.rl     RegD,Reg2,(Reg1) # logical OR
AMOXOR.W.aq.rl    RegD,Reg2,(Reg1) # logical XOR
AMOMAX.W.aq.rl    RegD,Reg2,(Reg1) # signed maximum
AMOMAXU.W.aq.rl   RegD,Reg2,(Reg1) # unsigned maximum
AMOMIN.W.aq.rl    RegD,Reg2,(Reg1) # signed minimum
AMOMINU.W.aq.rl   RegD,Reg2,(Reg1) # unsigned minimum

Examples:	
AMOADD.W      x5,x4,(x9)  # x5=Mem[x9]; Mem[x9]=x4+x5
AMOADD.W.aq   x5,x4,(x9)  # x5=Mem[x9]; Mem[x9]=x4+x5

Description:	
A	value	is	read	from	the	memory	location	whose	address	is	in	Reg1	and	the	
value	is	placed	into	RegD.	A	binary	operation	is	then	performed	on	the	value	
fetched	from	memory	and	the	value	in	Reg2	and	the	result	is	written	back	to	
the	memory	location.	In	the	case	that	Reg2	and	RegD	are	the	same	register,	the	
operation	is	performed	using	the	initial	value	of	the	register;	the	value	stored	
in	the	register	will	be	the	value	fetched	from	memory.		

This	instruction	contains	an	“aq”	bit	and	an	“rl”	bit,	which	control	the	ordering	
of	instructions	appearing	before	and	after	this	instruction.	

The	memory	address	must	be	properly	aligned	or	else	an	“AMO	Address	
misaligned”	exception	will	be	raised.	

RV64	/	RV128:	
The	result	stored	into	RegD	will	be	sign-extended	to	the	full	register	size,	i.e.,	
to	64	or	128	bits.	

Availability:	
This	instruction	is	only	available	in	the	“A”	extension	(Atomic	Instructions).	

Encoding:	
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	 These	are	R-type	instructions.	

Atomic	Add	/	AND	/	OR	/	XOR	/	Max	/	Min	(Doubleword)	

General	Form:	
AMOADD.D.aq.rl    RegD,Reg2,(Reg1) # addition
AMOAND.D.aq.rl    RegD,Reg2,(Reg1) # logical AND
AMOOR.D.aq.rl     RegD,Reg2,(Reg1) # logical OR
AMOXOR.D.aq.rl    RegD,Reg2,(Reg1) # logical XOR
AMOMAX.D.aq.rl    RegD,Reg2,(Reg1) # signed maximum
AMOMAXU.D.aq.rl   RegD,Reg2,(Reg1) # unsigned maximum
AMOMIN.D.aq.rl    RegD,Reg2,(Reg1) # signed minimum
AMOMINU.D.aq.rl   RegD,Reg2,(Reg1) # unsigned minimum

Examples:	
AMOADD.D      x5,x4,(x9)  # x5=Mem[x9]; Mem[x9]=x4+x5
AMOADD.D.aq   x5,x4,(x9)  # x5=Mem[x9]; Mem[x9]=x4+x5

Description:	
A	value	is	read	from	the	memory	location	whose	address	is	in	Reg1	and	the	
value	is	placed	into	RegD.	A	binary	operation	is	then	performed	on	the	value	
fetched	from	memory	and	the	value	in	Reg2	and	the	result	is	written	back	to	
the	memory	location.	In	the	case	that	Reg2	and	RegD	are	the	same	register,	the	
operation	is	performed	using	the	initial	value	of	the	register;	the	value	stored	
in	the	register	will	be	the	value	fetched	from	memory.		

This	instruction	contains	an	“aq”	bit	and	an	“rl”	bit,	which	control	the	ordering	
of	instructions	appearing	before	and	after	this	instruction.	

The	memory	address	must	be	properly	aligned	or	else	an	“AMO	Address	
misaligned”	exception	will	be	raised.	

RV64	/	RV128:	
These	instructions	are	only	available	on	RV64	and	RV128.	

Availability:	
This	instruction	is	only	available	in	the	“A”	extension	(Atomic	Instructions).	

Encoding:	
	 These	are	R-type	instructions.	

Implementation:	Each	AMO	operation	requires	both	a	read	of	memory	and	a	
write	to	memory,	as	well	as	a	simple	binary	operation.	It	may	be	that	the	read-
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operate-write	functionality	will	be	implemented	completely	within	the	memory	
subsystem,	instead	of	within	the	core.	Upon	encountering	an	AMO	instruction,	the	
core	would	send	the	initial	value	of	Reg2	to	the	memory	system.	The	memory	
subsystem	would	then	complete	the	operation,	performing	the	atomic	read-
operate-write	cycle	and	then	sending	the	result	value	back	to	the	core,	to	be	
stored	in	RegD.	By	of2loading	the	AMO	functionality	to	the	memory	subsystem,	the	
atomicity	is	guaranteed	by	the	memory	system	alone.	

Implementation:	Another	approach	to	implementing	the	Atomic	Memory	
Operations	(AMO)	would	make	use	of	the	more	primitive	LR	and	SC	operations.	
The	microarchitecture	might,	for	example,	implement	the	AMO	instructions	in	
terms	of	the	simpler	functionality,	which	the	microarchitecture	also	uses	to	
implement	the	LR	and	SC	instructions.		

Sequential	Consistency:	A	series	of	reads	and	writes	to	memory	is	said	to	be	
“sequentially	consistent”	if	the	following	statements	hold.	(1)	All	of	the	read	and	
write	operations	issued	by	all	the	HARTs	can	be	linearized	into	a	single,	
undisputed	order,	and	the	same	order	is	observed	by	all	HARTs.	(2)	The	
operations	of	any	one	HART	must	of	course	appear	in	this	ordering	in	the	order	
the	HART	actually	called	for	them,	although	the	operations	from	any	two	HARTs	
can	be	interleaved	arbitrarily.	(3)	Or	at	least	the	results	of	the	computation	are	
indistinguishable	from	such	a	global,	linear	ordering	of	all	operations.	

To	force	all	reads	and	writes	to	conform	to	sequential	consistency,	the	
programmer	can	use	the	atomic	operations	as	follows.	This	will	effectively	
linearize	all	reads	and	writes	to	memory,	so	that	every	HART	will	agree	on	the	
order	that	everything	is	performed.	

	 For	reads	such	as:	
	 	 LD.Wx4,(x7)

Substitute:	
	 	 LR.W.aq.rl x4,(x7)

For	writes	such	as:	
	 	 ST.W(x7),x4

Substitute:	
	 	 AMOSWAP.W.aq.rl x0,x4,(x7)
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Setting	the	“aq”	and	“rl”	bits	forces	all	other	HARTs	to	see	instructions	that	occur	
before	the	instruction	to	appear	to	execute	to	completion	before	the	instruction.	
Also,	all	instructions	that	occur	after	the	instruction	will	appear	to	other	HARTs	to	
execute	after	the	instruction.	

Implementation:	Note	that	an	AMOSWAP	operation	that	discards	the	previous	
value	from	memory	(i.e.,	RegD=x0),	can	avoid	the	read	phase	of	the	instruction.	
This	is	still	a	useful	atomic	instruction,	distinct	from	a	store	(ST)	instruction,	due	to	
the	presence	of	the	“aq”	and	“rl”	bits.	Perhaps	such	an	instruction	can	be	optimized	
by	the	microarchitecture	to	avoid	the	read	phase.  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Privilege	Modes	

At	any	time,	the	RISC-V	processor	is	operating	in	exactly	one	of	the	following	
“modes”:	

	 U-Mode	(User	Mode)	 !	Lowest	privilege	
	 S-Mode	(Supervisor	Mode)	
	 M-Mode	(Machine	Mode)	 !	Highest	privilege	

Commentary:	Previous	versions	included	a	fourth	privilege	level,	in	which	a	
hypervisor	was	to	execute.	Hypervisor	Mode	was	pretty	much	identical	to	
Supervisor	Mode	and	was	2lagged	as	“to	be	speci2ied	in	the	future.”	

	 U-Mode	(User	Mode)	 !	Lowest	privilege	
	 S-Mode	(Supervisor	Mode)	
	 H-Mode	(Hypervisor	Mode)	
	 M-Mode	(Machine	Mode)	 !	Highest	privilege	

Typically,	user-level	applications	will	execute	in	User	Mode.	Whenever	the	
application	wants	an	OS	service,	it	will	make	a	system	call.	The	OS	code	that	handles	
this	call	will	execute	in	Supervisor	Mode,	i.e.,	at	a	higher	privilege	level.	Upon	return	
to	the	application,	the	mode	will	be	lowered	back	to	User	Mode.	

Most	instructions	can	be	executed	in	any	mode,	but	some	instructions	are	privileged	
and	can	only	be	executed	in	a	higher	mode.	

The	privilege	levels	are	strictly	ordered.	Anything	that	can	be	done	at	a	lower	
privilege	level	can	be	done	in	any	one	of	the	higher	levels.	For	example,	anything	that	
can	be	done	in	User	Mode	can	be	done	in	Supervisor	Mode.	
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Machine	Mode	is	the	highest	privilege	level;	all	instructions	are	legal	at	this	level	and	
nothing	is	protected.	When	the	processor	begins	operation	after	powering	up	or	
after	a	reset,	it	is	placed	in	Machine	Mode.	

The	remaining	modes	(User	and	Supervisor	modes)	are	pretty	much	the	same	as	
each	other.	In	other	words,	there	is	little	to	distinguish	them,	except	their	
relationship	to	each	other.	If	you	understand	User	Mode,	then	you	will	also	
understand	most	of	Supervisor	Mode.	

There	is	one	exception	to	the	uniformity	and	this	regards	virtual	memory	and	page	
tables.	This	functionality	is	located	in	Supervisor	Mode.	

The	RISC-V	spec	describes	the	privilege	mechanism	in	somewhat	general	terms	and	
it	is	easy	to	imagine	the	insertion	of	additional	levels	of	privilege,	although	it	should	
be	noted	that	a	fourth	mode	(Hypervisor	Mode),	which	existed	in	previous	versions,	
has	been	eliminated.	

It	appears	that	the	current	mode	is	not	available	in	any	user-visible	register.	In	other	
words,	it	is	dif2icult	for	code	to	determine	the	current	mode.	It	cannot	simply	be	read	
from	a	register;	instead	the	current	mode	is	implicit	in	the	functionality	that	is	
available.	

[	This	lack	seems	to	be	intentional.	After	all,	code	is	typically	written	to	run	in	one	
mode	or	another	and	rarely	needs	to	ask	which	mode	it	is	running	in.	For	example,	a	
hypervisor	may	wish	to	run	a	hosted	OS	is	a	restricted	lower-privilege	mode	than	
the	OS	is	meant	to	run	at,	thereby	maintaining	full	control	of	the	machine	and	
preventing	the	hosted	OS	from	corrupting	the	hypervisor	itself	or	other	hosted	OSes.	
The	hosted	OS	expects	to	run	in	a	higher	privilege	mode	than	it	actually	is	running	
at;	the	hypervisor	must	create	and	preserve	the	illusion	that	the	OS	is	running	in	a	
higher	privilege	mode	than	it	actually	is.	]	

The	RISC-V	speci2ication	does	not	require	all	modes	to	be	implemented.	Some	
processors	may	not	have	all	modes.	Here	are	the	legal	possibilities:	

	 Option	1	 Option	2	 Option	3	
	 	 U	 U	
	 	 	 S	
	 M	 M	 M	
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The	most	basic	processor	will	have	only	Machine	Mode.	In	a	sense,	there	is	no	
privilege	system	in	such	a	simple	processor	since	all	operations	can	be	performed	at	
any	time.	An	implementation	like	this	would	be	suitable	for	an	embedded	
microcontroller.	

� 	

With	option	2,	there	are	two	privilege	levels:	User	and	Machine.	This	might	be	
appropriate	for	a	simple	OS	with	some	protected	security	monitor	running	in	
Machine	Mode	and	one	or	more	applications	running	in	User	Mode.	

� 	

Option	3	is	intended	for	more	elaborate	systems	that	will	be	running	a	traditional	OS	
like	Unix/Linux.	

� 	
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In	some	implementations	several	instructions	and/or	ISA	features	will	be	missing	
and	there	will	be	a	need	to	emulate	the	missing	functionality.	The	natural	
organization	will	place	the	code	to	emulate	the	missing	instructions/features	in	
Machine	Mode	so	that	the	OS	(which	runs	in	Supervisor	Mode)	does	not	need	to	be	
aware	of	these	details.	

Previous	RISC-V	versions	documented	a	Hypervisor	Mode	intended	to	support	
hypervisors.	The	hypervisor	was	to	intended	to	run	at	its	own	privilege	level,	while	
each	of	the	hosted	OSes	ran	in	Supervisor	Mode.	Although	Hypervisor	Mode	has	
been	eliminated,	we	include	the	following	diagram	anyway.	

� 	

In	the	above	diagrams	we	suggest	which	modes	will	be	used	for	which	sorts	of	code,	
but	this	is	not	mandatory.	In	particular,	an	operating	system	kernel	might	run	in	
Machine	Mode	in	some	systems	and	in	Supervisor	Mode	in	other	systems.	

Interface	Terminology	

The	RISC-V	documentation	discusses	the	interfacing	between	applications,	
operating	systems,	and	hypervisors.		

Every	application	program	runs	in	a	particular	environment,	which	is	called	the	
“Application	Execution	Environment”	(AEE).	How	the	application	interfaces	with	the	
underlying	execution	environment	is	called	the	“Application	Binary	Interface”	(ABI).	
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� 	

Typically	an	OS	sits	underneath	the	application	and	implements	the	Application	
Binary	Interface,	which	consists	of	the	User	Mode	instruction	set	along	with	the	
collection	of	system	calls	that	are	available	to	applications.	The	Application	Binary	
Interface	is	the	sum	total	of	what	the	application	programmer	needs	to	understand	
in	order	to	write	programs;	the	programmer	does	not	have	to	understand	or	know	
what	is	going	on	within	the	Application	Execution	Environment.	

An	example	Application	Binary	Interface	would	combine	the	processor	ISA	along	
with	the	OS	system-call	interface.	

If	an	application	is	ported	to	a	new	Application	Execution	Environment,	then	the	
application	will	function	identically	with	no	problems,	as	long	as	the	new	
environment	implements	exactly	the	same	Application	Binary	Interface.	

Typically	there	are	several	applications	running	at	any	one	time.	The	OS	generally	
provides	one	Application	Binary	Interface	and	all	applications	are	written	to	meet	
this	speci2ication.	However,	an	OS	might	implement	more	than	one	Application	
Binary	Interface,	as	shown	in	the	next	diagram.	

� 	

The	OS	might	be	running	on	bare	metal.	Or	the	OS	might	be	running	on	top	of	a	
hypervisor	or	some	other	monitor/security/bootstrapping	software.	In	any	case,	the	
OS	is	created	and	written	to	meet	the	speci2ications	of	a	“Supervisor	Execution	
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Environment”	(SEE).	This	speci2ication	is	called	the	“Supervisor	Binary	
Interface”	(SBI).	

If	the	OS	is	ported	to	a	new	environment	(for	example,	to	new	computer	hardware),	
the	OS	should	function	identically,	as	long	as	the	new	execution	environment	
implements	the	exact	same	Supervisor	Binary	Interface.	

Typically	an	OS	is	designed	to	run	directly	on	a	bare	machine	with	no	underlying	
software.	In	this	case,	the	SBI	consists	of	a	speci2ication	of	the	processor’s	ISA.	

However,	the	OS	may	in	fact	be	running	on	top	of	a	hypervisor.	As	long	as	the	
hypervisor	implements	the	correct	Supervisor	Binary	Interface,	the	OS	should	be	
unaware	that	it	is	running	on	top	of	a	hypervisor.	

It	is	conceivable	that	the	hypervisor	provides	multiple	Supervisor	Binary	Interfaces.	
For	example,	one	hypervisor	might	provide	an	SBI	mimicking	a	PC	and	a	second	SBI	
mimicking	an	Apple	computer.	Such	a	hypervisor	would	than	facilitate	the	
simultaneous	execution	of	both	a	MS	Windows	operating	system	and	the	Mac	OS.	
Such	a	setup	is	shown	below.	

� 	

The	hypervisor	itself	runs	in	some	environment,	which	is	called	the	“Hyperv2laisor	
Execution	Environment”	(HEE).	The	underlying	environment	implements	a	
particular	interface,	called	the	“Hypervisor	Binary	Interface”	(HBI).	

A	“type-1	hypervisor”	(or	native	hypervisor)	is	a	program	that	is	intended	to	run	on	
a	bare	machine.	In	other	words,	there	is	no	software	below	the	hypervisor.	The	
hypervisor	achieves	all	its	work	using	only	the	instructions	available	on	the	
processor	and	does	not	make	any	system	calls.	For	a	type-1	hypervisor,	the	
Hypervisor	Execution	Environment	is	just	the	processor	core’s	instruction	set	
architecture	(ISA).	
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A	“type-2	hypervisor”	(or	hosted	hypervisor)	is	a	program	that	is	intended	to	run	on	
top	of	other	software.	The	hypervisor	sits	on	top	of	some	other	operating	system	
and,	as	far	as	the	underlying	OS	is	concerned,	the	hypervisor	is	just	another	
application	program.	An	example	of	this	would	be	VMWare	(which	runs	on	top	of	the	
Apple	MacOS	and	provides	a	Supervisor	Binary	Interface	to	mimic	the	PC	so	
Windows	can	run.	Other	examples	are	QEMU	and	VirtualBox.	

In	order	to	run	computer	systems	as	ef2iciently	as	possible,	hardware	
implementation	for	most	instructions	is	desirable.	The	majority	of	common	
operations	must	be	implemented	directly	in	hardware,	by	instructions	executed	in	
the	current	mode.	

However,	some	code	will	occasionally	try	to	execute	instructions	that	require	
software	intervention.	Perhaps	a	particular	implementation	fails	to	provide	
hardware	to	support	certain	operations;	examples	would	be	the	lack	of	hardware	
support	for	“integer	multiplication”	or	“2loating	point	arithmetic”.	Or	perhaps	the	
code	is	running	in	a	hypervisor	environment	in	which	a	particular	instruction	
cannot	be	blindly	executed,	but	must	be	intercepted,	monitored,	and/or	altered	
before	being	executed.	Regardless	of	the	reason	the	instruction	cannot	be	executed	
directly,	an	“exception”	will	occur	when	the	instruction	is	encountered.	The	mode	
will	be	increased	to	a	higher	privilege	level,	software	will	intervene,	and	eventually	a	
return	to	the	original	privilege	mode	will	occur	and	instruction	execution	will	
resume.	

All	ISA	designers	try	to	minimize	the	number	of	operations	that	require	software	
intervention	and,	when	intervention	is	necessary,	try	to	make	the	upcall	to	the	
exception	handler	quick	and	ef2icient.	

Over	the	years	we	have	accumulated	good	experience	with	the	interface	between	
User	Mode	code	and	operating	system	code.	Much	has	been	done	to	reduce	the	
frequency	of	system	calls	and	make	the	upcall	interface	fast	and	ef2icient.	

More	recently	we	are	using	more	hypervisor	software	to	support	legacy	operating	
systems.	In	order	to	implement	the	Supervisor	Binary	Interface	(SBI)	expected	by	
the	OS,	the	hypervisor	may	be	obligated	to	step	in	frequently,	whenever	the	OS	
executes	a	privileged	instruction.	Providing	good	ISA	support	for	ef2icient	
hypervisors	is	an	active	research	area.	
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Exceptions,	Interrupts,	Traps	and	Trap	Handlers	

During	the	execution	of	an	instruction,	an	“exception”	may	occur.		

Here	are	the	different	types	of	exceptions	mentioned	in	the	RISC-V	spec:	

	 Synchronous	Exceptions:	
Illegal	instruction	

	 Instruction	address	misaligned		
	 Instruction	access	fault	
	 Load	address	misaligned	
	 Load	access	fault	
	 Store/Atomic	Memory	Operation	(AMO)	address	misaligned	
	 Store/	Atomic	Memory	Operation	(AMO)	access	fault	
	 Environment	call	(i.e.,	the	“syscall”	trap	instruction)	
	 Breakpoint	
Asynchronous	Exceptions	(Interrupts):	
	 Timer	interrupt	
	 Software	interrupt	
	 External	interrupt	

A	synchronous	exception	(sometimes	just	called	an	“exception”)	occurs	as	a	result	of	
trying	to	execute	an	instruction	and	is	said	to	be	synchronous	since	it	is	intimately	
connected	with	a	particular	instruction.	The	synchronous	exception	will	be	detected	
during	instruction	execution	at	the	time	the	exceptional	condition	is	detected.	For	
example,	during	instruction	decode,	the	hardware	may	detect	a	bad	opcode	2ield,	
which	will	initiate	the	“illegal	instruction”	exception	processing.	

The	other	type	of	exception	is	an	“interrupt”.	During	the	execution	of	an	instruction,	
an	interrupt	may	occur.	Interrupts	are	caused	by	events	outside	the	current	
instruction	execution	and,	as	such,	are	asynchronous.	Whenever	an	interrupt	occurs,	
it	will	become	associated	with	a	single	instruction	(basically	the	currently	executing	
instruction)	and	that	instruction	is	chosen	to	receive	the	interrupt	exception.	

An	exception	can	be	handled	or	ignored.	If	the	exception	is	handled,	then	a	“trap”	
will	occur.	The	trap	processing	involves	a	transfer	of	control	to	a	“trap	handler”	
routine.	Trap	processing	consists	of	a	few	hardware	operations,	such	as	modifying	a	
couple	of	hardware	2lags,	saving	the	PC,	and	effecting	a	transfer	of	control	to	the	2irst	
instruction	of	the	trap	handler	routine.	
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A	“trap	handler”	is	a	software	routine	and	will	usually	be	executed	at	a	higher	
privilege	mode	than	the	instruction	receiving	the	exception.	For	example,	an	“illegal	
instruction”	exception	might	occur	in	application	code	running	in	User	Mode.	The	
trap	handler	will	run	in	Supervisor	Mode	and,	when	complete,	the	handler	may	
return	to	executing	instructions	in	User	Mode.	

However,	the	change	of	mode	may	not	always	occur.	In	some	cases,	the	trap	handler	
will	execute	at	the	same	privilege	mode	as	the	instruction	receiving	the	exception.	
With	RISC-V,	some	traps	may	be	entirely	contained	in	User	Mode;	the	application	
code	will	be	responsible	for	handling	its	own	traps	and	supervisor	code	will	not	be	
involved.	

A	“timer	interrupt”	is	caused	when	a	separate	timer	circuit	indicates	that	a	
predetermine	interval	has	ended.	The	timer	subsystem	will	interrupt	the	currently	
executing	code.	Timer	interrupts	are	typically	handled	by	the	OS	which	uses	them	to	
implement	time-sliced	multithreading.	

An	“external	interrupt”	comes	from	outside	the	processor	and	the	precise	nature	of	
the	cause	will	depend	on	the	application.	For	example,	a	RISC-V	processor	used	in	an	
embedded	process	control	system	might	receive	external	interrupts	from	various	
sensors	demanding	attention.	

A	“software	interrupt”	is	caused	by	setting	a	bit	in	the	machine	status	word.	This	can	
be	useful	in	a	multi-core	chip	where	a	thread	running	on	one	core	needs	to	send	an	
interrupt	signal	to	another	core.	

Control	and	Status	Registers	(CSRs)	

In	addition	to	the	basic	user-level	instructions	discussed	previously,	which	can	be	
executed	by	code	running	in	any	mode,	there	are	a	number	of	additional	features	
that	anyone	writing	an	OS	kernel	code	will	need	to	understand.	

At	the	center	of	the	RISC-V	privilege	system	are	a	number	of	Control	and	Status	
Registers	(CSRs),	which	are	different	from	the	general	purpose	and	2loating	point	
registers.	Each	CSR	has	a	unique	name	and	specialized	function.	
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Control	of	the	privilege	system	is	performed	entirely	by	reading	and	writing	the	
CSRs.	OS/Kernel	code	can	perform	privileged	operations	solely	by	reading/writing	
to	CSRs.	

The	RISC-V	speci2ication	allows	for	up	to	4,096	CSRs	to	be	present,	but	in	most	
implementations,	not	all	addresses	will	be	used.	In	fact,	there	are	only	a	couple	of	
dozen	CSRs	de2ined	by	the	RISC-V	speci2ication.	The	other	addresses	are	left	open	
and	different	implementations	may	choose	to	add	additional	non-standard	CSRs,	up	
to	the	limit	of	4,096	registers.	

Each	CSR	has	an	address.	Or,	if	you	prefer,	you	can	think	of	each	CSR	as	having	a	
number	in	the	range	0	to	4,095.	

Since	there	can	be	up	to	4,096	CSRs,	a	12-bit	address	is	used	to	address	each	CSR.	
(Recall	that	212	=	4,096.)	The	instructions	that	read	and	write	the	CSRs	use	the	I-
type	instruction	format.	This	instruction	format	includes	a	12-bit	immediate	2ield,	
and	this	2ield	is	used	to	contain	the	12	bit	address	of	the	CSR	register	being	operated	
on.	

The	size	of	the	CSRs	is	speci2ied	to	be	the	same	size	as	the	general	purpose	registers.	
So	all	the	CSRs	will	be	32	bits	in	a	RV32	machine.	In	a	64-bit	machine,	the	CSRs	are	
64	bits	wide.	Likewise,	in	a	machine	with	128	bit	registers,	the	CSRs	are	128	bits	
wide.	

In	order	to	work	with	all	sizes	of	machines,	the	speci2ication	never	makes	use	of	
more	than	32	bits	in	any	CSR	register.	For	64-bit	and	128-bit	machines,	the	upper	32	
or	96	bits	are	never	used	and	are	2illed	with	zeros.	[	Actually,	there	are	minor	
exceptions.	]	

Each	CSR	has	a	different	meaning	and	use.	Some	CSRs	are	comprised	of	a	collection	
of	specialized	2ields	(some	2ields	are	only	1	or	2	bits	in	length),	while	other	CSRs	
contain	a	single	full	length	value,	such	as	a	32	bit	address.	

Each	CSR	belongs	to	one	of	the	privilege	modes.	In	other	words,	some	CSRs	are	
Machine	Mode	CSRs,	some	CSRs	are	Supervisor	Mode	CSRs,	and	the	remaining	CSRs	
are	User	Mode	CSRs.	

A	Machine	Mode	CSR	can	only	be	read/written	when	the	processor	is	in	Machine	
Mode;	it	is	illegal	to	access	it	when	running	in	any	other	mode.	A	Supervisor	Mode	
CSR	can	be	read/written	when	the	processor	is	in	either	Machine	Mode	or	
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Supervisor	Mode,	but	not	from	code	running	in	User	Mode.	A	User	Mode	CSR	can	be	
read/written	regardless	of	the	current	operating	mode.	

There	are	several	instructions	which	are	used	to	manage	and	control	the	privilege	
system,	and	to	perform	privileged	operations.	The	instructions	are:	

	 ECALL	–	To	make	a	system	call	from	a	lower	privilege	level	to	a	higher	mode	
	 EBREAK	–	Used	by	debuggers	to	get	control;	similar	to	ECALL	
	 URET	–	To	return	from	trap	handler	that	was	running	in	User	Mode	
	 SRET	–	To	return	from	trap	handler	that	was	running	in	Supervisor	Mode	
	 MRET	–	To	return	from	trap	handler	that	was	running	in	Machine	Mode	
	 WFI	–	Go	into	sleep/low	power	state	and	Wait	For	Interrupt	
	 CSR…	–	Instructions	to	read/write	the	Control	and	Status	Registers	(CSRs)	

Writing	to	a	CSR	will	change	the	state	of	the	processor	core.	For	example,	to	enable/
disable	interrupts,	the	program	would	write	to	one	of	the	CSRs.	

Reading/writing	some	CSRs	is	not	allowed	at	lower	privilege	levels.	Some	CSRs	are	
read-only	at	all	privilege	levels	and	are	therefore	set	in	stone	by	the	chip	designers,	
e.g.,	to	describe	the	core’s	capabilities.	

Key	Idea:	To	understand	the	RISC-V	privilege	system	and	exception	processing,	it	is	
both	necessary	and	suf2icient	to	understand	the	CSRs	and	their	functionality.	

CSR	Listing	

The	Control	and	Status	Registers	(CSRs)	are	listed	below	for	reference.	Their	
functions	will	be	described	later.	

For	each	CSR,	we	give	its	12-bit	address	(using	3	hex	digits).	We	also	indicate	
whether	it	can	be	accessed	in	each	of	the	privilege	modes	(User,	Supervisor,	
Machine)	and,	if	so,	what	sort	of	access	(read-only	or	read/write)	is	allowed.	

Recall	that	the	processor	is	executing	in	one	of	the	three	modes	at	any	moment.	It	is	
a	privilege	violation	to	try	to	access	a	CSR	that	is	not	visible	in	the	current	mode.	
Likewise,	it	is	a	privilege	violation	to	try	to	write	to	a	CSR	that	is	read-only	in	the	
current	mode.	If	this	happens,	an	illegal	instruction	exception	will	be	signaled.	
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	 	 	 							Visibility	in…						
Addr	Name	 Description	 	U	 				S	 			M	

					Counters:	

C00	 cycle	 Clock	cycle	counter	 r	 r	 r	
B00	 mcycle	 	 	 	 r/w	
C80	 cycleh	 Upper	half	of	cycle	(RV32	only)	 r	 r	 r	
B80	 mcycleh	 	 	 	 r/w	

C01	 time	 Current	time	in	ticks	 r	 r	 r	
C81	 timeh	 Upper	half	of	time	(RV32	only)	 r	 r	 r	

C02	 instret	 Number	of	instructions	retired		 r	 r	 r	
B02	 minstret	 	 	 	 r/w	
C82	 instreth	 Upper	half	of	instret	(RV32	only)		 r	 r	 r	
B82	 minstreth	 	 	 	 r/w	

				Exception	Processing:	

000	 ustatus	 Status	register	 r/w	 r/w	 r/w	
100	 sstatus	 	 	 r/w	 r/w	
300	 mstatus	 	 	 	 r/w	
	 	
004	 uie	 Interrupt-enable	register		 r/w	 r/w	 r/w	
104	 sie	 	 	 r/w	 r/w	
304	 mie	 	 	 	 r/w	

005	 utvec	 Trap	handler	base	address		 r/w	 r/w	 r/w	
105	 stvec		 	 	 r/w	 r/w	
305	 mtvec		 	 	 	 r/w	

102	 sedeleg	 Exception	delegation	register		 	 r/w	 r/w	
302	 medeleg	 	 	 	 r/w	

103	 sideleg	 Interrupt	delegation	register		 	 r/w	 r/w	
303	 mideleg	 	 	 	 r/w	
	 	
106	 scounteren	 Counter	enable		 	 r/w	 r/w	
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306	 mcounteren		 	 	 	 r/w	

					Trap	Handling:	

040	 uscratch	 Temp	register	for	use	in	handler		 r/w	 r/w	 r/w	
140	 sscratch	 		 	 r/w	 r/w	
340	 mscratch	 	 	 	 r/w	

041	 uepc	 Previous	value	of	PC		 r/w	 r/w	 r/w	
141	 sepc	 		 	 r/w	 r/w	
341	 mepc	 	 	 	 r/w	

042	 ucause	 Trap	cause	code		 r/w	 r/w	 r/w	
142	 scause	 		 	 r/w	 r/w	
342	 mcause	 	 	 	 r/w	

043	 utval	 Bad	address	or	bad	instruction		 r/w	 r/w	 r/w	
143	 stval	 		 	 r/w	 r/w	
343	 mtval	 	 	 	 r/w	

044	 uip	 Interrupt	pending		 r/w	 r/w	 r/w	
144	 sip	 		 	 r/w	 r/w	
344	 mip		 	 	 	 r/w	

					Virtual	Memory:	

180	 satp	 Address	translation	and	protection	 	 r/w	 r/w	 	

					Informational:	

301	 misa	 ISA	and	extensions	 	 	 r/w	
F11	 mvendorid	 Vendor	ID		 	 	 r	
F12	 marchid	 Architecture	ID		 	 	 r	
F13	 mimpid	 Implementation	ID		 	 	 r	
F14	 mhartid	 Hardware	thread	ID		 	 	 r	

					Floating	Point:	

001	 f=lags	 Floating	pointing	2lags	 r/w	 r/w	 r/w	
002	 frm	 Dynamic	rounding	mode	 r/w	 r/w	 r/w	
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003	 fcsr	 Concatenation	of	frm	+	f2lags		 r/w	 r/w	 r/w	

					Performance	Monitoring:	

323	 mhpmevent3	 Event	selector	#3	 	 	 r/w	
C03	 hpmcounter3	 Event	counter	#3	 r	 r	 r	
B03	 mhpmcounter3	 	 	 	 r/w	
C83	 hpmcounter3h	 Upper	half	of	counter	(RV32	only)	 r	 r	 r	
B83	 mhpmcounter3h	 	 	 	 r/w	

324	 mhpmevent3	 Event	selector	#4	 	 	 r/w	
C04	 hpmcounter4	 Event	Counter	#4	 r	 r	 r	
B04	 mhpmcounter4	 	 	 	 r/w	
C84	 hpmcounter4h	 Upper	half	of	counter	(RV32	only)	 r	 r	 r	
B84	 mhpmcounter4h	 	 	 	 r/w	

…	 …	 …	 …	 …	 …	

33F	 mhpmevent31	 Event	selector	#31	 	 	 r/w	
C1F	 hpmcounter31	 Event	Counter	#31	 r	 r	 r	
B1F	 mhpmcounter31	 	 	 	 r/w	
C9F	 hpmcounter31h	 Upper	half	of	counter	(RV32	only)	 r	 r	 r	
B9F	 mhpmcounter31h		 	 	 r/w	

					Physical	Memory	Protection:	

3A0	 pmpcfg0	 PMP	Con2iguration	word	#0	 	 	 r/w	
3A1	 pmpcfg1	 PMP	Con2iguration	word	#1	 	 	 r/w	
3A2	 pmpcfg2	 PMP	Con2iguration	word	#2	 	 	 r/w	
3A3	 pmpcfg3	 PMP	Con2iguration	word	#3	 	 	 r/w	

3B0	 pmpaddr0	 PMP	Address	#0	 	 	 r/w	
3B1	 pmpaddr1	 PMP	Address	#1	 	 	 r/w	
…	 …	 …	 	 	 …	
3BF	 pmpaddr15	 PMP	Address	#15	 	 	 r/w	

					Debug/Trace:	

7A0	 tselect	 Trigger	register	select	 	 	 r/w	
7A1	 tdata1	 Trigger	data	#1	 	 	 r/w	
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7A2	 tdata2	 Trigger	data	#2	 	 	 r/w	
7A3	 tdata3	 Trigger	data	#3	 	 	 r/w	

7B0	 dcsr	 Debug	control	and	status	 	 	 r/w	
7B1	 dpc	 Debug	PC	 	 	 r/w	
7B2	 dscratch	 Scratch	register	 	 	 r/w	

Instructions	to	Read/Write	the	CSRs	

Regardless	of	which	Control	and	Status	Register	(CSR)	is	involved,	there	are	only	6	
instructions	that	are	used	to	read	and	write	the	registers:	

	 CSRRW	–	Read	and	write	a	CSR	
	 CSRRS	–	Read	and	set	selected	bits	to	1	
	 CSRRC	–	Read	and	clear	selected	bits	to	0	
	 CSRRWI	–	Read	and	write	a	CSR	(from	immediate	value)	
	 CSRRSI	–	Read	and	set	selected	bits	to	1	(using	immediate	mask)	
	 CSRRCI	–	Read	and	clear	selected	bits	to	0	(using	immediate	mask)	

There	are	a	few	other	instructions	that	read	or	modify	a	CSR,	but	these	additional	
instructions	are	merely	special	cases	(i.e.,	shorthand	or	syntactic	sugar)	for	one	of	
the	above	instructions.	

Each	of	these	6	instructions	both	reads	and	writes	a	single	CSR	in	a	single,	atomic	
action.	

Each	of	these	instructions	reads	a	CSR	by	copying	its	previous	value	into	one	of	the	
general	purpose	registers	(x1,	x2,	…).	Often,	you	only	want	to	modify	the	register	and	
don’t	care	about	its	previous	value;	if	so,	you	can	specify	the	destination	register	to	
be	x0.	

Each	of	these	instructions	is	also	capable	of	modifying	the	CSR.	Often,	you	only	want	
to	read	the	register;	if	so,	you	can	specify	the	source	value	as	register	x0.	(This	is	a	
special	case.	The	CSR	is	remains	unchanged;	it	is	not	set	to	zero.)	

The	new	value	can	be	either	a	full	value,	or	a	bit	mask	which	will	be	used	to	set	or	
clear	selected	bits.	The	new	value	(or	bit	mask)	can	either	come	from	a	register	or	
can	be	contained	within	an	immediate	data	2ield	within	the	instruction	itself.	
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Whether	code	is	allowed	to	access	a	particular	CSR	is	dependent	on	the	current	
privilege	mode	at	which	the	code	is	being	executed,	as	well	as	which	CSR	is	involved.	
For	example,	if	code	running	in	User	Mode	attempts	to	read	or	update	one	of	the	
Machine	Mode	CSRs	(such	as	mstatus),	this	will	not	be	allowed.	

If	an	attempt	is	made	to	read	and/or	write	to	a	CSR	that	is	forbidden	at	the	current	
privilege	level,	then	an	“Illegal	Instruction”	exception	will	occur.	The	instruction	will	
not	complete	and	exception	processing	will	ensue.	

Within	a	few	of	the	CSRs,	the	protection	is	on	a	2ield-by-2ield	basis.	In	other	words,	
some	of	the	bits	may	be	protected	from	change	(i.e.,	read-only),	while	the	remaining	
bits	can	be	freely	changed	(i.e.,	read-write).	For	example,	within	the	mstatus	CSR,	it	
is	possible	to	modify	some	bits	but	not	allowable	to	modify	other	bits.	(But	for	other	
CSRs,	the	entire	register	is	either	writable	or	not;	that	is,	all	bits	have	the	same	
protection.)	Any	attempt	to	modify	bits	that	are	read-only	will	simply	be	ignored.	

CSR	Read/Write	

General	Form:	
CSRRW   RegD,Reg1,Immed-12

Example:	
CSRRW   x9,x4,cycle    # x9=CSR[0xC00]; CSR[0xC00]=x4

Description:	
This	instruction	can	be	used	to	read	from	and/or	write	to	a	CSR.		

The	Immed-12	2ield	is	used	to	encode	the	address	of	one	of	the	4,096	Control	
and	Status	Registers	(CSRs).	The	previous	value	of	the	CSR	is	copied	to	the	
destination	register	and	the	value	of	the	source	register	Reg1	is	copied	to	the	
CSR.	This	is	an	atomic	operation.	

In	the	above	example,	a	CSR	named	“cycle”	is	being	accessed.	This	CSR	
happens	to	have	the	12-bit	address	0xC00.	This	register	contains	a	counter	of	
the	number	of	clock	cycles	since	it	was	last	written	to.	The	counter	is	
automatically	incremented	as	instructions	are	executed.	

To	read	a	CSR	without	writing	to	it,	the	source	register	Reg1	can	be	speci2ied	
as	x0.	To	write	a	CSR	without	reading	it,	the	destination	register	RegD	can	be	
speci2ied	as	x0.	
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Comment:	
In	lower	privilege	modes	some	of	the	CSRs	are	inaccessible.	An	attempt	to	
read	from	or	write	to	a	CSR	may	cause	an	illegal	instruction	exception.	

Encoding:	
	 This	is	an	I-type	instruction.	

CSR	Read	and	Set	Bits	

General	Form:	
CSRRS   RegD,Reg1,Immed-12

Example:	
CSRRS   x9,x4,mstatus   # x9=CSR[0x300]; CSR[0x300]|=x4

Description:	
The	Immed-12	2ield	is	used	to	encode	the	address	of	one	of	the	4,096	Control	
and	Status	Registers	(CSRs).	The	previous	value	of	the	CSR	is	copied	to	the	
destination	register	and	then	some	selected	bits	of	the	CSR	are	set	to	1.	The	
value	in	Reg1	is	used	as	a	bit	mask	to	select	which	bits	are	to	be	set	in	the	CSR.	
Other	bits	are	unchanged.	This	is	an	atomic	operation.	

In	the	above	example,	a	CSR	named	“mstatus”	is	being	accessed	which	has	the	
12-bit	address	0x300.	This	register	contains	a	number	of	bits	which	control	
which	control	interrupt	processing.	

This	instruction	can	be	used	to	simply	read	a	CSR	without	updating	it.	If	Reg1	
is	x0,	then	no	update	to	the	CSR	will	occur.	

Exception:	
May	cause	an	illegal	instruction	exception	if	the	current	privilege	mode	is	not	
high	enough.	

Encoding:	
	 This	is	an	I-type	instruction.	

CSR	Read	and	Clear	Bits	

General	Form:	
CSRRC   RegD,Reg1,Immed-12

Example:	
CSRRC   x9,x4,mstatus  # x9=CSR[0x300]; CSR[0x300]&=~x4
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Description:	
The	Immed-12	2ield	is	used	to	encode	the	address	of	one	of	the	4,096	Control	
and	Status	Registers	(CSRs).	The	previous	value	of	the	CSR	is	copied	to	the	
destination	register	and	then	some	selected	bits	of	the	CSR	are	cleared	to	0.	
The	value	in	Reg1	is	used	as	a	bit	mask	to	select	which	bits	are	to	be	cleared	in	
the	CSR.	Other	bits	are	unchanged.	This	is	an	atomic	operation.	

This	instruction	can	be	used	to	simply	read	a	CSR	without	updating	it.	If	Reg1	
is	x0,	then	no	update	to	the	CSR	will	occur.	

Exception:	
May	cause	an	illegal	instruction	exception	if	the	current	privilege	mode	is	not	
high	enough.	

Encoding:	
	 This	is	an	I-type	instruction.	

CSR	Read/Write	Immediate	

General	Form:	
CSRRWI  RegD,Immed-5,Immed-12

Example:	
CSRRWI  x9,3,mstatus  # x9=CSR[0x300]; CSR[0x300] = 3

Description:	
The	Immed-12	2ield	is	used	to	encode	the	address	of	one	of	the	4,096	Control	
and	Status	Registers	(CSRs).	The	previous	value	of	the	CSR	is	copied	to	the	
destination	register	and	then	the	entire	CSR	is	written	to.	The	5-bit	2ield	that	is	
normally	used	for	Reg1	is	zero-extended	and	used	as	the	source	value	that	is	
moved	into	the	CSR.	This	is	an	atomic	operation.	

This	instruction	makes	bits	[4:0]	in	any	CSR	particularly	easy	to	modify.	
Exception:	

May	cause	an	illegal	instruction	exception	if	the	current	privilege	mode	is	not	
high	enough.	

Encoding:	
	 This	is	an	I-type	instruction.	
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CSR	Read	and	Set	Bits	Immediate	

General	Form:	
CSRRSI  RegD,Immed-5,Immed-12

Example:	
CSRRSI  x9,3,mstatus  # x9=CSR[0x300]; CSR[0x300]|=3

Description:	
The	Immed-12	2ield	is	used	to	encode	the	address	of	one	of	the	4,096	Control	
and	Status	Registers	(CSRs).	The	previous	value	of	the	CSR	is	copied	to	the	
destination	register	and	then	some	selected	bits	of	the	CSR	are	set	to	1.	The	5-
bit	2ield	that	is	normally	used	for	Reg1	is	zero-extended	and	used	as	a	bit	mask	
to	select	which	bits	are	to	be	set	in	the	CSR.	Other	bits	are	unchanged.	This	is	
an	atomic	operation.	

This	instruction	makes	bits	[4:0]	in	any	CSR	particularly	easy	to	set	to	“1”.	
Exception:	

May	cause	an	illegal	instruction	exception	if	the	current	privilege	mode	is	not	
high	enough.	

Encoding:	
	 This	is	an	I-type	instruction.	

CSR	Read	and	Clear	Bits	Immediate	

General	Form:	
CSRRCI  RegD,Immed-5,Immed-12

Example:	
CSRRCI  x9,3,status   # x9=CSR[0x300]; CSR[0x300]&=~3

Description:	
The	Immed-12	2ield	is	used	to	encode	the	address	of	one	of	the	4,096	Control	
and	Status	Registers	(CSRs).	The	previous	value	of	the	CSR	is	copied	to	the	
destination	register	and	then	some	selected	bits	of	the	CSR	are	cleared	to	0.	
The	5-bit	2ield	that	is	normally	used	for	Reg1	is	zero-extended	and	used	as	a	
bit	mask	to	select	which	bits	are	to	be	cleared	in	the	CSR.	Other	bits	are	
unchanged.	This	is	an	atomic	operation.	

This	instruction	makes	bits	[4:0]	in	any	CSR	particularly	easy	to	clear	to	“0”.	
Exception:	

May	cause	an	illegal	instruction	exception	if	the	current	privilege	mode	is	not	
high	enough.	
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Encoding:	
	 This	is	an	I-type	instruction.	

Basic	CSRs:	CYCLE,	TIME,	INSTRET	

There	are	three	Control	and	Status	Registers	(CSRs)	that	are	particularly	easy	to	
understand,	so	let’s	start	with	them:	

cycle	–	counter	of	clock	cycles	
time	–	current	real	time	
instret	–	counter	of	instructions	retired	(i.e.,	executed)	

Each	of	these	CSRs	is	automatically	incremented	as	instructions	are	executed.	All	are	
readable	at	any	privilege	mode.	Together	they	can	be	used	to	measure	code	speed	
and	performance.	

The	CSR	“cycle”	counts	the	number	of	clock	cycles.	The	CSR	“time”	measures	real	
time	in	units	of	“ticks.”	The	number	of	ticks	per	second	is	implementation	dependent	
and	can	be	determined	elsewhere.	The	CSR	“instret”	counts	the	number	of	
instructions	retired	(i.e.,	the	number	of	instructions	completed).	

These	CSRs	are	all	User	Mode	registers,	which	means	they	can	be	read	by	code	
executing	in	any	mode.	These	registers	are	read-only,	so	they	cannot	be	written	to.	

We	can	reset	these	counters,	but	the	reset	operation	requires	higher	privilege;	User	
Mode	code	should	not	be	able	to	write	to	these	counters.	To	accommodate	updating	
but	only	at	higher	privileges,	these	registers	are	“mirrored”	by	Machine	Mode	
registers.	The	mirrored	versions	(called	mcycle,	minstret,	…)	have	different	names	
and	different	addresses.	As	such,	they	can	only	be	written	to	by	code	running	in	
Machine	Mode.	

To	avoid	possible	over2low,	these	counters	need	to	be	64-bits.	For	64-bit	and	128-bit	
machines,	each	of	the	three	CSRs	will	be	large	enough	to	avoid	over2low.	

For	32-bit	machines,	the	RV32	speci2ication	breaks	each	counter	into	two	32-bit	
CSRs.	In	other	words,	the	RV32	speci2ication	introduces	3	additional	registers	to	
contain	the	high-order	32-bits:	
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cycle	–	clock	cycles	(lower	32	bits)	
cycleh	–	clock	cycles	(higher	32	bits)	
time	–	real	time	(lower	32	bits)	
timeh	–	real	time	(higher	32	bits)	
instret	–	instructions	retired	(lower	32	bits)	
instreth	–	instructions	retired	(higher	32	bits)	

The	following	instructions	are	short	forms	of	other	instructions.	They	are	designed	
to	make	reading	the	above-mentioned	counters	especially	easy.	

Read	“CYCLE”	

General	Form:	
RDCYCLE  RegD

Example:	
RDCYCLE  x9      # x9=CSR[cycle]

Encoding:	
	 This	is	a	simpli2ied	form	of	a	more	general	instruction.	

Read	“CYCLEH”	

General	Form:	
RDCYCLEH  RegD

Example:	
RDCYCLEH  x9      # x9=CSR[cycleh]

Comment:	
	 Only	on	32-bit	machines.	
Encoding:	
	 This	is	a	simpli2ied	form	of	a	more	general	instruction.	

Read	“TIME”	

General	Form:	
RDTIME  RegD

Example:	
RDTIME  x9      # x9=CSR[time]
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Encoding:	
	 This	is	a	simpli2ied	form	of	a	more	general	instruction.	

Read	“TIMEH”	

General	Form:	
RDTIMEH  RegD

Example:	
RDTIMEH  x9      # x9=CSR[timeh]

Comment:	
	 Only	on	32-bit	machines.	
Encoding:	
	 This	is	a	simpli2ied	form	of	a	more	general	instruction.	

Read	“INSTRET”	

General	Form:	
RDINSTRET  RegD

Example:	
RDINSTRET  x9      # x9=CSR[instret]

Encoding:	
	 This	is	a	simpli2ied	form	of	a	more	general	instruction.	

Read	“INSTRETH”	

General	Form:	
RDINSTRETH  RegD

Example:	
RDINSTRETH  x9      # x9=CSR[instreth]

Comment:	
	 Only	on	32-bit	machines.	
Encoding:	
	 This	is	a	simpli2ied	form	of	a	more	general	instruction.	

Example	Code:	The	following	sequence	can	be	used	to	correctly	read	a	64-bit	
counter	on	a	32-bit	machine	where	the	counter	is	broken	into	two	32-bit	pieces.	
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There	is	a	possibility	that,	between	reading	the	two	halves,	over2low	from	the	
lower-order	32	bits	into	the	upper	bits	might	occur.	

	 again:
    rdcycleh   x3            # Read high bits
    rdcycle    x2            # Read low bits
    rdcycleh   x4            # Check for overflow
    bne        x3,x4,again   #   from low to high

CSR	Register	Mirroring	

At	any	moment	the	processor	is	executing	in	some	mode,	i.e.,	in	either	User	(U),	
Supervisor	(S),	or	Machine	(M)	Mode.	

The	RISC-V	spec	de2ines	a	few	dozen	Control	and	Status	Registers	(CSRs)	and	they	
are	broken	into	3	groups.	There	is	one	group	for	each	mode,	so	each	CSR	belongs	to	
either	User	Mode,	Supervisor	Mode,	or	Machine	Mode.	

When	running	in	Machine	Mode	all	CSRs	are	accessible,	regardless	of	which	group	
they	belong	to,	since	Machine	Mode	is	the	highest	privilege	level.	In	Supervisor	
Mode,	only	the	Supervisor	and	User	CSRs	can	be	accessed.	Finally,	when	running	in	
User	Mode,	only	User	CSRs	are	accessible.	

To	state	the	same	thing	another	way,	a	Machine	CSR	can	only	be	read	or	written	
when	running	in	Machine	Mode.	A	Supervisor	CSR	can	be	written	when	running	in	
either	Machine	Mode	or	Supervisor	Mode.	Finally,	a	User	CSR	can	be	read	or	written	
regardless	of	the	current	privilege	mode.	

Each	CSR	has	a	name.	

In	many	cases,	the	2irst	letter	of	the	register	name	indicates	which	group	it	is	in	
(either	“u”,	“s”,	or	“m”).	

Examples	that	follow	the	2irst-letter	convention	are	mstatus	and	misa	(accessible	
only	in	Machine	Mode),	sstatus	and	satp	(accessible	in	Supervisor	and	Machine	
Modes),	and	ustatus	and	ucause	(accessible	in	User,	Supervisor,	and	Machine	
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Modes).	Counter	examples	are	cycle,	time,	and	instret	which	ought	to	begin	with	
“u”	since	they	are	accessible	in	User,	Supervisor,	and	Machine	Modes.	

A	particular	implementation	may	add	new	CSRs	in	addition	to	those	described	in	the	
RISC-V	standard.	Each	CSR	register	has	an	address	and	the	addresses	are	12	bits	
wide,	allowing	for	up	to	4,096	CSRs.	

Details:	The	address	space	for	CSRs	uses	a	12-bit	address,	allowing	for	4,096	
different	CSR	registers.	This	address	space	is	partitioned	into	4	regions,	with	
up	to	1,024	registers	each.	There	is	one	block	of	registers	for	each	mode	(U,	
S,	and	M)	along	with	an	extra	“reserved”	block	which	was	formerly	used	for	
Hypervisor	Mode.	Hypervisor	Mode	has	been	eliminated.	

Furthermore,	each	register	also	falls	into	one	of	the	following	access	
restriction	categories:	

	 registers	de2ined	by	the	RISC-V	standard	
	 	 •	read-only	
	 	 •	read-write	
	 extensions,	not	de2ined	by	the	standard	
	 	 •	read-only	
	 	 •	read-write	
	 registers	used	for	debug	mode	
	 	 •	standard	
	 	 •	non-standard	extensions	

This	allows	an	implementation	of	the	RISC-V	spec	to	add	new,	non-standard	
CSRs	without	fear	that	their	addresses	will	be	overloaded	in	future	revisions	
to	the	standard.	

The	mode	(U,	S,	or	M)	and	the	access	restriction	category	can	be	determined	
solely	from	bits	in	the	CSR	address.	Thus,	the	hardware	can	easily	check	
whether	a	given	type	of	access	(e.g.,	a	read-write	access	from	code	running	in	
User	Mode)	is	allowed,	simply	by	looking	at	the	address.	The	encoding	of	bits	
in	the	CSR	address	is	rather	convoluted;	consult	the	of2icial	documentation	
for	details.	

Some	of	the	registers	are	mirrored,	which	means	the	same	conceptual	register	is	
available	at	two	or	more	addresses.	For	example,	the	cycle	register,	which	contains	a	
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counter	of	the	current	number	of	clock	cycles,	is	mirrored	in	both	User	Mode	and	
Machine	Mode.	A	mirrored	CSR	will	have	two	names	and	two	addresses:	

	 Address	 Register	Name	
	 0xC00	 cycle	(read-only)	
	 0xB00	 mcycle	(read-write)	

This	grouping	and	mirroring	technique	has	a	couple	of	advantages.	

One	advantage	of	mirroring	the	registers	is	that	a	single	register	can	be	read-only	at	
one	privilege	level	and	yet	writable	at	a	higher	privilege	level.	

For	example,	the	“cycle”	register	(which	counts	how	many	clock	cycles	have	
occurred	since	last	being	reset)	is	conceptually	a	single	register	and	would	certainly	
be	implemented	as	such.	The	register	should	be	visible	and	readable	to	all	code,	but	
the	reset	operation	(which	writes	to	the	register)	should	only	be	allowed	when	
running	at	a	higher	privilege	level.	Thus,	we	want	the	“cycle”	register	to	be	read-only	
for	User	Mode	code,	but	modi2iable	by	Machine	Mode	code.	

To	achieve	this,	the	register	is	“mirrored”.	There	is	a	read-only	CSR	named	cycle	
which	can	be	accessed	at	any	privilege	level,	and	there	is	a	different	read-write	CSR	
named	mcycle	which	can	only	be	accessed	when	running	at	the	Machine	Mode	
privilege	level.	Actually,	there	is	only	a	single,	underlying	“mirrored”	register,	so	any	
value	written	to	mcycle	will	be	immediately	visible	when	reading	from	cycle.	

Access	to	registers	at	a	higher	privilege	level	than	the	current	mode	is	always	
forbidden.	This	allows	an	operating	system	to	hide	information	from	user-level	code.	
For	example,	it	might	be	used	in	a	hypervisor	to	hide	information	so	that	an	
operating	system	can	be	truly	fooled	about	what	sort	of	processor	it	is	running	on.	

This	grouping	mechanism	is	a	uniform	approach	to	preventing	lower	privilege	code	
from	modifying	CSRs	that	must	be	protected.	For	example,	user-level	code	must	be	
prevented	from	modifying	the	virtual	memory	paging	scheme	and	this	happens	
naturally	because	the	CSR	associated	with	page	tables	is	not	a	CSR	that	is	accessible	
in	User	Mode.	

Some	registers	contain	a	number	of	bit	2ields	and	these	2ields	need	to	have	different	
accessibility.	For	example,	in	the	machine	status	register,	some	2ields	should	be	read-
only	while	other	2ields	are	updatable.	This	is	supported	in	the	following	way.	An	
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attempt	to	update	a	2ield	that	is	read-only	will	be	ignored,	even	though	other	2ields	
in	the	same	CSR	can	be	updated.	

The	“status”	register	is	used	in	determining	whether	interrupts	are	enabled	and	
what	virtual	memory	mechanism	is	currently	in	effect,	among	other	things.	This	
register	is	mirrored	at	all	privilege	levels,	using	a	different	CSR	at	each	level.	

	 Address	 Register	Name	
	 0x000	 ustatus	
	 0x100	 sstatus	
	 0x300	 mstatus	

Within	the	status	register,	some	2ields	are	invisible	when	running	at	lower	privilege	
levels.	This	is	supported	by	giving	the	register	a	different	name	for	each	mode.	Some	
bits	that	are	de2ined	in	the	mstatus	register	will	be	read	simply	as	zeros	in	the	
sstatus	register,	to	re2lect	the	fact	that	these	bits	must	be	accessible	in	Machine	
Mode	but	not	in	Supervisor	Mode.	

An	Overview	of	Important	CSRs	

In	this	section	we	describe	the	most	important	Control	and	Status	Registers	(CSRs).	
This	description	goes	hand-in-hand	with	describing	features	of	a	RISC-V	pricessor	
not	covered	elsewhere	and	of	concern	only	to	programmers	of	OS	and	kernel	code.	

Recall	that	the	2irst	letter	of	the	CSR	register	name	will	typically	be	m,	s,	or	u	to	
indicate	which	privilege	level	is	required	in	order	to	access	this	register.	For	
example,	the	“misa”	register	can	only	be	read	when	running	in	Machine	Mode,	while	
the	“ustatus”	register	may	be	accessed	from	any	mode.	

misa	–	Machine	Instruction	Set	Architecture	(ISA)	

This	CSR	gives	information	about	the	basic	architecture	of	the	machine.	It	tells	the	
register	width	(32,	64,	or	128)	and	individual	bits	in	this	CSR	also	indicate	which	of	
the	various	options	and	extensions	detailed	by	the	RISC-V	speci2ication	have	been	
implemented.	This	register	encodes	whether	this	machine	is	an	RV32IM,	an	
RV64IMAFDQ,	or	some	other	variant	of	the	RISC-V	architecture.	
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The	register	width	of	the	machine	(either	32,	64,	or	128)	is	encoded	in	the	most	
signi2icant	two	bits	of	this	CSR.	This	is	clever,	since	it	makes	it	possible	for	the	same	
code	to	be	executed	on	different	machines	with	different	register	widths.	Using	only	
instructions	to	test	the	sign	of	the	register	and	shift	the	register	left,	the	code	can	
determine	what	the	register	size	is,	and	then	branch	accordingly	to	different	code	
blocks	for	each	of	the	three	possibilities.	

This	register	is	read-write.	

Some	machines	may	support	multiple	register	widths.	For	example,	an	RV64	
machine	may	be	capable	of	running	as	(i.e.,	emulating)	an	RV32	machine.	Upon	
power-on	or	reset,	the	misa	register	will	be	set	to	indicate	the	widest	register	width	
the	core	is	capable	of	implementing.	Software	can	set	this	register	to	effectively	turn	
(for	example)	an	RV64	machine	into	an	RV32	machine.	

The	lower-order	26	bits	correspond	to	the	letters	A,	B,	…	Z	(“A”=bit	0,	“B”=bit	1,	etc.)	
Each	bit	will	be	set	to	indicate	whether	this	implementation	supports	the	
corresponding	extension.	For	example,	bit	5	will	be	set	if	the	core	supports	the	“F”	
single	precision	2loating	point	extension.	

mvendorid	–	Machine	Vendor	ID	

For	commercial	implementations,	this	CSR	identi2ies	by	number	the	vendor/
manufacturer/organization	that	has	produced	this	chip.	The	number	used	here	is	
the	ID	issued	by	a	semiconductor	engineering	trade	organization	called	JEDEC.	For	
research	and	non-commercial	implementations,	this	register	will	contain	zero.	

This	register	is	read-only.	

marchid	–	Machine	architecture	ID	

This	CSR	identi2ies	the	particular	architecture	of	the	part	and	is	essentially	the	“part	
number”	or	“model	number”.	For	commercial	implementations,	this	number	is	
assigned	by	the	vendor.	For	some	non-commercial	or	open-source	projects,	a	
number	may	be	assigned	by	the	RISC-V	Foundation.	Otherwise,	this	register	will	
contain	zero.	

This	register	is	read-only.	
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mimpid	–	Machine	Implementation	ID	

Given	a	particular	vendor	(as	identi2ied	in	mvendorid)	and	a	part/model	number	
(as	identi2ied	in	marchid),	there	may	be	several	versions.	This	number	identi2ies	the	
particular	implementation	or	version	of	the	processor.	It	may	be	zero.	

This	register	is	read-only.	

cycle	–	Cycle	Counter	(read-only)	
mcycle	–	Cycle	Counter	(writable)	

The	cycle	register	is	accessible	read-only	in	all	modes.	It	counts	hardware	clock	
cycles.	The	counter	can	be	reset	by	writing	to	the	mcycle	CSR,	which	is	only	
accessible	in	Machine	Mode.	

instret	–	Instruction	Counter	(read-only)	
minstret	–	Instruction	Counter	(writable)	

The	instret	register	is	accessible	read-only	in	all	modes.	It	counts	the	number	of	
instructions	executed	(or	more	precisely,	the	number	of	instructions	completed	
“instructions	retired”).	The	counter	can	be	reset	by	writing	to	the	minstret	CSR,	
which	is	only	allowable	in	Machine	Mode.	

time	–	Current	Time	(read-only)	

The	current	real	time	in	ticks.	See	the	comments	for	mtime.	This	register	is	a	
shadow	of	mtime.	The	time	CSR	is	accessible	at	all	privilege	levels.	

Details:	These	registers	all	require	64	bits,	which	is	problematic	on	RV32	
machines.	To	deal	with	32-bit	machines,	there	are	additional	registers	(whose	
names	end	in	“h”)	to	contain	the	upper	32	bits.	

	 low	order	bits	 high	order	32	bits	(RV32	only)	
	 cycle	 cycleh	
	 mcycle	 mcycleh	
	 instret	 instreth	
	 minstret	 minstreth	
	 time	 timeh	
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mtime	–	Current	Time	
mtimecmp	–	Time	of	Next	Interrupt	

The	mtime	register	provides	the	current	real	time	as	a	count	of	“ticks”.	The	meaning	
of	“tick”	(i.e.,	the	tick-rate	of	how	many	ticks	per	second	and	the	value	of	time-zero,	
at	which	the	counter	began	counting)	is	determined	elsewhere.	

The	mtimecmp	register	is	used	to	trigger	the	next	timer	interrupt.	When	the	mtime	
register	equals	(or	exceeds)	the	value	in	mtimecmp,	a	timer	interrupt	will	be	
triggered.	

Technically	mtime	and	mtimecmp	are	not	Control	and	Status	Registers	(CSRs),	but	
they	are	listed	here	since	they	are	similar.	Each	“register”	is	a	64	bit	counter	which	is	
actually	implemented	via	memory-mapping,	unlike	the	CSRs.	

Commentary:	Putting	a	real-time	clock	inside	the	core	is	not	practical	since	a	core	
can	be	run	at	different	frequencies	at	different	times	(e.g.,	under-clocking	to	reduce	
power	consumption	or	over-clocking	to…	uh…	cause	it	to	malfunction).	Typically	
there	are	several	cores	on	a	chip	and	the	real	time	clock	is	essentially	an	I/O	device	
shared	by	all	cores,	providing	consistent	time	values	to	all	cores.	Thus,	the	real	
time	clock	is	accessed	by	the	use	of	memory-mapped	accesses,	like	other	I/O	
devices.	

Typically	processor	chips	are	clocked	by	imprecise	clock	circuitry.	In	systems	that	
aim	to	provide	accurate	real	time	clocks,	the	clock	is	not	implemented	on	the	same	
chip	as	the	processor	cores.	

Presumably,	the	real	time	clock	has	one	mtimecmp	register	per	core,	allowing	
each	core	to	determine	when	its	next	timer	interrupt	will	happen.	

Commentary:	The	mtimecmp	register	is	64	bits	but	if	the	RISC-V	core	is	
only	32	bits,	then	there	could	be	a	problem	setting	it.	It	must	be	updated	
using	two	store-word	(SW)	instructions,	each	storing	32	bits.	If	the	
programmer	is	careless,	the	2irst	load	might	trigger	a	spurious	timer	
interrupt.	The	RISC-V	documentation	provides	this	code	to	avoid	the	
problem:	
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	 # The new value for mtimecmp is in registers x11:x10
li x5,-1 # 0xffffffff for lower 32 bits
sw x5,mtimecmp # The 64-bit value is ≥ old value
sw x11,mtimecmp+4 # The 64-bit value is ≥ new value
sw x10,mtimecmp

mhartid	–	Machine	Hardware	Thread	(HART)	ID	

RISC-V	documentation	de2ines	the	term	HART	to	mean	“Hardware	Thread”.	This	
register	does	not	re2lect	a	higher	level	(e.g.,	operating	system)	concept	of	thread.	

In	a	single-core	system	with	a	single,	simple	FETCH-DECODE-EXECUTE	pipeline,	
there	only	one	HART.	

In	a	multi-core	system,	where	each	core	will	execute	a	single	2low-of-control,	each	
core	will	have	its	own	HART.	Each	core’s	HART	will	execute	concurrently	with	the	
other	cores’	HARTs.	This	CSR	identi2ies	which	core	is	executing.	

It	may	be	important	to	identify	one	thread	as	a	“master	thread”.	One	HART	must	be	
given	an	ID	of	zero.	

The	number	of	hardware	threads	is	2ixed	but	the	application	software	will	need	an	
unpredictable	and	changing	number	of	threads.	The	OS	will	map	traditional	OS	
threads	onto	the	available	hardware	threads.		

Some	advanced	superscalar	cores	may	implement	“hardware	multithreading,”	in	
which	a	single	core	is	capable	of	executing	more	than	a	one	independent	2low-of-
control	at	a	time.	In	other	words,	multi-threading	is	performed	directly	in	hardware.	
For	example,	a	single	core	might	be	able	to	execute	two	hardware	threads	at	a	time.	
The	advantage	of	hardware	multithreading	is	that	the	computational	resources	of	
the	core	(e.g.,	multipliers,	adders,	etc.)	can	be	used	more	ef2iciently.	In	such	a	system,	
each	hardware	thread	would	be	identi2ied	with	a	unique	HART	and	each	core	would	
be	executing	more	than	one	HART	simultaneously.	

This	register	is	read-only.	
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mstatus	–	Machine	Status	Register	
sstatus	–	Supervisor	Status	Register	
ustatus	–	User	Status	Register	

Conceptually,	the	processor	“status	register”	is	a	single	register,	but	it	is	mirrored	at	
all	privilege	levels.	

By	modifying	this	register,	the	software	can	do	things	like	enable/disable	interrupts	
and	change	the	ISA.	(By	setting	bits	in	the	status	register,	one	can	cause	the	
processor	to	execute	as	if	it	were	a	32	bit	RV32	machine,	even	though	it	is	actually	a	
64	bit	RV64	machine.)	

Understanding	some	of	the	2ield	in	this	CSR	requires	understanding	how	exceptions	
are	processed	and	trap	handlers	are	invoked.	

This	CSR	is	complex	and	contains	a	large	number	of	2ields.		As	such,	we	delay	further	
discussion	until	later.	

mtvec	–	Machine	Trap	Vector	Base	Address	
stvec	–	Supervisor	Trap	Vector	Base	Address	
utvec	–	User	Trap	Vector	Base	Address	

When	a	trap	occurs	(as	a	result	of	a	synchronous	exception	or	asynchronous	
interrupt),	a	jump	will	be	taken	directly	to	the	trap	handler	routine.	

There	is	a	single	trap	handler	for	each	privilege	level.	These	registers	contain	the	
address	of	these	three	trap	handlers.	In	other	words,	when	an	exception	occurs	(and	
is	to	be	handled,	not	ignored),	the	program	counter	(PC)	is	set	to	the	value	in	this	
CSR,	causing	a	jump	to	the	2irst	instruction	of	the	trap	handler	code.	

The	next	section	gives	additional	detail.	

Exception	Processing	and	Invoking	a	Trap	Handler	

Exceptions	always	trap	to	the	Machine	Mode	trap	handler	2irst,	regardless	of	the	
privilege	mode	at	the	time	the	exception	occurs.	The	Machine	Mode	trap	handler	
will	execute	in	Machine	Mode	and	(presumably)	end	with	an	MRET	instruction,	
which	will	return	to	the	code	that	was	interrupted.	The	interrupted	code	may	have	
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been	running	in	User,	Supervisor,	or	Machine	Mode;	the	MRET	instruction	will	
restore	the	privilege	level	to	whatever	it	was	when	the	exception	occurred.	

However,	we	may	not	want	to	handle	the	exception	in	Machine	Mode;	we	might	want	
to	handle	it	in	Supervisor	Mode	or	even	User	Mode.	As	such,	there	is	a	facility	to	
“delegate”	some	or	all	exceptions	to	the	lower	privilege	levels.	

For	example,	if	a	particular	type	of	exception	should	be	handled	by	the	Supervisor	
Mode	trap	handler,	then	this	exception	will	be	delegated	from	Machine	Mode	down	
to	Supervisor	Mode.	The	trap	handler	address	will	be	determined	from	the	stvec	
register	(not	mtvec);	the	handler	will	run	in	Supervisor	Mode;	and	the	handler	will	
end	with	an	SRET	instruction.	

Likewise,	if	a	particular	type	of	exception	ought	to	be	dealt	with	in	User	Mode,	then	
any	exception	of	this	type	will	be	further	delegated	from	Supervisor	to	User	Mode.	
The	trap	handler	address	will	be	determined	from	the	utvec	register;	the	handler	
will	run	in	User	Mode;	and	the	handler	will	end	with	an	URET	instruction.	

Whether	an	exception	is	to	be	delegated	from	Machine	Mode	to	Supervisor	Mode,	or	
down	further	to	User	Mode,	is	determined	by	the	settings	of	various	bits	in	other	
CSRs.	We	describe	the	delegation	(“deleg”)	CSRs	elsewhere.	

There	is	only	a	single	trap	handler	at	each	of	the	three	privilege	levels	(at	least	in	the	
base	speci2ication).	The	mtvec,	stvec,	and	utvecse	CSRs	are	normally	writable	and	
OS	software	will	store	the	address	of	the	trap	handler	into	a	CSR	before	the	
exception	occurs.	

Once	the	exception	occurs	and	the	handler	is	invoked,	its	code	must	examine	other	
CSRs	to	determine	the	nature	of	the	exception,	i.e.,	which	exception	caused	the	trap	
handler	to	be	invoked.	

(	The	trap	handler	addresses	may	be	hardwired,	in	which	case	these	CSRs	are	read-
only.	It	is	also	allowable	for	there	to	be	implementation-dependent	restrictions	on	
which	values	the	mtvec/stvec/utvec	CSRs	can	contain.	)	

Implementations	are	free	to	add	additional	trap	handlers	as	extensions	to	the	RISC-V	
spec.	In	particular,	it	may	make	sense	for	the	processor	to	have	a	different	trap	
handler	for	each	kind	of	exception.	This	can	make	handling	traps	faster,	since	it	
eliminates	the	need	for	software	to	determine	which	type	of	exception	caused	the	
trap	and	jump	conditionally.	
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The	trap	handler	(or	handlers,	if	there	are	more	than	one)	must	begin	on	word-
aligned	addresses.	These	means	that	any	address	stored	in	the	mtvec/stvec/utvec	
CSRs	must	have	“00”	as	the	least	signi2icant	two	bits.	The	RISC-V	spec	makes	use	of	
these	two	bits	as	follows.	

If	the	last	two	bits	are	“00”,	then	it	means	the	CSR	contains	the	address	of	a	single	
trap	handler	and	it	is	up	to	the	code	in	the	handler	to	determine	which	type	of	
exception	has	occurred.	

If	the	last	two	bits	are	“01”,	then	it	means	there	is	a	collection	of	trap	handlers,	one	
for	each	type	of	asynchronous	interrupt.	This	is	good	since	we	often	want	to	handle	
asynchronous	interrupts	really	quickly.	More	particularly,	there	is	a	jump	table	(i.e.,	
an	array	of	words,	where	each	word	contains	a	JUMP	instruction)	and	the	mtvec/
stvec/utvec	CSR	contains	the	address	of	this	jump	table.	

[	Details:	When	an	asynchronous	interrupt	occurs,	the	CSR	is	consulted	to	locate	the	
jump	table.	The	interrupt	type	is	consulted	to	determine	which	table	entry	is	to	be	
used	(i.e.,	an	index	into	the	array).	Then	a	jump	is	made	to	the	associated	entry,	by	
loading	the	PC	with	the	computed	address.	Presumably,	each	array	element	contains	
a	jump	instruction	to	the	2irst	instruction	of	the	handler.	Although	there	can	be	a	
different	trap	handler	for	each	kind	of	asynchronous	interrupt	(“timer	interrupt”,	
“external	interrupt”,	…),	there	will	only	be	one	handler	for	all	synchronous	
exceptions	(“illegal	instruction”,	“address	misaligned”,	…).	The	2irst	element	in	the	
jump	table	(index=0)	will	be	a	trap	handler	for	all	synchronous	exceptions,	as	well	
as	for	a	“user-mode	software	interrupt”.	]	

The	remaining	bit	patterns	“10”	and	“11”	are	not	used.	

The	Non-Maskable	Interrupt:	Hardware	Failure	

Some	traps	are	“maskable”	and	others	are	“non-maskable”.	A	maskable	interrupt	can	
either	be	handled,	or	can	be	ignored,	or	can	be	passed	from	a	higher	privilege	level	
to	a	lower	privilege	level.	

A	non-maskable	interrupt	(NMI)	will	be	handled	immediately	and	cannot	be	
ignored.	Only	one	event	can	cause	a	non-maskable	interrupt:	

•	A	hardware	failure	is	detected	(e.g.,	by	error	checking	circuitry)	
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In	the	event	of	a	hardware	error	NMI,	the	following	happens:	

•	The	privilege	mode	is	set	to	Machine	Mode.	
•	The	previous	PC	will	be	saved	in	the	mepc	register.	
•	The	PC	is	set	to	some	2ixed,	predetermined,	implementation	dependent	value.	
•	The	mcause	register	is	set	to	indicate	the	nature	of	the	failure.	

No	other	processor	state	is	altered,	which	may	be	helpful	in	diagnosing	the	problem.	

Reset	Processing	

The	following	events	are	not	considered	to	be	exceptions	and	are	not	handled	as	
traps:	

•	Power-on-reset,	triggered	when	the	system	is	turned	on	
•	Pressing	a	physical	restart/reset	button	
•	A	watchdog	timer	times	out	
•	Power	levels	drop	below	specs,	triggering	a	“brown	out”	event	
•	A	low-power	sleep	state	is	ended	and	the	processor	“wakes	up”	

In	the	above	events,	the	following	happens:	

•	The	privilege	mode	is	set	to	Machine	Mode	
•	The	MIE	(Interrupt	enable)	bit	in	the	status	word	is	set	to	0.	
•	The	MPRV	bit	is	set	to	0,	which	turns	off	any	address	translation.	
•	The	mcause	register	is	set	to	indicate	which	event	has	occurred.	
•	The	PC	is	set	to	some	2ixed,	predetermined,	implementation	dependent	value.	

The	remaining	processor	state	is	unde2ined.	

Power-On-Reset:	When	power	is	2irst	applied	to	a	processor,	the	electronics	will	
typically	cause	a	“power-on-reset	interrupt”	to	occur.	Typically,	this	initial	
processing	sequence	will	force	a	jump	to	a	known,	predetermined	address	in	some	
read-only	portion	of	memory	by	loading	the	Program	Counter	(PC)	with	some	
known	value.	The	effect	is	to	force	a	jump	to	the	initial	startup	bootstrap	program.	

Watchdog	Timer:	A	“watchdog	timer”	consists	of	an	independent	electronic	circuit	
that	is	used	to	restart	a	computer	that	has	experienced	a	catastrophic	software	
failure,	e.g.,	gone	brain-dead	in	an	in2inite	loop.	
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This	technique	can	allow	a	computer	to	recover	from	otherwise	fatal	malfunctions	
such	as	program	bugs	and	transient	hardware	errors.	The	watchdog	timer	technique	
has	saved	space	probes	that	have	had	failures	in	2light:	the	probe	may	go	silent	for	
several	days	but	then	wakes	up,	performs	a	full	reset,	and	continues	to	complete	the	
mission.	

A	watch	dog	timer	will	cause	a	non-maskable	interrupt	after	a	certain	amount	of	
time	has	elapsed	without	the	timer	being	reset.	Resetting	the	timer	is	called	“feeding	
the	dog”.	When	software	is	working	normally,	the	assumption	is	that	the	timer	will	
be	reset	at	regular	intervals,	thus	feeding	the	dog.	But	if	something	goes	wrong	and	
the	timer	is	not	reset,	the	interrupt	will	occur.	

Exception	Delegation	

We	next	look	at	the	mechanism	that	allows	exceptions	to	be	masked	and/or	
delegated	to	lower	privilege	levels.	

By	default,	every	exception	(whether	synchronous	or	asynchronous)	is	handled	by	a	
trap	handler	running	in	Machine	Mode.	If	the	kernel	programmer	wants	the	trap	to	
be	handled	at	a	lower	privilege	level,	then	one	possibility	is	for	the	programmer	to	
write	code	to	switch	the	mode	and	then	pass	control	back	to	the	lower	privilege	
level.	

However,	this	technique	of	software	delegation	is	not	very	ef2icient	and	it	is	faster	to	
have	some	exceptions	automatically	trap	to	a	handler	running	at	the	lower	privilege	
level.	RISC-V	supports	delegation	of	traps	by	the	hardware,	as	one	possible	design	
option.	If	this	option	is	present	in	the	implementation,	then	the	exception	will	
bypass	the	Machine	Mode	trap	handler	and	go	directly	to	a	trap	handler	running	at	a	
lower	level.	

This	is	controlled	by	the	following	4	delegation	CSRs:	
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medeleg	–	Machine	Exception	Delegation	Register	
sedeleg	–	Supervisor	Exception	Delegation	Register	
	 and	
mideleg	–	Machine	Interrupt	Delegation	Register	
sideleg	–	Supervisor	Interrupt	Delegation	Register	

We	are	using	this	terminology:	

	 “exception”	=	synchronous	exception	(e.g.,	illegal	instruction)	
	 “interrupt”	=	asynchronous	exception	(e.g.,	timer	interrupt)	

If	the	bit	corresponding	to	the	exception	type	in	the	Machine	Mode	delegation	
registers	(medeleg	or	mideleg)	is	set,	then	the	Machine	Mode	trap	handler	will	not	
be	invoked.	Instead,	the	trap	will	be	immediately	delegated	to	the	next	lowest	
privilege	level,	i.e.,	to	Supervisor	Mode.	

Next,	the	appropriate	bit	in	the	Supervisor	Mode	delegation	registers	(sedeleg	and	
sideleg)	will	be	checked.	If	set,	the	trap	will	be	further	delegated	to	User	Mode.		

The	trap	cannot	be	further	delegated,	so	there	are	no	User	Mode	delegation	CSRs.	

Traps	are	always	handled	in	Machine	Mode,	unless	delegated	to	a	lower	level.	The	
“deleg”	CSRs	tell	which	exceptions	and	interrupts	are	delegated	to	which	privilege	
level.	

For	example,	the	handling	of	some	particular	trap	might	be	delegated	from	Machine	
Mode	to	Supervisor	Mode	code.	The	trap	might	be	further	delegated	to	a	trap	
handler	running	in	User	Mode.	

These	registers	can	be	written	to.	They	control	whether	individual	exceptions	and	
interrupts	will	be	delegated,	i.e.,	processed	by	a	trap	handler	running	at	a	lower	
privilege	level,	or	will	be	processed	at	the	higher	level.	

The	medeleg	register	tells	whether	an	synchronous	exception	will	be	handled	by	
the	Machine	Mode	trap	handler	(whose	address	is	in	the	mtvec	CSR),	or	will	be	
delegated	to	the	next	lower	level.	If	Supervisor	Mode	is	implemented	(in	some	chips	
it	may	not	be),	then	the	sedeleg	register	tells	whether	the	exception	will	be	handled	
in	Supervisor	Mode	or	further	delegated	to	User	Mode.	
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There	is	a	bit	in	each	“exception”	delegation	register	(i.e.,	medeleg	and	sedeleg)	for	
each	type	of	synchronous	exception,	as	follows:	

	 Bit	 Description	
0	 instruction	address	misaligned	
1	 instruction	access	fault	
2	 illegal	instruction	
3	 breakpoint	
4	 load	address	misaligned	
5	 load	access	fault	
6	 store/atomic	memory	operation	misaligned	
7	 store/	atomic	memory	operation	access	fault	
8	 environment	call	from	U	Mode	
9	 environment	call	from	S	Mode	
10	 (previously	used	for	Hypervisor	Mode)	
11	 environment	call	from	M	Mode	

If	the	bit	is	set	to	1,	then	the	exception	is	delegated,	i.e.,	handled	by	the	next	lower	
level.	If	the	bit	is	0,	then	the	exception	is	handled	at	this	level.	

The	mideleg	register	tells	whether	an	asynchronous	interrupt	will	be	handled	by	
the	Machine	Mode	trap	handler	(whose	address	is	in	the	mtvec	CSR),	or	will	be	
delegated	to	the	next	lower	level.	If	Supervisor	Mode	is	implemented	(in	some	chips	
it	may	not	be),	then	the	sideleg	register	tells	whether	the	interrupt	will	be	handled	
in	Supervisor	Mode	or	further	delegated	to	User	Mode.	

There	is	a	bit	in	each	“interrupt”	delegation	register	(i.e.,	mideleg	and	sideleg)	for	
each	type	of	asynchronous	interrupt,	as	follows:	
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	 Bit	 Description	
0	 USIP	–	user	software	interrupt	
1	 SSIP	–	supervisor	software	interrupt	
2	 (previously	used	for	Hypervisor	Mode)	
3	 MSIP	–	machine	software	interrupt	
4	 UTIP	–	user	timer	interrupt	
5	 STIP	–	supervisor	timer	interrupt	
6	 (previously	used	for	Hypervisor	Mode)	
7	 MTIP	–	machine	timer	interrupt	
8	 UEIP	–	user	external	interrupt	
9	 SEIP	–	supervisor	external	interrupt	
10	 (previously	used	for	Hypervisor	Mode)	
11	 MEIP	–	machine	external	interrupt		

If	the	bit	is	set	to	1,	then	the	interrupt	is	delegated,	i.e.,	handled	by	the	next	lower	
level.	If	the	bit	is	0,	then	the	exception	is	handled	at	this	level.	

mie	–	Machine	Mode	Interrupt	Enable	
mip	–	Machine	Mode	Interrupt	Pending	

There	are	three	sources	of	interrupts	(i.e.,	asynchronous	exceptions):	

	 •	Software	interrupt	
	 •	Timer	interrupt	
	 •	External	Interrupt	

Software	interrupts	are	used	for	one	HART	to	signal	another	HART.	

Timer	interrupts	occur	when	the	real-time	clock	(mtime)	reaches	a	preset	limit	
value	(mtimecmp).	

External	interrupts	are	for	all	other	devices	to	interrupt	a	processor.	

The	mie	register	contains	a	bit	for	each	type	of	asynchronous	interrupt,	as	follows:	
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	 Bit	 Description	
0	 USIE	–	user	software	interrupt	enable	
1	 SSIE	–	supervisor…	
3	 MSIE	–	machine…	

4	 UTIE	–	user	timer	interrupt	enable	
5	 STIE	–	supervisor…	
7	 MTIE	–	machine…		

8	 UEIE	–	user	external	interrupt	enable	
9	 SEIE	–	supervisor…	
11	 MEIE	–	machine…	

Likewise	mip	register	contains	a	bit	for	each	type	of	asynchronous	interrupt,	with	
analogous	names:	

	 Bit	 Description	
0	 USIP	–	user	software	interrupt	pending	
1	 SSIP	–	supervisor…	
3	 MSIP	–	machine…	

4	 UTIP	–	user	timer	interrupt	pending	
5	 STIP	–	supervisor…	
7	 MTIP	–	machine…		

8	 UEIP	–	user	external	interrupt	pending	
9	 SEIP	–	supervisor…	
11	 MEIP	–	machine…	

(Bits	2,	6,	and	10	were	used	for	Hypervisor	Mode	and	are	now	“reserved”.	All	
remaining	bits	are	unused.)	

Setting	a	bit	to	1	in	the	mip	(interrupt	pending)	register	indicates	that	the	
corresponding	interrupt	has	occurred	and	should	cause	a	trap	at	some	point	in	the	
future.	If	the	same	bit	is	also	set	to	1	in	the	mie	(interrupt	enable)	register,	then	the	
trap	processing	will	occur	immediately.	

In	addition	to	the	pending	bits	discussed	here,	interrupts	may	also	be	globally	
enabled	or	disabled.	See	the	MIE	(interrupt	enable)	bit	in	the	mstatus	register.	
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Note	that	there	is	a	bit	in	the	status	register	called	MIE		and	a	CSR	with	the	same	
name:	mie.	Likewise,	there	is	an	SIE	bit	in	the	status	register,	as	well	as	a	CSR	called	
sie.	

More	precisely,	an	interrupt	will	be	taken	(i.e.,	the	trap	handler	will	be	invoked)	if	
and	only	if	the	corresponding	bit	in	both	mie	and	mip	registers	is	set	to	1,	and	if	
interrupts	are	globally	enabled.	

The	timer	interrupt	pending	bit	(MTIP)	is	set	by	hardware	when	the	timer	expires,	
i.e.,	when	the	current	time	(mtime)	reaches	or	exceeds	the	timer	limit	register	
(mtimecmp).	

The	timer	interrupt	pending	bit	(MTIP)	is	reset	by	writing	to	the	timer	comparison	
register.	After	writing	to	the	timer	comparison	register,	the	timer	interrupt	will	no	
longer	be	pending.	
		
Software	cannot	modify	the	following	interrupt	pending	bits;	they	are	read-only	and	
set/cleared	by	other	circuitry:	

3	 MSIP	–	machine	software	interrupt	pending	
7	 MTIP	–	machine	timer	interrupt	pending	
11	 MEIP	–	machine	external	interrupt	pending	

However,	software	running	in	Machine	Mode	can	modify	these	bits:	

0	 USIP	–	user	software	interrupt	pending	
1	 SSIP	–	supervisor	software	interrupt	pending	
4	 UTIP	–	user	timer	interrupt	pending	
5	 STIP	–	supervisor	timer	interrupt	pending	
8	 UEIP	–	user	external	interrupt	pending	
9	 SEIP	–	supervisor	external	interrupt	pending	

If	one	of	these	bits	is	set	and	that	interrupt	type	has	been	delegated	to	a	lower	level	
(see	the	medeleg	and	mideleg	registers),	then	the	interrupt	will	be	signaled	at	the	
lower	privilege	level.	
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sip	–	Supervisor	Mode	Interrupt	Pending	
uip	–	User	Mode	Interrupt	Pending	

sie	–	Supervisor	Mode	Interrupt	Enable	
uie	–	User	Mode	Interrupt	Enable	

Each	of	the	lower	privilege	levels	has	its	own	interrupt	pending	register	and	its	own	
interrupt	enable	register.	

Normally	interrupts	are	processed	at	the	highest	privilege	level.	For	example,	if	a	
timer	interrupt	occurs	while	running	in	User	Mode,	the	core	will	enter	Machine	
Mode	and	invoke	the	Machine	Mode	trap	handler.	When	complete,	the	Machine	
Mode	trap	handler	will	return	to	executing	in	User	Mode.	

However,	interrupts	can	be	delegated	from	a	higher	level	to	a	lower	level.	For	
example,	the	timer	interrupt	might	be	delegated	from	Machine	Mode	to	Supervisor	
Mode.	So	if	the	interrupt	occurs	in	User	Mode,	the	Supervisor	Mode	trap	handler	will	
be	invoked	and	Machine	Mode	will	never	be	entered.		

If	a	particular	interrupt	type	(such	as	the	timer	interrupt)	has	been	delegated	(for	
example	from	Machine	Mode	to	Supervisor	Mode),	then	the	corresponding	interrupt	
pending	bit	is	shadowed	from	the	Machine	Mode	interrupt	pending	(mip)	register.	

Exactly	what	this	means	is	unclear.	Presumably	the	MTIP	bit	in	mip	shadowed	as	the	
STIP	bit	(and	not	the	MTIP	bit)	in	sip???	

Whether	the	interrupt	causes	a	trap	in	Supervisor	Mode	or	not	is	determined	by	
whether	it	is	enabled	in	the	Supervisor	Mode	sie	register,	as	well	as	whether	global	
interrupts	are	enabled	in	Supervisor	Mode.	
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The	Status	Register	

mstatus	–	Machine	Status	Register	
sstatus	–	Supervisor	Status	Register	
ustatus	–	User	Status	Register	

Conceptually,	the	processor	status	register	is	a	single	register,	but	the	register	is	
mirrored	at	the	lower	privilege	levels,	since	some	2ields	within	the	status	register	
must	be	protected	differently	at	different	privilege	levels.	

This	CSR	contains	a	number	of	2ields	that	can	be	read	and	updated.	By	modifying	
these	2ields,	the	software	can	do	things	like	enable/disable	interrupts	and	change	
the	virtual	memory	model.	For	example,	by	writing	to	this	CSR,	the	software	can	turn	
on	virtual	memory	and	page-table	translation.	

Next	we	show	the	layout	of	the	status	register,	followed	by	a	listing	of	the	individual	
bit	2ields.	

As	mentioned,	the	status	register	is	mirrored	in	the	different	modes.	Some	2ields	are	
present	only	at	higher	privilege	levels.	(Such	bits	are	2illed	with	zeros	at	lower	
privilege	levels.)	

Two	of	the	2ields	are	only	used	for	64	and/or	128	bit	machines.	These	two	2ields	
reside	in	bits	positions	[35:32],	so	they	are	not	even	present	in	32-bit	machines.	
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Name	 #	of	bits	 Description	

UIE	 1	 User	Mode	Interrupt	Enable	
SIE	 1	 Supervisor	Mode	Interrupt	Enable	
MIE	 1	 Machine	Mode	Interrupt	Enable	

UPIE	 1		 User	Mode	Previous	Interrupt	Enable	
SPIE	 1		 Supervisor	Mode	Previous	Interrupt	Enable	
MPIE	 1	 Machine	Mode	Previous	Interrupt	Enable	

SPP	 1	 Supervisor	Mode	–	Previous	Privilege	Mode	
MPP	 2	 Machine	Mode	–	Previous	Privilege	Mode	

FS	 2	 Floating	Point	Status	(dirty/clean/initial/off)	
XS	 2	 User	Mode	Extension	(dirty/clean/initial/off)	

MPRV	 1	 Modify	Privilege  
SUM	 1	 Permit	Supervisor	User	Memory	Access	
MXR	 1	 Make	Executable	Readable	

TVM	 1	 Trap	Virtual	Memory	
TW	 1	 Time-out	Wait	
TSR	 1	 Trap	SRET	instruction		

SD	 1	 	(FS	==	11)	or	(XS	==	11)	

For	RV64	and	RV128	only:	

UXL	 2		 Emulation:	Register	size	when	in	User	Mode	
SXL	 2	 Emulation:	Register	size	when	in	Supervisor	Mode	

MIE,	SIE,	UIE	—	Interrupts	Enabled	

Recall	the	term	“interrupt”	means	asynchronous	exceptions,	i.e.,	Timer	Interrupts,	
Software	Interrupts,	and	External	Interrupts.	

If	the	processor	is	in	Machine	Mode,	then	interrupts	are	enabled	whenever	MIE	=	1;	
interrupt	processing	for	Supervisor	and	User	mode	is	disabled.	
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If	the	processor	is	in	Supervisor	Mode,	then	supervisor	interrupts	are	enabled	
whenever	SIE	=	1;	interrupt	processing	for	User	mode	is	disabled	and	interrupt	
processing	for	Machine	Mode	is	always	enabled	when	running	in	Supervisor	Mode.	

If	the	processor	is	in	User	Mode,	then	user	interrupts	are	enabled	whenever	UIE	=	1;	
interrupt	processing	for	Machine	and	Supervisor	Mode	is	always	enabled	when	
running	in	User	Mode.	

MPIE,	SPIE,	UPIE,	MPP,	SPP	—	Interrupt	Processing	&	Previous	State	

	 MPIE	–	Previous	value	of	MIE	(Machine	Mode	Interrupt	Enable)	
	 SPIE	–	Previous	value	of	SIE	(Supervisor	Mode	Interrupt	Enable)	
	 UPIE	–	Previous	value	of	UIE	(User	Mode	Interrupt	Enable)	

MPP	–	Machine	Mode	trap,	previous	Privilege	Mode	(either	M,	S,	or	U)	
SPP	–	Supervisor	Mode	trap,	previous	Privilege	Mode	(either	S	or	U)	

When	an	interrupt	occurs	and	a	trap	handler	is	to	be	invoked,	the	privilege	mode	
will	change	and	the	“interrupt	enable”	bit	must	be	set	to	0	to	prevent	additional	trap	
processing	(at	this	level)	while	the	trap	handler	is	executing.	

The	processor	may	be	executing	at	one	privilege	mode	(say	User)	and	the	trap	may	
be	handled	at	a	higher	level	(say	Supervisor).	If	a	Machine	Mode	trap	then	occurs	
before	the	Supervisor	trap	handler	is	complete,	then	the	Supervisor	Trap	handler	
will	be	interrupted	and	the	Machine	Mode	trap	handler	will	execute.	Upon	return,	
the	Supervisor	Mode	trap	handler	will	resume	execution;	Finally,	the	interrupted	
User	Mode	code	will	be	resumed.	

It	is	necessary	to	save	the	machine	state	in	a	sort	of	“stack”,	so	that	upon	completion	
of	a	trap	handler,	the	processor	can	return	to	the	previous	state.	Since	a	trap	handler	
running	at	one	level	(say	Supervisor)	cannot	be	interrupted	at	that	same	level,	the	
stack	need	not	be	too	deep.	

When	an	trap	handler	runs,	all	we	need	to	save	is	the	previous	mode	and	the	
interrupt	enable	bit.	Note	the	previous	interrupt	enable	bit	may	be	0	or	1.	
Regardless	of	its	previous	value,	the	processor	will	change	the	interrupt	enable	bit	to	
0	when	the	trap	handler	is	invoked	and	restore	it	when	the	trap	handler	returns.	

(Of	course,	a	non-maskable	interrupt,	such	as	a	hardware	failure,	or	a	reset-type	
event,	such	as	power-on-reset,	might	occur	at	any	time.	Such	an	event	can	never	be	
masked	and	will	always	be	handled	regardless	of	whether	or	not	interrupts	are	
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enabled.	But	there	is	no	problem	since	non-maskable	interrupts	are	processed	in	
Machine	Mode	and	the	previously	executing	code	is	simply	abandoned.)	

Consider	what	the	processor	will	do	upon	the	occurrence	of	an	interrupt	which	will	
be	handled	by	the	Machine	Mode	trap	handler.	First,	the	MPIE	bit	will	be	set	to	hold	
the	previous	value	of	the	interrupt	enable	bit	for	Machine	Mode	prior	to	the	
interrupt	(i.e.,	to	the	previous	value	of	MIE).	Interrupts	will	then	be	disabled	by	
setting	MIE	to	0.	Also,	MPP	will	be	set	to	tell	what	privilege	level	the	processor	was	
running	at	when	the	interrupt	occurred.	The	privilege	mode	in	effect	when	the	
interrupt	occurred	may	have	been	either	Machine,	Supervisor,	or	User	Mode.	Thus	
two	bits	are	required	to	save	the	previous	privilege	level.	

It	is	possible	that	an	exception	will	occur	during	the	execution	of	a	trap	handler.	This	
means	that,	when	exceptions	are	processed,	the	previously	value	of	the	“interrupts	
enabled”	bit	can	be	either	0	or	1.	For	example,	it	may	be	that	some	instruction	is	
unimplemented	and	must	be	emulated.	So	when	that	instruction	is	encountered	—	
either	during	normal	code	with	interrupts	enabled,	or	handler	code	with	interrupt	
disabled	—	a	new	trap	handler	will	be	invoked.	It	will	run	with	interrupts	disabled	
and,	upon	completion,	the	“interrupts	enabled”	bit	will	be	restored	to	its	previous	
value.	

The	MIE	(“Machine	Interrupt	Enable”)	bit	determines	whether	a	maskable	interrupt	
will	cause	trap	processing	or	will	remain	pending.	If	interrupts	are	disabled,	then	
trap	processing	will	be	signaled	but	will	remain	pending	until	interrupts	are	once	
again	enabled.	[	???	]	

Likewise,	when	an	interrupt	occurs	that	is	to	be	handled	by	the	Supervisor	Mode	
trap	handler,	SPIE	(“Supervisor	Previous	Interrupt	Enable”)	will	be	set	to	the	
previous	value	of	the	SIE	interrupt	enable	bit	prior	to	the	interrupt.	Then	SIE	
(“Supervisor	Interrupt	Enable”)	will	be	set	to	0	to	disable	interrupts	at	this	level.	
Then	SPP	(“Supervisor	Previous	Privilege”)	will	be	set	to	whichever	privilege	level	
the	processor	was	running	at	when	the	interrupt	occurred.	Since	the	only	choices	
are	Supervisor	or	User,	the	SPP	2ield	is	only	one	bit.	

Similarly,	when	an	interrupt	occurs	and	is	handled	by	the	User	Mode	trap	handler,	
UPIE		(“User	Previous	Interrupt	Enable”will	be	set	to	the	previous	value	of	the	UIE	
(“User	Interrupt	Enable”)	interrupt	enable	bit	prior	to	the	interrupt.	The	interrupted	
code	must	have	been	running	in	User	Mode,	since	we	never	interrupt	a	higher	level	
mode	to	run	a	trap	handler	at	a	lower	level.	Therefore,	there	is	no	need	for	a	
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“UPP”	(“User	Previous	Privilege”)	2ield	to	hold	the	previous	mode;	it	must	have	been	
“User	Mode”.	

Consider	a	trap	which	occurs	while	running	in	User	Mode	to	a	trap	handler	in	
Machine	Mode.	MPIE	is	set	to	the	previous	value	of	MIE;	then	MIE	is	set	to	0;	also	
MPP	is	set	to	“User	Mode”.	

After	the	trap	has	been	handled,	an	MRET	instruction	will	be	executed.	MPP	will	be	
consulted	to	determine	that	the	previous	mode	was	User	Mode.	MIE	is	set	to	MPIE,	
restoring	its	initial	value;	the	mode	is	restored	to	User	Mode;	MPIE	and	MPP	are	set	
to	arbitrary	values,	since	their	information	is	effectively	“popped”	off	the	stack.	

Note	that	the	handler	may	choose	not	to	return	to	the	interrupted	code;	this	is	
common	in	operating	systems,	particularly	when	servicing	a	timer	interrupt;	the	
handler	will	cause	a	thread	switch	and	will	not	return	to	the	interrupted	code	until	
much	later.	When	this	happens,	the	simple	hardware	stack	system	is	inadequate.	The	
handler	must	save	the	information	in	the	status	register	and	restore	it	later.	

TSR	—	Trap	SRET	Instruction	

If	this	bit	is	1,	then	any	attempt	to	execute	an	SRET	instruction	will	cause	an	“illegal	
instruction”	exception.	If	0,	then	SRET	may	be	executed	without	invoking	a	trap	
handler.	

This	bit	is	available	on	in	the	Machine	Mode	status	word	mstatus,	not	in	Supervisor	
or	User	Modes.	

The	ability	to	intercept	and	trap	an	SRET	instruction	might	be	useful	to	hypervisor	
code.	

TW	and	TVM	—	Time-out	Wait	and	Trap	Virtual	Memory	

These	bits	are	available	only	in	the	Machine	Mode	status	word	mstatus,	not	in	
Supervisor	or	User	Modes.	

Their	functionality	is	not	documented	in	the	current	spec.	Perhaps	they	have	been	
eliminated.	???	
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SXL	and	UXL	—	Supervisor	and	User	Register	Size	

An	RV32	processor	always	uses	the	32	ISA	(e.g.,	32-bit	registers)	regardless	of	what	
mode	it	is	in.	For	64-bit	and	128-bit	machines,	there	is	a	facility	to	execute	code	
meant	for	a	RISC-V	processor	with	a	smaller	register	size,	i.e.,	in	RV32	or	RV64	mode.	

The	ability	of	larger	machines	to	execute	the	RV32	or	RV64	bit	ISAs	is	not	required,	
but	if	present,	the	SXL	and	UXL	bits	control	it.	If	it	is	not	implemented,	then	these	
two	2ields	are	read-only.	

An	RV64	bit	processor	always	uses	the	64-bit	ISA	when	running	in	Machine	Mode.	
However,	it	can	execute	in	32-bit	mode	when	running	in	either	Supervisor	or	User	
Mode.	This	is	controlled	by	writing	01	to	the	SXL	or	UXL	bits.	

An	RV	128	bit	processor	always	uses	the	128-bit	ISA	when	running	in	Machine	
Mode.	However,	it	can	execute	in	32-bit	or	64-bit	mode	when	running	in	either	
Supervisor	or	User	Mode.	This	is	controlled	by	writing	to	the	SXL	or	UXL	bits.	

The	encoding	used	for	the	SXL	and	UXL	2ields	is:	

	 01	 32-bit	ISA	
	 10	 64-bit	ISA	
	 11	 128-bit	ISA	

FS,	XS,	and	SD	—	Floating	Status	and	Extension	Status	Bits	

These	bits	of	the	status	register	are	concerned	with	improving	context	switching	
times.	First,	we	describe	“FS”	2irst,	which	is	concerned	with	the	2loating	point	
registers.	

When	the	2loating	point	registers	have	been	used,	they	will	need	to	be	saved	when	
the	kernel	switches	from	one	software	thread	to	another.	But	when	the	registers	are	
unused,	we’d	like	to	avoid	the	overhead	of	saving	and	restoring	them,	since	this	is	
time	consuming.	

The	FS	bit	2ield	consists	of	two	bits,	encoded	as	follows:	
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	 Value	 Meaning	
	 00	 Off	
	 01	 Initial	Values	
	 10	 Clean,	i.e.,	updated	but	saved	in	memory	
	 11	 Dirty,	i.e.,	updated	but	not	saved	

These	bits	are	set	by	the	hardware	and	can	also	be	modi2ied	by	software.	They	also	
control	whether	a	2loating	point	instruction	will	cause	an	exception	or	will	be	
executed	normally.	

(These	bits	are	only	present	if	the	2loating	point	extension	is	implemented.	If	there	
are	no	2loating	point	registers,	the	FS	bits	are	hardwired	to	00.)	

The	FS	bits	should	be	set	to	00=“off”	when	the	2loating	point	registers	are	not	in	use.	
Any	attempt	to	read	or	modify	the	registers	will	cause	an	illegal	instruction	
exception.	For	a	thread	that	will	not	be	using	the	2loating	point	registers,	this	is	a	
good	setting,	since	the	OS	can	avoid	saving	and	restoring	the	registers.	

The	complete	state	of	the	2loating	point	system	consists	of	the	contents	of	of	the	32	
2loating	point	registers	and	the	2loating	point	status	register	(fcsr).	Many	programs	
don’t	use	2loating	point,	so	there	is	much	to	be	gained	by	avoiding	the	save/restore	
of	all	this	information	on	each	context	switch.	

When	a	thread	that	uses	2loating	point	is	created	and	begins	life,	the	2loating	point	
registers	should	be	initialized	by	the	OS	to	their	initial	values	(presumably	+0.0)	and	
the	2loating	point	status	register	should	be	initialized	(presumably	to	zero).	

The	“initial”	state	(01)	indicates	that	the	2loating	point	registers	are	usable	but	they	
have	not	yet	been	altered	from	their	initial	values.	Thus,	they	register	values	do	not	
need	to	be	saved	on	the	next	context	switch.	

Whenever	a	2loating	point	register	is	modi2ied,	hardware	will	change	the	state	as	
re2lected	in	FS	to	“11=dirty”.	

The	“clean”	state	(10)	is	used	to	indicate	that	the	registers	are	in	use	and	have	been	
modi2ied	from	their	initial	zero	values,	but	that	they	have	not	been	modi2ied	since	
the	last	context	switch.	In	other	words,	the	registers	contain	non-zero	values	but	the	
values	last	saved	to	memory	are	current	and	accurately	re2lect	the	values	in	the	
registers.	Thus,	at	the	time	of	the	next	context	switch,	the	registers	do	not	need	to	be	
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saved	again.	(This	will	be	common	since	a	program	that	uses	2loating	point	at	some	
point	will	likely	spend	many	time	slices	without	further	modifying	the	regs.)	

In	some	OSes,	it	may	be	the	case	that	processes	always	begin	life	with	the	2loating	
point	system	enabled	by	default,	so	the	“off”	state	is	not	particularly	useful.	

But	in	other	OSes,	processes	will	begin	life	with	the	2loating	point	system	disabled,	
under	the	assumption	that	most	processes	will	not	use	2loating	point.	Thus,	the	OS	
will	set	FS	to	00=off.	If	an	attempt	is	made	to	read	or	write	the	2loating	state,	the	
hardware	will	signal	an	exception.	

Some	OSes	may	respond	by	enabling	the	registers,	setting	them	to	their	zero	values,	
and	retrying	the	instruction.	Other	OSes	may	require	the	2loating	point	system	to	be	
explicitly	enabled	by	some	system	call	and	treat	any	accesses	to	disabled	state	as	an	
error.	

It	is	necessary	for	read	(as	well	as	write)	attempts	to	cause	an	exception	when	the	
state	is	00=off.	The	OS	may	occasionally	leave	the	old	state	from	another	unrelated	
thread	in	the	registers	and	we	must	prevent	information	from	bleeding	over	or	
escaping	from	one	thread	to	the	next.	

When	a	thread	2inishes	its	time	slice,	the	OS	can	look	at	FS	to	determine	how	much	
state	must	be	saved	at	the	context	switch:	

	 Value	of	FS	 Action	
	 00=off	 Saving	not	necessary	
	 01=initial	 Saving	not	necessary	
	 10=clean		 Saving	not	necessary;	previously	saved	values	are	still	good	
	 11=dirty	 Must	save	the	registers	

If	the	state	was	previously	11=dirty,	then	the	OS	should	change	it	to	“clean”	before	
storing	the	thread’s	information,	since	it	will	now	be	true	that	the	in-memory	saved	
state	is	up-to-date.			

When	the	OS	is	ready	to	initiate	and	schedule	a	new	thread,	it	can	look	at	the	state	of	
the	FS	from	the	previous	thread	and	the	state	of	the	new	thread	to	determine	what	
to	do.	(Recall,	that	when	the	OS	previously	saved	the	regs	when	the	thread	was	last	
de-scheduled,	it	changed	the	state	from	“dirty”	to	“clean”,	so	the	state	of	the	new	
thread	will	never	be	“dirty”	at	this	point.)	
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	 Next	Thread	 Previous	Thread	 Action	
	 00=off		 …any…	 Do	nothing	
	 01=initial	 01=initial	 Do	nothing	(regs	already	zeroed)	
	 01=initial	 …other…	 Zero	the	regs	
	 10=clean		 …any…	 Restore	regs	from	memory	
	 11=dirty	 												<	not	possible	>	

What	we	have	just	seen	is	that	some	section	of	the	processor	(the	2loating	point	
subsystem)	required	attention	at	every	context	switch,	either	to	save	state	or	to	
restore	state.	These	actions	are	expensive	and	we	wish	to	avoid	them	when	possible.	
The	FS	bits	help	determine	when	we	can	avoid	saving/restoring.	

Some	RISC-V	implementations	may	add	non-standard	extensions	which	are	not	
described	in	the	spec	and	the	XS	bits	are	used	analogously	for	this	additional	state	
information.	

The	XS	bits	work	the	same	way	as	the	FS	bits	but	cover	all	other	state	that	should	be	
saved	/	restored	upon	context	switch.	Exactly	what	processor	state	is	covered	by	
“XS”	is	left	as	“implementation	de2ined”.	

It	is	possible	that	there	are	more	than	one	non-standard	extensions.	The	XS	bits	are	
meant	to	apply	to	all	of	them.	So	the	meanings	are	changed	slightly	to	re2lect	this.	

	 Value	 Name	 Meaning	
	 00	 Off	 All	sub-systems	are	off	
	 01	 Initial	 One	or	more	are	on;	but	nothing	clean,	nothing	dirty	
	 10	 Clean	 Nothing	is	dirty,	some	parts	are	clean	
	 11	 Dirty	 At	least	some	state	has	been	modi2ied	

It	may	be	that	there	are	additional	bits	to	determine	exactly	what	parts	of	the	
processor	state	are	dirty/clean/initial,	but	the	spec	leaves	this	to	implementation	
speci2ic	decisions.	

Finally,	upon	context	switch,	we’d	like	to	be	able	to	quickly	determine	whether	we	
have	to	do	anything	about	the	2loating	point	regs	and	any	non-standard	extensions.	
Might	we	need	to	save	anything,	or	can	we	just	ignore	this	issue?	The	question	we	
want	to	answer	is	this:	Is	FS=11=dirty?	Or	is	XS=11=dirty?	

RISC-V	Architecture	Summary	/	Porter	 Page	� 	of	�277 323



Chapter	8:	Privilege	Modes	

The	SD	bit	in	the	status	register	allows	the	OS	software	to	quickly	answer	these	
questions.	The	bit	is	set	by	the	hardware	and	de2ined	as:	

	 SD			=			((FS	==	11)	OR	(XS	==	11))	

This	bit	is	placed	in	the	sign	bit	of	the	status	word	so	a	quick	check	can	determine	
whether	anything	is	dirty.	If	so,	the	OS	software	can	look	deeper	to	determine	what	
state	must	be	saved.	

These	2ields	(FS,	XS,	SD)	are	available	in	the	Machine	Mode	mstatus	and	Supervisor	
Mode	sstatus	registers.	[	The	diagram	of	the	status	registers	incorrectly	shows	them	
in	ustatus.	]	

MPRV,	SUM,	and	MXR	—	Virtual	Memory	Enabling	

The	RISC-V	chip	supports	virtual	memory,	via	page	tables.	The	page	table	system	is	
described	in	a	separate	chapter.	

Typically,	user-level	code	will	run	with	virtual	memory	mapping	turned	on	and	all	
memory	accesses	will	be	mapped	from	virtual	addresses	to	physical	addresses.	

However,	user-level	code	will	occasionally	make	system	calls,	switching	from	
execution	in	at	a	lower	privilege	level	(e.g.,	User	Mode)	to	a	higher	privilege	(e.g.,	
Machine	Mode).	Often	data	is	passed	between	user-level	code	and	the	OS	in	
memory;	for	example,	the	user-level	code	might	pass	an	address	pointer	to	the	OS.	
This	pointer	is	a	virtual	address	and	the	OS	code	which	services	the	system	call	will	
then	go	the	memory	to	fetch	the	data.	

Since	the	address	is	a	virtual	address	while	the	OS	is	running	in	(say)	Machine	Mode	
with	virtual	memory	mapping	turned	off,	there	is	a	problem.	The	OS	could	perform	
the	address	translation	(from	Virtual	to	Physical)	in	software,	but	this	is	time	
consuming	and	error-prone.	

To	make	this	task	simpler,	the	MPRV	bit	can	be	used.	Normally	the	MPRV	is	cleared	
to	0	and	all	LOAD	and	STORE	instructions	done	by	code	running	in	Machine	Mode	
will	have	no	address	translation	performed.	However,	the	OS	code	can	set	this	bit	to	
1;	any	subsequent	LOAD	or	STORE	instructions	will	be	performed	with	address	
translation	turned	on.	More	precisely,	addresses	will	be	translated	as	if	the	current	
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mode	were	that	speci2ied	by	MPP	(the	Machine	Previous	Privilege	Mode	bits	in	the	
mstatus	register),	which	was	the	mode	from	which	the	most	recent	trap	handler	
was	entered.	

(So	a	system	call	from	User	Mode,	where	paging	was	on,	would	pass	virtual	
addresses.	The	handler,	running	in	Machine	Mode,	would	need	address	translation	
turned	on	if	it	wants	to	access	the	memory	using	these	addresses.	However	a	system	
call	from	Machine	Mode	itself	(or	Supervisor	Mode	with	translation	turned	off)	
would	pass	physical	addresses,	since	there	would	be	no	paging.)	

The	SUM	bit	is	used	by	code	running	in	Supervisor	Mode	instead	of	Machine	Mode.	It	
has	no	effect	on	code	running	in	Machine	Mode	or	in	User	Mode.	

Address	translation	can	be	turned	on	by	writing	to	the	satp	register.	If	turned	on,	
then	all	User	Mode	and	Supervisor	Mode	code	will	run	with	address	translation.	

Each	virtual	address	space	is	divided	into	both	user	and	non-user	pages.	In	other	
words,	some	pages	will	be	marked	as	“User”	pages	and	the	remainder	will	be	
inaccessible	to	User	Mode	code.	(Typically	the	portion	of	the	address	space	
accessible	to	User	Mode	code	is	called	the	“bottom	half”	and	the	portion	accessible	
only	to	Supervisor	Mode	code	is	called	the	“top	half”,	although	these	two	areas	need	
not	be	arranged	as	contiguous	blocks	or	located	in	any	relative	order.)	

Normally	Supervisor	code	will	only	access	non-user	(top	half)	pages	in	the	address	
space.	However,	sometimes	the	supervisor	code	must	access	the	user	(bottom	half)	
portion	of	the	address	space.	

The	SUM	bit	can	be	used	to	allow	supervisor	code	to	access	the	user	pages.	If	
SUM=0,	then	Supervisor	Mode	code	cannot	access	pages	marked	as	“user”	pages;	it	
can	only	access	the	non-user	portion	of	the	address	space.	If	SUM=1,	then	
Supervisor	Mode	code	is	free	to	address	both	user	and	non-user	pages.	This	bit	
affects	all	loads,	stores,	and	instruction	fetches.	Normally,	supervisors	code	does	not	
need	to	access	user	pages,	so	supervisor	will	run	with	this	bit	clear	to	prevent	
inadvertent	accesses	to	user	space.	When	the	supervisor	code	needs	to	access	user	
space,	e.g.,	to	retrieve	syscall	arguments,	this	bit	can	be	temporarily	set	to	1.	

Sometimes	a	trap	handler	will	need	to	look	at	the	instruction	that	was	executing	at	
the	moment	of	an	exception.	For	example,	if	the	instruction	is	unimplemented	in	the	
hardware	and	must	be	emulated,	the	trap	handler	will	need	to	read	the	instruction	
to	determine	how	to	emulate	it.	
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Memory	pages	can	be	marked	“readable”	and/or	“executable.”	A	page	containing	
instructions	will	normally	be	marked	“executable”	but	will	not	be	marked	“readable”.	
Therefore,	any	attempt	to	fetch	a	word	from	this	page	will	cause	an	exception.	

In	order	to	allow	the	trap	handler	to	fetch	the	instruction	(as	data),	this	exception	
must	be	suppressed.	This	is	the	function	of	the	MXR	bit	in	the	status	register.	When	
set	to	1,	data	reads	are	allowed	from	pages	marked	“executable”;	when	set	to	0,	such	
reads	will	cause	an	exception.	

Additional	CSRs	

mepc	–	Program	Counter	for	Machine	Mode	Trap	Handler	
mscratch	–	Scratch	Register	for	Machine	Mode	Trap	Handler	
mcause	–	Cause	Code	for	Machine	Mode	Trap	Handler	

When	the	Machine	Mode	trap	handler	is	invoked,	the	previous	value	of	the	program	
counter	is	stored	into	mepc;	this	value	will	be	used	at	the	end	of	the	trap	handler,	
when	an	MRET	instruction	is	executed.	The	mepc	register	is	read/write	and	can	be	
written	by	software	(e.g.,	by	an	OS	during	a	thread	switch)	to	cause	the	MRET	to	
jump	into	an	arbitrary	thread.	

When	a	Machine	Mode	trap	handler	is	invoked,	the	code	must	be	careful	not	to	
overwrite	and	lose	the	previous	values	of	any	registers,	since	they	were	being	used	
by	the	interrupted	code.	Instead	the	registers	must	be	immediately	saved.	However,	
it	is	virtually	impossible	to	do	anything	without	the	use	of	at	least	one	general	
purpose	register.	

This	is	the	purpose	of	the	mscratch	register,	which	is	a	read/write	register.	The	trap	
handler	can	swap	mscratch	with	any	general	purpose	register	and	then	use	the	
normal	ISA	instructions	to	save	the	remaining	registers.	

Recall	that	the	CSRRW	instruction	will	exchange	the	value	in	an	arbitrary	CSR	with	a	
general	purpose	register.	This	instruction	accomplishes	the	task	of	swapping	
mscratch	with	a	general	purpose	register,	thereby	saving	the	general	purpose	
register.	This	gives	the	software	a	register	loaded	with	a	base	value,	which	can	
subsequently	be	used	to	save	all	remaining	processor	state.	
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The	mscratch	register	cannot	be	changed	by	the	execution	of	the	code	at	lower	
privilege	levels.	Therefore	it	can	be	relied	on	to	contain	a	known	value,	uncorrupted	
by	user-level	code.	Typically	it	might	contain	a	frame	or	stack	pointer	or	a	pointer	to	
a	“register	save	area.”	In	any	case,	upon	entry	to	the	trap	handler,	mscratch	can	be	
swapped	into	a	general	purpose	register	and	then	used	to	save	whichever	registers	
the	trap	handler	will	be	needing.	

Commentary:	Some	earlier	ISA	designs	used	a	general	purpose	register	for	this	
function.	The	idea	was	that	one	register	would	(by	convention)	be	reserved	for	the	
OS	kernel.	Whenever	an	interrupt	occurred,	the	OS	kernel	would	be	free	to	use	this	
register	in	saving	the	state	of	the	interrupted	process.	Therefore,	this	register	was	
useless	to	user-level	code.	This	register	could	not	be	used	to	hold	a	value	since	any	
time	an	interrupt	occurred,	it	would	be	modi2ied	by	the	OS	trap	handler.	

This	design	approach	reduced	the	number	of	available	general	purpose	registers	
available	to	user-level	code.	

Furthermore,	the	OS	could	not	depend	on	the	register	remaining	unchanged	during	
user-level	code	execution;	this	necessitated	loading	the	register	with	a	known	
value	before	it	could	be	used.	

Also,	if	not	consistently	zeroed	before	returning	from	OS	code	to	user-level	code,	
data	could	potentially	leak	from	the	OS	to	user-level	code,	presenting	security	
concerns.	

The	mcause	register	contains	a	numeric	code	to	indicate	what	caused	the	trap.	It	is	
written	by	the	hardware	when	an	exception	causes	the	Machine	Mode	trap	handler	
to	be	invoked.	Here	are	the	possible	exception	cause	values:	
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Numeric	Code	 Description	
0	 	 Instruction	address	misaligned	
1	 	 Instruction	access	fault	
2	 	 Illegal	Instruction	(or	privileged	instr.	violation)	
3	 	 Breakpoint	
4	 	 Load	address	misaligned	
5	 	 Load	access	fault	
6	 	 Store	/	AMO	address	misaligned	
7	 	 Store	/	AMO	access	fault	
8	 	 Environment	call	from	U-Mode	
9	 	 Environment	call	from	S-Mode	
11	 	 Environment	call	from	M-Mode	
12	 	 Instruction	page	fault	
13	 	 Load	page	fault	
15	 	 Store/AMO	page	fault	

MAX+0	 0x80000000	 User	Software	Interrupt	
MAX+1	 0x80000001	 Supervisor	Software	Interrupt	
MAX+3	 0x80000003	 Machine	Software	Interrupt	

MAX+4	 0x80000004	 User	Timer	Interrupt	
MAX+5	 0x80000005	 Supervisor	Timer	Interrupt	
MAX+7	 0x80000007	 Machine	Timer	Interrupt	

MAX+8	 0x80000008	 User	External	Interrupt	
MAX+9	 0x80000009	 Supervisor	External	Interrupt	
MAX+11	 0x8000000B	 Machine	External	Interrupt	

Details:	Each	cause	has	a	numeric	code.	The	code	scheme	uses	the	sign	bit	to	
show	whether	the	cause	is	a	synchronous	exception	(MSB=0)	or	an	interrupt	
(MSB=1).	For	asynchronous	interrupts,	a	small	code	number	(0,	1,	2,	…)	is	stored	
in	the	lower-order	bits,	and	the	sign-bit	is	also	set.	So	in	the	above	table,	MAX	
stands	for	231	for	a	32-bit	machine,	263	for	a	64-bit	machine,	etc.	To	make	this	
clear,	we	give	the	actual	value	in	hex	for	RV32.	

Commentary:	A	“privileged	instruction	violation”	is	an	instruction	that	exists	but	
cannot	be	executed	in	the	current	privilege	mode.	An	illegal	instruction	is	an	
invalid	instruction	encoding	which	does	not	represent	a	de2ined	instruction.	
Concerning	exceptions	raised	by	either	of	these	violations,	RISC-V	makes	no	
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distinction	between	“privileged	instruction”	and	“illegal	instruction.”	Both	cause	
the	“illegal	instruction”	exception.	

sepc	–	Program	Counter	for	Supervisor	Mode	Trap	Handler	
sscratch	–	Scratch	Register	for	Supervisor	Mode	Trap	Handler	
scause	–	Cause	Code	for	Supervisor	Mode	Trap	Handler	

uepc	–	Program	Counter	for	User	Mode	Trap	Handler	
uscratch	–	Scratch	Register	for	User	Mode	Trap	Handler	
ucause	–	Cause	Code	for	User	Mode	Trap	Handler	

These	registers	are	de2ined	analogously,	to	be	used	in	the	trap	handlers	running	in	
Supervisor	or	User	Mode.	

Some	cause	values	cannot	show	up	in	the	cause	registers.	For	example,	a	Supervisor	
Mode	trap	handler	cannot	ever	be	confronted	with	a	Machine	Mode	timer	interrupt.	

Questions:	But	can’t	any	interrupt	be	delegated;	would	it	still	remain	a	Machine	
Mode	timer	interrupt,	or	would	it	be	altered	to	a	Supervisor	Mode	timer	
interrupt	???	

There	is	no	“Load	address	misaligned”	code	for	the	scause	register,	implying	that	
such	a	exception	cannot	be	handled	in	Supervisor	Mode.	Why	not	???	

Also,	the	of2icial	documentation	does	not	include	a	cause	code	for	“Environment	
call	from	S-Mode”	as	a	possible	value	in	scause;	is	this	a	mistake	in	Table	4.2	???	

scounteren	–	Counter	Enable	Register	for	User	Mode	
mcounteren	–	Counter	Enable	Register	for	Supervisor	or	User	Mode	

Code	running	in	a	lower	privilege	level	(such	as	User	Mode)	may	periodically	try	to	
read	the	various	timer	and	counters.	Code	running	at	a	higher	level	(such	as	an	OS	or	
hypervisor)	may	wish	to	intercept	all	accesses	to	counters	and	timers	in	order	to	
fool	the	lower	privilege	code.	Perhaps	the	hypervisor	wants	to	present	the	illusion	to	
the	lower	level	code	that	it	is	running	on	a	bare	machine	when,	in	fact,	it	is	not.	This	
could	also	be	useful	for	viruses	which	want	to	hide	their	existence.	

These	CSR	register	are	used	to	control	access	to	the	following	counter/times	CSRs:	
cycle,	time,	instret,	hpmcounter3,	hpmcounter4,	…	hpmcounter31.	
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The	purpose	of	the	scounteren	register	is	to	allow	Supervisor	Mode	code	to	
determine	whether	accesses	to	one	of	the	counter/timer	registers	by	code	running	
in	User	Mode	should	cause	an	exception	or	not.	

The	purpose	of	the	mcounteren	register	is	to	allow	Machine	Mode	code	to	
determine	whether	accesses	to	one	of	the	counter/timer	registers	by	code	running	
in	User	Mode	or	Supervisor	Mode	should	cause	an	exception	or	not.	

There	is	one	bit	for	each	of	the	32	counters/timers.	0=disabled,	cause	an	exception;	
1=enabled,	no	exception.	

Emulation	of	time	/	mtime	Accesses:	Another	use	of	this	CSR	is	as	follows:	Recall	
that	the	realtime	clock	mtime	is	not	actually	a	CSR,	but	is	expected	to	be	
implemented	as	a	memory-mapped	I/O	device.	However	there	is	a	true	CSR	named	
time,	which	is	meant	to	be	a	mirror	of	mtime.	By	trapping	all	reads	to	the	time	CSR,	
Machine	Mode	code	can	performed	the	I/O	to	retrieve	the	time	from	mtime	and	
properly	emulate	the	read	to	the	time	CSR.	

System	Call	and	Return	Instructions	

Environment	Call	(System	Call)	

General	Form:	
ECALL

Example:	
ECALL      # no operands

Comment:	
This	instruction	is	used	to	invoke	a	trap	handler.	This	instruction	causes	one	of	
the	following	exceptions,	depending	on	the	current	privilege	level:	

Environment	Call	from	User	Mode	
Environment	Call	from	Supervisor	Mode	
Environment	Call	from	Machine	Mode	

Any	and	all	arguments	and	returned	values	must	be	passed	in	registers.	
Encoding:	
	 This	is	a	variant	of	an	I-type	instruction.	
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Break	(Invoke	Debugger)	

General	Form:	
EBREAK

Example:	
EBREAK      # no operands

Comment:	
This	instruction	is	used	to	invoke	a	debugger,	by	causing	an	“Breakpoint”	
exception.	Typically	the	debugging	software	will	insert	this	instruction	at	
various	places	in	the	application	code	sequence,	in	order	to	gain	control	from	
an	executing	program.	

Encoding:	
	 This	is	a	variant	of	an	I-type	instruction.	

MRET:	Machine	Mode	Trap	Handler	Return	

General	Form:	
MRET

Example:	
MRET      # no operands

Comment:	
This	instruction	is	used	to	return	from	a	trap	handler	that	is	executing	in	
Machine	Mode.	The	MPP	2ield	of	the	status	register	will	be	consulted	to	
determine	which	mode	to	return	to	(either	m,	s,	or	u).	The	value	in	the	MPIE	
2ield	will	be	copied	to	MIE,	which	will	restore	the	“interrupts	enabled”	state	to	
what	it	was	when	the	handler	was	invoked.	The	return	will	be	effected	by	
copying	the	saved	program	counter	from	mepc	to	the	Program	Counter	(pc).	

This	instruction	may	only	be	executed	when	running	in	Machine	Mode.	
Encoding:	
	 This	is	a	variant	of	an	I-type	instruction.	

SRET:	Supervisor	Mode	Trap	Handler	Return	

General	Form:	
SRET
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Example:	
SRET      # no operands

Comment:	
This	instruction	is	normally	used	to	return	from	a	trap	handler	that	is	
executing	in	Supervisor	Mode.	The	SPP	2ield	of	the	status	register	will	be	
consulted	to	determine	which	mode	to	return	to	(either	s	or	u).	The	value	in	
the	SPIE	2ield	will	be	copied	to	SIE,	which	will	restore	the	“interrupts	enabled”	
state	to	what	it	was	when	the	handler	was	invoked.	The	return	will	be	effected	
by	copying	the	saved	program	counter	from	sepc	to	the	Program	Counter	(pc).	

This	instruction	may	be	executed	when	running	in	either	Supervisor	Mode	or	
Machine	Mode.	

Encoding:	
	 This	is	a	variant	of	an	I-type	instruction.	

URET:	User	Mode	Trap	Handler	Return	

General	Form:	
URET

Example:	
URET      # no operands

Comment:	
This	instruction	is	normally	used	to	return	from	a	trap	handler	that	is	
executing	in	User	Mode.	User	Mode	trap	handlers	always	return	to	User	Mode	
code.	The	value	in	the	UPIE	2ield	will	be	copied	to	UIE,	which	will	restore	the	
“interrupts	enabled”	state	to	what	it	was	when	the	handler	was	invoked.	The	
return	will	be	effected	by	copying	the	saved	program	counter	from	uepc	to	the	
Program	Counter	(pc).	

This	instruction	may	be	executed	in	any	mode.	
Encoding:	
	 This	is	a	variant	of	an	I-type	instruction.	

WFI:	Wait	For	Interrupt	

General	Form:	
WFI
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Example:	
WFI      # no operands

Comment:	
This	instruction	causes	the	processor	to	suspend	instruction	execution.	When	
an	asynchronous	interrupt	occurs,	the	processor	will	wake	up	and	resume	
execution.	The	trap	handler	will	be	invoked	and,	upon	return	to	the	code	
sequence	containing	the	WFI	instruction,	the	next	instruction	following	the	
WFI	will	be	executed.	

Typically,	software	will	execute	this	instruction	within	an	“idle”	loop,	which	is	
only	executed	when	there	is	nothing	to	be	done.	Suspending	instruction	
execution	may	save	power.	In	a	system	with	multiple	cores,	this	instruction	
may	also	provide	a	hint	to	the	interrupt	circuitry	to	route	future	interrupts	to	
this	core,	since	it	is	idling.	

This	instruction	may	be	implemented	as	a	nop.	For	simpler	processors,	it	may	
be	better	to	just	spin	in	an	idle	loop.	Complex	systems	may	have	an	
inexhaustible	supply	of	background	processes,	making	a	low-power	wait-state	
pointless.	

If	interrupts	are	(globally)	disabled	when	a	WFI	instruction	is	executed,	then	
this	disabling	is	ignored.	Instruction	execution	will	resume	when	an	interrupt	
occurs.	See	the	spec	for	details.	

Encoding:	
	 This	is	a	variant	of	an	I-type	instruction.	
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Physical	Memory	Attributes	(PMAs)	

Main	memory	is	the	large	range	of	byte-addressable	locations.	Each	location	has	a	
“physical	address”.	

In	systems	without	virtual	memory	mapping,	each	and	every	address	generated	by	
an	instruction	is	a	physical	memory	address.	However,	many	systems	will	support	
virtual	memory	mapping,	where	there	is	a	distinction	between	virtual	addresses	and	
physical	addresses.	An	instruction	(e.g.,	in	a	READ	or	WRITE	instruction)	will	
generate	a	virtual	address	and	the	memory	management	unit	(MMU)	will	translate	
this	virtual	address	into	a	physical	address,	which	is	then	used	by	the	hardware	to	
send	or	retrieve	data	to/from	the	main	memory	store.	

The	physical	address	space	can	be	populated	by:	

	 •	Normal	memory	
	 •	Memory-mapped	I/O	devices	
	 •	Empty	(i.e.,	unpopulated	holes)	

I/O	devices	are	commonly	“memory	mapped”,	which	means	they	sit	on	the	same	bus	
as	normal	memory.	The	device	is	assigned	a	speci2ic	physical	address	(or	set	of	
addresses).	Software	can	send	data	to	an	I/O	device	by	“writing”	to	a	memory	
location	populated	by	the	device	and	can	retrieve	data	from	the	device	by	“reading”	
from	such	an	address.	From	the	point	of	view	of	the	executing	software,	the	device	
looks	a	bit	like	any	other	memory	location,	but	reading	and	writing	to	memory-
mapped	I/O	locations	is	done,	not	to	store	data,	but	for	the	purpose	of	sending	data	
to,	receiving	data	from,	and	otherwise	controlling	an	I/O	device.	

To	handled	various	scenarios,	the	physical	address	space	will	be	partitioned	into	
regions.	The	regions	will	be	contiguous,	one-after-the-other,	non-overlapping	and	
will	cover	the	entire	physical	address	space.	Every	byte	in	the	physical	address	space	
will	be	in	exactly	one	physical	memory	region.	
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Each	region	can	be	characterized	by	different	attributes.	For	example:	

Is	the	region	populated	with	main	memory?	
Is	the	region	populated	with	memory-mapped	I/O	registers?	

	 Is	the	region	(i.e.,	unpopulated,	empty)?	
	 Does	the	region	support	reads	(i.e.,	data	fetches)?	
	 Does	the	region	support	writes?	
	 Does	the	region	support	execution	(i.e.,	instruction	fetches)?	
	 Does	the	region	support	atomic	operations?	
	 Is	the	region	cached?	
	 Is	the	region	shared	with	other	cores,	or	private?	

Collectively,	these	are	“physical	memory	attributes”	(PMAs).		Some	regions	will	have	
their	attributes	2ixed	and	unchangeable,	other	regions	will	be	con2igurable	upon	
power-up	(i.e.,	cold-pluggable),	and	other	regions	might	have	their	attributes	change	
during	system	operations	(i.e.,	hot-pluggable).	

Memory	attributes	must	checked	constantly	during	execution.	For	example,	a	READ	
from	an	unpopulated	memory	region	ought	to	cause	an	exception.	

Where	shall	the	PMA	information	be	stored?	One	approach	is	to	store	the	
information	in	the	virtual	memory	tables,	and	require	the	memory	management	unit	
(MMU)	to	check	and	enforce	the	constraints.	There	may	be	problems	when	the	page	
size	of	the	memory	management	unit	doesn’t	match	the	size	of	the	regions.	

In	the	RISC-V	design,	there	is	a	separate	subsystem	in	the	core	which	is	concerned	
with	checking	and	enforcing	the	physical	memory	attributes.	This	subsystem	is	
called	the	“PMA	checker”.	

When	an	instruction	attempts	to	access	memory,	the	address	is	2irst	translated	from	
virtual	to	physical	address	(if	virtual	memory	is	turned	on).	Then,	the	PMA	checker	
will	verify	that	the	type	of	access	is	legal.	If	not,	an	exception	will	be	generated.	
There	are	several	exception	types	for	physical	memory	attribute	(PMA)	violations	
and	these	are	different	from	the	virtual	memory	fault	exceptions.	

The	information	about	the	various	memory	regions	and	their	associated	PMAs	will	
be	kept	in	processor	registers.	These	registers	(or	parts	of	them)	may	be	hardwired	
for	some	regions	(which	is	appropriate	when	the	region	itself	is	precon2igured	and	
not	modi2iable,	such	as	an	on-chip	ROM),	or	may	be	readable	(for	querying	the	bus	
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to	determine	what	regions	are	present	and	their	PMAs),	or	may	be	writable	
(allowing	the	software	to	establish	and	mandate	PMAs).	Details	are	implementation	
dependent.	

Concerning	the	atomic	operations	of	RISC-V,	it	is	important	to	determine	whether	a	
particular	region	can	support	a	particular	instruction.	

Regions	populated	by	main	memory	must	support	all	the	AMO	instructions	(Atomic	
Memory	Operations)	and	LR/SC	instructions	(assuming	these	instructions	are	even	
implemented,	of	course).	

Regions	populated	by	memory	mapped	I/O	devices	are	not	expected	to	support	the	
LR/SC	instructions.	

Memory-mapped	regions	may	or	may	not	support	the	AMO	operations.	If	such	a	
region	supports	any	AMO	instructions,	then	it	must	support	AMOSWAP	at	a	
minimum.	The	region	may	also	optionally	support	other	AMO	instructions.	Here	are	
the	levels	of	AMO	support	that	may	be	implemented:	

	 •	No	AMO	operations	supported	
	 •	Only	AMOSWAP	supported	
	 •	AMOSWAP,	AMOAND,	AMOOR,	AMOXOR	
	 •	All	AMO	operations	are	supported	

Concerning	the	FENCE	instructions,	recall	that	accesses	are	classi2ied	as	being	
“memory”	or	“I/O”.	To	support	this,	every	region	of	the	physical	memory	address	
space	must	be	classi2ied	as	either:	

	 •	main	memory	
	 •	I/O	

It	is	possible	that	two	different	cores	(or	other	devices	sitting	on	the	physical	
memory	bus)	may	access	the	same	memory	locations	more-or-less	simultaneously.	
Accesses	to	main	memory	regions	are	“relaxed”,	which	means	that	the	exact	ordering	
of	the	operations	is	indeterminate	(unless	atomic	instructions	are	used,	of	course).	
The	programmer	can	use	atomic	instructions	to	force	particular	orderings,	but	for	
normal	instructions,	there	are	no	guarantees	about	ordering.	A	single	core	will	see	
its	own	operations	executed	in	the	order	they	were	issued,	but	reads	and	writes	
from	other	cores	or	devices	can	appear	at	any	time,	in	any	order.	
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Access	to	memory-mapped	regions	may	either	be	“relaxed”	or	“strong”.	If	the	region	
is	de2ined	to	have	relaxed	ordering,	then	the	ordering	of	operations	is	unde2ined,	as	
just	described.	If	the	region	has	strong	ordering,	then	it	will	appear	to	one	core	(A)	
that	the	operations	executed	by	some	other	core	(B)	were	all	executed	in	the	order	
they	were	actually	issued	by	core	(B).	

This	summary	is	a	simpli2ication	of	the	RISC-V	spec.	The	spec	is	designed	to	apply	to	
a	spectrum	of	different	kinds	of	systems,	from	simple	to	complex.	Modern	complex	
systems	may	have	multiple	parallel	channels	between	cores,	devices,	and	main	
memory	stores.	Imagine	that	all	the	devices	are	connected	by	a	network	with	the	
properties	of	the	Internet:	messages	are	sent	between	devices,	can	take	different	
paths,	and	can	be	arbitrarily	reordered	in	transit.	On	the	other	hand,	older	and	
simpler	systems	have	a	single,	simple	bus	that	does	one	thing	at	a	time	and	
reordering	is	inconceivable;	these	systems	may	use	device	drivers	that	were	
designed	without	concern	for	reordering	and	one	goal	is	to	support	such	
architectures	and	legacy	programming.	

Cache	PMAs	

qqqqq		

PMA	Enforcement	

The	enforcement	of	Physical	Memory	Attributes	(PMAs)	is	optional.	

A	RISC-V	core	may	optionally	provide	a	Physical	Memory	Protection	(PMP)	unit.	
Physical	memory	protection	is	implemented	using	a	small	number	of	Machine	Mode	
CSRs	that	describe	the	memory	regions	and	their	PMAs.	

The	CSR	registers	encode	the	following	information	for	each	region:	

	 •	The	starting	address	of	the	region	
	 •	Whether	the	region	is	4,	8,	16,	32,	…	bytes	in	length	
	 •	Does	the	region	support	READ	operations?	
	 •	Does	the	region	support	WRITE	operations?	
	 •	Does	he	region	support	EXECUTION	fetches?	
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	 •	Is	this	region	“locked”?	

Up	to	16	regions	can	be	described	in	the	registers.	This	information	is	cleverly	
encoded	in	16	registers	plus	a	couple	of	additional	registers.	

The	PMP	Unit	is	active	when	running	in	Supervisor	or	User	Mode;	all	accesses	
generated	are	checked.	The	protection	may	or	may	not	be	enforced	when	running	in	
Machine	Mode.	

Since	these	registers	are	Machine	Mode	CSRs,	they	can	only	be	accessed	in	Machine	
Mode.	

There	is	a	single	“Lock”	bit	for	each	one	of	the	16	regions	and	it	works	as	follows.	If	
the	lock	bit	is	0,	then	Machine	Mode	accesses	are	not	checked;	only	Supervisor	and	
User	Mode	accesses	are	checked.	

If	the	Lock	bit	is	set,	then	all	Machine	Mode	bits	are	checked	as	well.	

Once	a	Lock	bit	is	set,	it	cannot	be	cleared.	All	lock	bits	are	initially	clear;	to	clear	a	
lock	bit	requires	the	system	to	be	fully	reset	(e.g.,	POWER-ON-RESET).	In	other	
words,	once	a	region	become	locked,	it	stays	locked	forever.	Furthermore,	all	
accesses,	regardless	of	privilege	mode,	will	be	checked.	

This	locking	scheme	might	be	useful	for	secure	bootstrapping	code	which	loads	OS	
code	into	memory	and	then	locks	down	the	region	containing	the	OS,	to	prevent	
malware	from	subsequently	corrupting	the	OS	code.	

The	RISC-V	spec	suggests	that	the	CSRs	that	describe	the	memory	regions	might	get	
swapped	in	and	out	during	context	switches.	

For	example,	one	process	(a	device	driver)	might	be	allowed	to	access	a	given	
memory	region	while	another	process	(a	user	thread)	ought	to	be	forbidden	from	
accessing	the	same	region.	As	another	example,	imagine	a	hypervisor	running	in	
Machine	Mode	that	is	hosting	two	distinct	operating	systems,	which	are	running	in	
Supervisor	Mode.	Each	operating	system	will	be	given	a	range	of	available	main	
memory	to	use.	To	ensure	that	each	OS	stays	out	of	the	memory	region	used	by	the	
other	OS,	the	Machine	Mode	software	will	use	the	PMP	unit	to	enforce	all	accesses.	
When	timeslicing	between	two	OSes,	the	hypervisor	code	running	in	Machine	Mode	
will	need	to	swap	one	set	of	PMP	registers	with	the	other	set.	
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To	describe	each	memory	region,	we	must	somehow	specify	a	starting	address	and	a	
length.	Each	memory	region	has	certain	protection	attributes	associated	with	it	and	
these	must	also	be	given.		

Recall	that	there	can	be	up	to	16	different	memory	regions.	There	is	essentially	a	
table	with	16	entries,	which	can	describe	up	to	16	different	memory	regions.	

The	information	about	each	region	(i.e.,	each	table	entry)	is	encoded	into	a	single	
full-length	“address	register”	(e.g.,	32	bits)	and	an	additional	“con2iguration	byte”	(8	
bits).	The	length	of	the	region	is	cleverly	encoded	within	these	bits,	as	described	
next.	

The	names	of	the	address	registers	are	as	follows.	Each	is	a	full	CSR,	e.g.,	32	bits	for	
RV32	machines,	and	longer	for	RV64.	

	 pmpaddr0	
	 pmpaddr1	
	 …	
	 pmpaddr15	

The	names	of	the	con2iguration	bytes	are	given	next.	Each	is	an	8	bit	quantity.	

	 pmp0cfg	
	 pmp1cfg	
	 …	
	 pmp15cfg	

The	con2iguration	bytes	are	packed	into	4	registers,	with	four	con2iguration	bytes	
per	register.	(…at	least	for	the	RV32	machines.	For	64-bit	machines,	only	2	CSRs	are	
needed,	since	8	con2iguration	bytes	can	be	packed	into	each	register.)		

	Each	region	has	a	con2iguration	byte,	wherein	the	8	bits	are	used	as	follows:	

	 Number	of	bits	 Meaning	
1	 Region	is	readable	
1	 Region	is	writable	
1	 Region	is	executable	
1	 Region	is	locked	
2	 “A”	2ield	
2	 unused	
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The	“A”	2ield	has	these	possible	values:	

	 Value	 Meaning	
00	 This	entry	is	not	used	
01	 Top-of-range	address	encoding	
10	 Region	is	4	bytes	long	
11	 Region	is	>	4	bytes	long	

Not	all	of	the	16	regions	need	be	populated;	the	00	value	of	the	“A”	2ield	indicates	an	
unused	entry	in	the	region	table.	

Each	region	must	have	a	length	that	is	a	power	of	2.	Further	more,	the	length	must	
be	4	or	larger;	that	is:	4,	8,	16,	32,	64,	…	The	region	must	be	naturally	aligned,	given	
its	length.	For	example,	a	region	of	size	1,024	must	start	on	an	address	that	is	evenly	
divisible	by	1,024.	

If	the	region	has	size	4,	the	“A”	2ield	will	be	01	and	the	address	2ield	will	contain	the	
starting	address	of	the	region.	

If	the	region	has	a	larger	size	(such	as	8,	16,	32,	64,	…),	the	“A”	2ield	will	be	11	and	
the	address	register	will	contain	both	the	starting	address	and	length.	For	example,	
consider	a	region	with	size	1,024.	How	is	this	encoded	in	the	address	register?	The	
region	must	be	naturally	aligned	so	the	starting	address	will	look	like	this,	in	binary:	

XXXXXXXXXXXXXXXXXXXXXX0000000000

The	last	10	bits	of	the	starting	address	will	always	be	0.	The	length	of	the	region	
(1,024	in	this	example)	will	be	encoded	in	these	zero	bits,	as	follows:	

	 XXXXXXXXXXXXXXXXXXXXXX0111111111

The	hardware,	by	looking	at	the	value	in	the	address	register	and	by	locating	the	
rightmost	0	bit,	can	directly	infer	the	size	of	the	region.	

Okay,	it’s	more	complex	that	this.	For	32	bit	machines,	the	region	table	can	actually	
be	used	to	describe	regions	anywhere	in	a	34	bit	address	space.	The	extra	2	bits	of	
address	are	achieved	as	follows.	
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For	a	region	of	size	4	bytes,	the	last	2	bits	must	be	0,	so	they	are	not	represented.	All	
32	bits	in	the	address	register	are	used	for	bits	[33:2]	of	the	address,	with	bits	[1:0]	
implicitly	being	00.	

For	a	region	of	size	8	bytes,	the	address	register	will	contain:	

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX0

Here	there	are	31	signi2icant	bits.	Adding	in	the	implicit	bits	000	(since	the	region	is	
8-bytes	in	size),	gives	34	bits	of	starting	address.	

For	a	region	of	size	16	bytes,	the	address	register	will	contain:	

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX01

Here	there	are	30	signi2icant	bits.	Adding	in	the	implicit	bits	0000	(since	the	region	
is	16-bytes	in	size),	gives	34	bits	of	starting	address.	

And	so	on	for	larger	regions.	For	RV64,	this	same	shifting	by	2	bits	also	occurs.	All	
physical	addresses	are	limited	to	56	bits,	so	only	the	lower	order	54	bits	in	the	
address	registers	are	used.	

There	is	a	2inal	way	of	describing	a	region’s	starting	point	and	size.	If	the	“A”	2ield	is	
01	(“top-of-range”)	then	the	address	register	is	interpreted	differently.	This	
encoding	scheme	can	be	used	when	the	regions	are	contiguous	and	each	region	
follows	directly	after	the	previous	region.	In	this	encoding,	the	address	register	does	
not	specify	the	start	of	the	region,	but	the	ending	address	of	the	region.	(Actually,	it	
is	one	past	the	last	address.)	With	this	code	for	the	“A”	2ield,	the	starting	address	is	
given	by	the	previous	address	register	(or	address	0	for	the	2irst	table	entry).	

When	the	“top-of-range”	encoding	is	used,	the	shifting	by	2	bits	still	occurs.	Thus,	all	
physical	addresses	are	34	bits	and	each	region	must	begin	on	a	4	byte	aligned	
address.	

The	reason	that	34-bit	and	56-bit	physical	addresses	are	speci2ied	is	that	the	paging	
systems	use	these	sizes.	In	particular,	the	Sv32	paging	scheme	uses	34-bit	physical	
addresses	and	the	Sv39	and	Sv48	paging	schemes	use	56-bit	physical	addresses.	

Whenever	an	access	to	physical	memory	is	attempted,	the	processor	will	2irst	
consult	the	protection	table.	The	lowest	numbered	entry	that	matches	the	address	
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will	be	used	to	determine	if	the	access	is	allowed.	If	the	access	is	not	allowed,	then	a	
synchronous	exception	will	be	raised	(i.e.,	“load	access	exception”,	“store	access	
exception”,	or	“instruction	access	exception”).	See	the	spec	for	complete	details	on	
which	entry	is	selected.	

Virtual	Memory	

Virtual	Memory	(i.e.,	page	tables	and	virtual-to-physical	address	translation)	is	
handled	in	Supervisor	Mode.	

There	are	several	virtual	memory	schemes	described	in	the	RISC-V	spec,	called	
“bare”,	“Sv32”,	“Sv39”,	and	“Sv48”.	The	“bare”	option	means	no	virtual	address	
translation	occurs.	

A	32	bit	machine	(RV32)	may	support	a	2	level	page	table	(but	not	3	levels	or	4	
levels).	A	64	bit	machine	(RV64)	may	support	a	3	level	table	or	a	4	level	table	(but	
not	a	2	level	table).	

	 Page	Table	 Virtual	 Physical	
	 Depth	 Address	Space	 Address	Space	

RV32:	 	 	
Bare	 	 	 	 		
Sv32	 2	levels	 32	bits,	4	GiBytes	 34	bits,	16	GiBytes	

RV64:	 	 	
Bare	 	 	 	 		
Sv39	 3	levels	 39	bits,	512	GiBytes	 56	bits,	64	PiBytes	
Sv48	 4	levels	 48	bits,	256	TiBytes	 56	bits,	64	PiBytes	
Sv57	 …to	be	deZined	later…	 	
Sv64	 …to	be	deZined	later…	 	

The	size	of	the	physical	addresses	is	implementation	de2ined.	The	numbers	given	
above	are	the	maximums,	but	in	a	particular	implementation	the	physical	address	
space	will	often	be	smaller.	

Regardless	of	which	virtual	memory	scheme	is	used,	the	page	size	is	4,096	(4	
KiBytes).	Thus,	byte	offsets	into	a	page	require	12	bits,	since	212	=	4,096.	All	pages	
must	be	aligned	on	a	page	boundary,	so	the	lower	12	bits	of	any	page	address	are	
always	000000000000.	
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What	is	a	Page	Table?	A	page	table	is	a	tree	where	every	node	is	a	page.	These	
pages	are	each	kept	in	main	memory	and	addressed	with	physical	addresses.	

The	pages	at	the	leafs	are	called	“data	pages”	and	contain	the	actual	bytes	in	the	
virtual	address	space.	

The	interior	nodes	constitute	the	page	table	itself	and	allow	the	data	pages	to	be	
located.	The	root	page	plus	the	interior	nodes	constitute	the	page	table	and	are	not	
visible	to	the	user	process.	The	data	pages	constitute	the	virtual	address	space	(or	
at	least	the	part	of	it	that	is	populated)	and	contain	the	data	bytes	that	the	user	
process	will	access.	

Each	interior	page	contains	an	array	of	“Page	Table	Entries”	(PTEs).	Each	PTE	
points	to	a	child	node.	Some	PTEs	are	consider	“leaf	PTEs”	and	point	directly	to	a	
data	page.	Other	PTEs	point	to	lower	levels	in	the	page	table	tree.	

In	the	Sv32	addressing	scheme,	the	page	table	is	only	2	levels	deep.	Page	Table	
Entries	are	4	bytes	long.	Therefore,	we	have:	

	 1	root	page,	containing	1,024	PTEs	
	 1,024	interior	pages,	with	1,024	PTEs	each	
	 1,024	×	1,024	data	pages,	of	4,096	bytes	each	

Thus,	a	virtual	address	space	contains	4	GiBytes.	

The	term	“page	table”	is	often	used	imprecisely	to	mean	either	a	single	4,096	byte	
interior	node	in	the	tree,	or	the	entire	collection	of	interior	pages	making	up	the	
whole	tree,	not	including	the	data	pages.	

The	satp	(Supervisor	Address	and	Translation	Register)	is	the	CSR	that	controls	
address	translation.	

The	satp	register	contains	three	2ields:	

	 MODE	 Is	address	translation	turned	on	or	not?	
	 ASID	 Address	Space	Identi2ier		
	 PPN	 Physical	Page	Number,	i.e.,	address	of	page	table’s	root	page	

For	RV32	systems,	the	satp	register	is	32	bits,	arranged	as	follows:	
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� 	

For	RV64	systems,	the	satp	register	is	64	bits,	arranged	as	follows:	

� 	

The	MODE	2ield	indicates	whether	virtual	memory	address	translation	is	turned	on	
or	not	and,	if	so,	which	paging	table	scheme	is	being	used.	

For	RV32	systems,	the	MODE	2ield	can	have	these	values:	

0	 address	translation	turned	off	(i.e.,	“bare”	mode)	
1		 Sv32	address	translation	is	turned	on	

For	RV64	systems,	the	mode	2ield	can	have	these	values:	

0000	 address	translation	turned	off	(i.e.,	“bare”	mode)	
1000	 Sv39	address	translation	is	turned	on	
1001	 Sv48	address	translation	is	turned	on	
other	 unused	/	reserved	for	Sv57,	Sv64	

The	“bare”	mode	indicates	that	there	is	no	virtual-to-physical	translation.	All	
addresses	are	physical.	Regardless	of	mode,	the	enforcement	of	physical	memory	
attributes	(i.e.,	using	the	“pmp…”	registers,	described	elsewhere)	is	still	operative.	
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The	Physical	Page	Number	(PPN)	2ield	contains	the	physical	address	of	the	root	page	
of	the	page	table	tree.	

Since	all	pages	must	be	aligned	on	a	4,096	byte	boundary,	the	last	12	bits	of	the	
address	of	any	page	must	be	0.	For	RV32,	the	Physical	Page	Number	(PPN)	2ield	is	22	
bits	wide,	which	is	suf2icient	to	address	any	page	in	a	34	bit	physical	address	space.	
For	RV64,	the	PPN	2ield	is	44	bits	wide,	which	is	suf2icient	to	address	any	page	in	a	
56	bit	physical	address	space.	

Each	user	process	will	presumably	run	in	a	distinct	address	space.	Each	address	
space	is	given	an	Address	Space	Identi2ier	(ASID).	For	RV32	machines,	the	ASID	is	9	
bits	(allowing	for	29	=	512	different	address	spaces).	For	RV64	machines,	the	ASID	is	
16	bits	(allowing	for	216	=	65,536	different	address	spaces).	

The	satp	register	contains	the	ASID	of	the	currently	executing	process.	

Overview	of	TLBs:	To	make	address	translation	fast	enough	for	virtual	memory	
to	be	feasible,	page	table	entries	must	be	cached	in	an	“address	translation	cache”.	
Such	a	cache	is	traditionally	called	a	“Translation	Lookaside	Buffer”,	and	so	is	
abbreviated	as	“TLB”.	

The	TLB	will	contain	a	small	number	of	page	table	entries.	When	a	FETCH,	LOAD	
or	STORE	to	memory	occurs,	the	address	translation	hardware	will	2irst	check	the	
address	translation	cache	(TLB).	If	the	TLB	contains	a	matching	entry,	the	address	
translation	hardware	will	use	it	to	generate	a	physical	address	immediately,	which	
is	much	faster	because	we	avoid	going	to	main	memory	to	read	the	page	table	tree	
to	locate	the	data	page.	

The	TLB	which	is	organized	as	an	associative	memory,	keyed	on	virtual	page	
number.	If	a	TLB	entry	is	present,	then	the	entry	will	supply	the	physical	page	
number.	If	the	entry	is	absent,	then	the	address	translation	process	must	go	to	
memory	to	fetch	the	appropriate	entry	from	the	page	table	tree.	Some	TLB	entry	
will	be	evicted	and	the	new	entry	will	be	placed	in	the	TLB.	The	address	
translation	will	then	proceed.	

Updating	the	TLB,	which	includes	walking	the	in-memory	page	table	tree	to	2ind	
the	appropriate	entry	and	writing	the	evicted	entry	back	to	memory,	is	a	complex	
and	time-consuming	task.	For	faster	performance,	TLB	updating	and	page-table	
walking	are	performed	in	hardware	on	many	systems.	However,	in	simpler	
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implementations,	walking	the	page	table	and	updating	the	TLB	are	performed	by	
software.	

The	way	software	updating	works	is	as	follows:	When	there	is	no	valid	entry	in	the	
TLB	during	an	address	translation,	an	exception	will	be	signaled.	The	hardware	
never	attempts	to	walk	the	in-memory	page	tables.	The	exception	is	handled	by	a	
trap	handler	(which	may	be	running	in	Machine	Mode).	The	trap	handler	will	
essentially	emulate	the	missing	hardware	in	software	and	will	walk	the	in-
memory	page	table	and	update	of	the	TLB	directly.	How	this	occurs	is	a	software	
issue,	not	covered	in	the	RISC-V	spec.	

From	time	to	time	context	switches	will	occur	and	the	currently	executing	process	
will	change.	Since	each	process	can	occupy	a	different	address	space,	the	entries	in	
the	TLB	may	not	be	appropriate	for	the	newly	executing	process.	The	purpose	of	the	
Address	Space	ID	is	to	make	sure	that	a	process	only	uses	page	table	entries	that	
apply	to	it.	Each	entry	in	the	TLB	will	be	tagged	with	an	ASID;	only	entries	that	
match	the	currently	executing	process’s	ASID	(as	stored	in	the	satp	register)	will	be	
used.	

The	spec	does	not	require	ASIDs	to	be	implemented	and,	if	they	are	implemented,	
the	full	range	of	values	need	not	be	supported.	

The	spec	mentions	that	writing	to	the	satp	register	may	require	careful	concurrency	
control.	It	could	be	that	address	translations	using	older	page	tables	operate	
concurrently	and	an	update	to	satp	may	require	the	SFENCE.VMA	instruction	in	
order	to	ensure	correctness	of	code.	

The	idea	is	that,	as	long	as	there	are	not	too	many	distinct	address	spaces	and	the	
ASID	2ield	is	large	enough,	then	the	ASID	mechanism	will	prevent	one	process	from	
using	page	table	entries	from	the	wrong	address	space.	But	with	a	larger	number	of	
address	spaces,	it	may	be	necessary	to	2lush	the	address-translation	cache,	i.e.,	to	
2lush	the	TLB.	We	may	also	need	to	2lush	the	TLB	when	changes	are	made	to	a	
running	process’s	address	space,	i.e.,	to	a	page	table	that	is	currently	in	use.	For	
example,	if	we	remove	a	data	page	from	the	address	space,	it	is	not	suf2icient	to	
simply	invalidate	the	relevant	Page	Table	Entry	in	the	page	table	node	stored	in	
memory.	We	also	need	to	ensure	that	there	are	no	entries	still	sitting	in	the	TLB.	

Comment:	Note	that	by	storing	the	Mode,	ASID,	and	Physical	Page	Number	of	the	
root	of	the	page	table	in	a	single	register,	it	allows	all	three	to	be	updated	
atomically	with	a	single	CSR	instruction.	
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SFENCE.VMA:	Supervisor	Fence	for	Virtual	Memory	

General	Form:	
SFENCE.VMA vaddr,asid

Example:	
SFENCE.VMA   x5,x8

Comment:	
This	instruction	is	used	to	impose	order	on	accesses	to	memory	and	updates	
to	page	tables.	In	particular,	it	is	designed	to	2lush	the	address	translation	
cache	(TLB).	

Whenever	virtual	memory	is	turned	on	and	a	FETCH,	LOAD	or	STORE	to	
memory	is	made,	address	translation	must	occur	so	there	will	also	be	implicit	
READs	and	WRITEs	to	the	page	tables	stored	in	memory.	Normally,	the	access	
to	the	page	table	in	memory	can	be	avoided	and	the	access	will	be	made	to	the	
address	translation	(TLB)	cache	instead.	But	whenever	changes	to	the	page	
tables	in	memory	are	made,	we	need	to	2lush	obsolete	entries	in	the	TLB.	This	
is	the	purpose	of	this	instruction.	

When	the	OS	updates	a	page	table	node,	it	will	issue	a	WRITE	to	memory.	In	
order	to	make	sure	that	a	WRITE	to	the	page	table	is	seen	before	all	
subsequent	memory	accesses,	this	instruction	must	be	executed.	It	ensures	
that	all	WRITEs	to	memory	that	occur	earlier	in	the	instruction	stream	will	be	
completed	and	visible	before	any	implicit	READs	or	WRITES	to	the	page	table	
triggered	by	subsequent	operations	in	the	instruction	stream.	Since	the	TLB	is	
caching	page	table	entries,	this	instruction	must	also	invalidate	affected	
entries,	forcing	the	memory	management	unit	to	go	back	to	memory	to	
retrieve	current	page	table	entries.	

[	It	would	seem	necessary	to	also	force	all	earlier	address	translations	to	
complete	before	the	WRITE	to	the	page	tables	occurs,	but	the	spec	does	not	
mention	this	ordering	constraint.	???	]	

To	impose	a	2iner	level	of	granularity,	this	instruction	can	specify	a	speci2ic	
virtual	address	and/or	a	speci2ic	address	space.	Reg1	contains	a	virtual	
address;	Reg2	contains	an	Address	Space	ID.	

If	the	ASID	is	speci2ied	as	x0,	then	entries	for	all	address	spaces	are	affected;	
otherwise,	only	entries	for	the	given	address	space	are	affected.	
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If	the	virtual	address	is	speci2ied	as	x0,	then	all	levels	of	the	page	table	are	
affected;	otherwise,	only	the	relevant	leaf	PTE	in	the	page	table	is	affected.	

If	both	the	ASID	and	the	virtual	address	are	given	as	x0,	then	it	causes	a	
complete	2lush	of	the	TLB.	Simple	implementations	are	free	to	always	ignore	
the	ASID	and	virtual	address	space	and	perform	a	global	TLB	2lush	whenever	
this	instruction	is	executed.	

It	is	possible	that	several	cores	are	sharing	memory	and	that	two	threads	
running	on	different	cores	are	sharing	a	single	address	space	and	a	single	page	
table	data	structure	in	memory.	Ideally,	any	update	to	this	page	table	should	be	
seen	by	all	threads	on	all	cores.	However,	this	instruction	only	affects	a	single	
core.	To	synchronize	with	other	threads	on	other	cores,	the	OS	must	use	other	
instructions.		

Encoding:	
	 This	is	a	variant	of	an	R-type	instruction,	where	the	RegD	2ield	is	unused.	

Sv32	(Two-Level	Page	Tables)	

In	the	Sv32	address	translation	mode,	a	virtual	address	is	32	bits.	This	is	partitioned	
into	a	20-bit	virtual	page	number	(VPN)	and	a	12	bit	offset.	The	20-bit	Virtual	Page	
Number	is	translated	by	the	memory	management	unit	into	a	22-bit	Physical	Page	
Number.	The	Physical	Page	Number	is	then	concatenated	with	the	offset	to	give	the	
34-bit	physical	address.	

� 	
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The	size	of	each	page	is	4,096	bytes,	and	each	byte	within	a	page	can	be	addressed	
by	12	bits,	since	212	=	4,096.	All	pages	must	be	properly	aligned	on	a	4,096	byte	
boundary.	

Each	Page	Table	Entry	(PTE)	is	4	bytes.	Thus,	each	page	can	hold	1,024	entries.	
Within	a	page,	each	entry	can	be	addressed	by	a	10-bit	address,	since	210	=	1,024.	

The	page	table	is	organized	as	a	2-level	tree,	where	all	nodes	are	interior	(i.e.,	non-
data)	pages.	The	root	page	is	at	the	top	of	the	tree	and	contains	1,024	page	table	
entries.	Each	entry	contains	a	pointer	to	a	second	level	page.	The	second	level	pages	
contain	page	table	entries	which	point	to	the	data	pages.	The	second	level	pages	are	
referred	to	as	“leaf”	pages;	the	data	pages	can	be	considered	to	lie	below	the	leaf	
pages.	

A	Page	Table	Entry	(PTE)	is	4	bytes	and	contains	the	following	2ields:	

	 Field	Size	 Meaning	
	 22	 Physical	Page	Number	
	 2	 RSW	(Unde2ined;	Reserved	for	Software)	
	 1	 D	(Dirty)	
	 1	 A	(Accessed)	
	 1	 G	(Global	mapping)	
	 1	 U	(User	accessible)	
	 1	 V	(Valid)	
	 3	 XWR	(Executable,	Writable,	Readable)	

� 	

The	Virtual	Page	Number,	which	is	20	bits,	is	divided	into	two	2ields	of	10	bits	each,	
called	VPN[1]	and	VPN[0].	
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The	uppermost	10	bits	(VPN[1])	is	used	to	select	an	entry	in	the	root	page.	This	
entry	contains	a	Physical	Page	Number	(PPN)	2ield,	which	addresses	a	second	level	
page.	

The	second	10	bits	of	the	Virtual	Page	Number	(VPN[0])	is	used	to	select	an	entry	in	
the	second	level	page.	This	yields	the	2inal	page	table	entry	(called	a	“leaf”	page	table	
entry),	which	contains	the	Physical	Page	Number	of	the	page	containing	the	actual	
data.	

This	diagram	shows	this.	

� 	

There	is	a	single	root	page	and	up	to	1,024	second	level	pages.	Each	page	in	the	page	
table	(that	is,	the	root	page	and	all	second	level	pages)	contains	1,024	Page	Table	
Entries.	The	entries	at	the	bottom	of	the	tree	are	call	“leaf”	entries	and	point	to	the	
data	pages.	Leaf	entries	are	distinguished	from	non-leaf	entries	by	the	XWR	
(Execute-Write-Read)	permission	bits.	If	XWR=000,	then	the	entry	is	not	a	leaf	entry.	
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� 	

There	is	a	facility	for	“megapages”.	A	megapage	is	a	data	page	containing	4	MiBytes.	
An	offset	into	a	megapage	will	be	22	bits,	since	222	=	4	×	1,024	×	1,024	=	4,194,304.	
A	megapage	must	be	aligned	to	a	4	MiByte	boundary.	

The	XWR	bits	in	a	page	table	entry	indicate	whether	that	entry	is	a	leaf	entry	
(meaning	that	the	entry	points	to	a	data	page)	or	a	non-leaf	entry	(meaning	that	the	
entry	points	to	another	page	in	the	page	table	tree).	If	the	XWR	bits	are	000,	then	the	
entry	is	a	non-leaf	entry,	pointing	to	the	next	level	in	the	page	table	tree.	If	the	XWR	
bits	are	not	000,	then	they	indicate	that	the	entry	points	to	a	data	page	and	they	give	
the	“execute”,	“read”,	and	“write”	permissions	for	the	data	page.	

In	the	case	of	megapages,	there	is	no	second	level	page	in	the	tree.	Instead,	the	Page	
Table	Entry	in	the	root	page	points	directly	to	a	data	page,	i.e.,	a	megapage.		
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� 	

There	are	a	couple	of	bene2its	of	placing	megapages	in	a	virtual	address	space	that	
may	also	contain	normal	4,096	byte	data	pages.	

First,	whenever	data	from	a	page	is	2irst	referenced,	the	Memory	Management	Unit	
must	walk	the	page	table	to	2ind	the	appropriate	leaf	page	table	entry.	With	
megapages,	only	the	root	page	table	must	be	consulted,	since	there	is	no	second	
level	page	involved.	This	reduces	the	number	of	memory	accesses	by	one.	(This	
could	mean	substantial	savings	if	the	PTE	needs	to	be	re-loaded	frequently,	due	to	
TLB	contention	and/or	needs	to	be	updated	in	memory	upon	TLB	2lushing).	

The	second	advantage	is	that	a	single	entry	in	the	address	translation	cache	(the	
TLB)	will	cover	4	MiBytes,	instead	of	4	KiBytes.	This	means	that	fewer	entries	in	the	
TLB	will	be	needed	for	each	address	space.	The	TLB	is	a	signi2icant	bottleneck	and	
reducing	contention	is	critical.	

[	For	example,	a	simple	address	space	may	have	one	block	of	memory	marked	“read/
execute”	(for	the	program	and	constants)	and	a	second	block	marked	“read/
write”	(for	static	variables	and	the	stack).	Since	neither	of	these	will	normally	exceed	
4	MiBytes,	only	2	entries	in	the	TLB	would	be	needed	for	the	entire	address	space.	
TLB	entries	are	precious	and	few	in	number,	so	this	reduces	pressure	on	the	TLB.	]	

However	megapages	come	with	drawbacks.	First,	they	will	often	be	larger	than	
necessary.	(This	is	called	the	“internal	fragmentation	problem”.)	The	extra	space	in	
the	megapages	represents	real	physical	memory	and,	if	not	needed	by	the	process,	
this	memory	is	effectively	wasted.	For	example,	if	an	address	space	only	requires	64	
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KiBytes,	but	is	allocated	two	megapages,	then	approximately	99%	of	the	memory	is	
wasted,	since	222	–	216	≈	222.	If	concurrent	processes	are	doing	lots	of	complex	data	
sharing	by	sharing	virtual	memory	pages	this	fragmentation	problem	can	become	
worse.	

Second,	the	OS	kernel	must	be	able	to	allocate	large	blocks	of	contiguous	memory.	
This	is	not	a	problem	if	the	memory	is	divided	into	a	collection	of	equal	sized	pages.	
But	if	there	are	multiple	page	sizes	(e.g.,	1,024	and	4,194,304)	then	things	get	
trickier.	After	all,	this	is	essentially	the	problem	that	virtual	memory	was	designed	to	
address.	(This	is	called	the	“external	fragmentation	problem”.)	

Next,	we	look	at	the	meaning	of	the	bits	in	the	Page	Table	Entry	(PTE).	

The	Valid	bit	(V)	indicates	whether	this	PTE	is	valid	or	not	(1=valid,	0=invalid).	If	an	
invalid	PTE	is	encountered	by	the	Memory	Management	Unit,	then	an	access	fault	is	
signaled.	(The	exception	will	be	either	a	“instruction	access	exception”,	“read	access	
exception”,	or	“store	access	exception”	as	appropriate).	If	the	PTE	is	invalid,	the	
remaining	bits	are	ignored	and	can	be	used	by	software	as	desired.	

The	User	Accessible	bit	(U)	controls	whether	the	data	can	be	accessed	in	
Supervisor	Mode	or	User	Mode.	Typically,	a	process’s	address	space	will	be	divided	
into	two	parts,	sometimes	called	the	“bottom	half”	and	the	“top	half”.	The	bottom	
half	can	only	be	access	by	code	running	in	User	Mode;	data	in	the	top	half	can	only	
be	accessed	when	running	in	Supervisor	Mode.	U=1	means	bottom	half;	U=0	mean	
top	half.	If	User	Mode	code	attempts	to	access	data	in	the	top	half,	an	access	fault	will	
occur.	If	Supervisor	Mode	code	attempts	to	access	data	in	the	bottom	half,	an	access	
fault	will	occur.	

However,	the	SUM	bit	in	the	Supervisor	Status	word	(sstatus)	can	be	used	to	allow	
Supervisor	Mode	code	to	access	pages	in	the	bottom	half.	Normally,	Supervisor	code	
will	run	with	SUM=0,	in	which	case	an	access	fault	will	occur.	But	occasionally	(e.g.,	
when	data	is	passed	to	the	OS	in	a	kernel	call)	Supervisor	Code	will	set	SUM=1	for	a	
short	time.	During	this	time,	LOAD	and	STORE	instructions	will	operate	as	if	running	
in	User	Mode.	This	allows	the	kernel	routines	to	retrieve	or	store	parameters	in	the	
bottom	half	(i.e.,	in	the	user	portion	of	the	virtual	address	space).	

The	U	bit	is	only	meaningful	for	leaf	PTEs;	for	non-leaf	PTEs,	this	bit	will	be	0.	

The	Global	Mapping	bit	(G)	concerns	pages	that	are	shared	among	all	address	
spaces.	G=1	means	globally	shared	by	all	address	spaces;	G=0	means	local	to	a	single	
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address	space	and	not	shared.	If	a	page	is	globally	shared,	it	means	that	it	is	mapped	
into	all	address	spaces.	In	other	words,	the	Address	Space	ID	(ASID)	checking	is	
suppressed.	For	example,	a	set	of	commonly	used,	read-only	functions	and	data	can	
be	mapped	into	all	address	spaces,	making	these	routines	available	at	essentially	no	
cost	to	all	address	spaces.	These	could	be	user-level	functions	present	in	all	“bottom	
halves”	or	could	be	Supervisor	Mode	code	that	is	placed	into	all	“top	halves”.	

The	spec	indicates	that	this	bit	is	meaningful	for	both	leaf	and	non-leaf	PTEs.	When	
set	in	a	non-leaf	PTE,	it	means	the	entire	page	table	tree	below	is	global	and	shared	
by	all	address	spaces.	

[	???	It	is	not	clear	why	the	G	bit	is	speci2ied	as	being	meaningful	in	non-leaf	PTEs.	If	
a	leaf	PTE	that	is	marked	“global”	is	stored	in	the	TLB,	then	that	TLB	entry	(and	the	
data	page	it	refers	to)	is	shared.	But	if	there	is	no	leaf	PTE	in	the	TLB,	then	the	
Memory	Management	Unit	will	need	to	walk	the	page	table	tree	to	locate	the	leaf	
PTE.	During	this	walk,	it	would	not	seem	to	make	any	difference	whether	some	page	
table	page	is	shared	or	not;	each	page	of	the	page	table	tree	still	has	to	be	accessed.	
Perhaps	the	RISC-V	spec	envisions	putting	non-leaf	PTEs	in	the	TLB.	???	]	

The	Accessed	bit	(A)	is	set	by	the	Memory	Management	Unit	whenever	a	byte	on	
the	data	page	is	read,	written,	or	fetched	for	execution.	In	some	textbooks	this	bit	is	
called	the	“referenced”	bit.	This	bit	is	only	meaningful	for	leaf	PTEs;	for	non-leaf	
PTEs,	this	bit	will	be	0.	

The	Dirty	bit	(D)	is	set	by	the	Memory	Management	Unit	whenever	a	byte	on	the	
data	page	is	written	to.	This	bit	is	only	meaningful	for	leaf	PTEs;	for	non-leaf	PTEs,	
this	bit	will	be	0.	

Details	on	Updating	a	Page	Table	Entry:	We	just	said	that	the	Accessed	Bit	and	
the	Dirty	Bit	are	set	by	the	hardware	whenever	any	byte	in	the	data	page	is	
accessed	or	updated.	(These	are	the	only	bits	in	the	Page	Table	Entry	(PTE)	that	
would	ever	be	modi2ied	by	hardware,	but	any	modi2ication	will	require	that	this	
PTE,	when	evicted	from	the	TLB	in	the	future,	must	be	written	back	to	the	in-
memory	page	table.)	

However	the	RISC-V	spec	also	allows	the	hardware	to	work	a	second	way.	In	this	
alternative	approach,	a	page	table	entry	is	never	modi2ied	by	the	hardware.	This	
simpli2ies	the	hardware	since	PTEs	need	never	be	written	back	to	memory.	
Instead,	the	“A”	and	“D”	bits	are	merely	checked.	If	they	are	not	already	set	
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correctly,	an	exception	is	signaled.	Then	software	in	the	trap	handler	can	take	
actions	to	write	the	updated	page	table	entry	back	to	memory.	

In	some	cases,	the	“A”	and	“D”	bits	may	not	be	needed.	For	example,	if	some	data	
page	is	always	resident	in	memory	and	never	swapped	out	to	backing	store,	then	
the	“A”	and	“D”	bits	can	be	ignored.	Or	also,	if	a	memory-mapped	I/O	device	is	
mapped	into	some	virtual	address	space,	then	the	“A”	and	“D”	bits	can	be	ignored.	
In	such	cases,	the	bits	can	be	preset	to	“1”	to	obviate	the	need	for	updating.	

The	Executable	(X),	Writable	(W),	and	Readable	(R)	bits	indicate	whether	this	PTE	
is	a	leaf	or	non-leaf	entry	and,	for	leaf	entries,	they	indicate	the	access	permissions	
for	the	data	on	the	data	page.	If	XWR	=	000,	then	this	PTE	is	not	a	leaf	entry;	the	
Physical	Page	Number	in	the	entry	points	to	the	next	lower-level	page	in	the	page	
table	tree.	

The	RSW	bits	are	not	used	by	the	hardware	and	are	freely	available	to	software	to	be	
used	as	desired.	

The	Sv32	Page	Table	Algorithm	

Whenever	an	access	(read,	write,	or	fetch-for-execution)	occurs,	the	following	steps	
are	taken	by	the	Memory	Management	Unit,	to	map	a	virtual	address	into	a	physical	
address.	

(The	RISC-V	spec	gives	this	algorithm	in	a	general	form	applicable	to	Sv32,	Sv39,	and	
Sv48,	i.e.,	two-,	three-,	and	four-level	page	tables.	In	order	to	make	it	easier	to	
understand,	the	version	given	here	simpli2ies	and	specializes	the	algorithm	to	two-
level	tables.)	

Inputs:	
	 va	–	the	virtual	address	to	be	translated	(32	bits),	with	the	following	parts:	
	 	 va.VPN[1]	–	the	uppermost	10	bits;	offset	into	the	top	level	page	table	
	 	 va.VPN[0]	–	the	following	10	bits;	offset	into	the	second	level	page	table	
	 	 va.OFFSET	–	the	lower	12	bits;	offset	into	the	data	page	
	 The	desired	access	type	(READ,	WRITE,	or	FETCH)	
	 The	current	privilege	mode	(U	or	S;	no	address	translation	is	done	in	M	mode)	
	 satp	–	the	Supervisor	Address	Translation	and	Protection	CSR	
	 	 satp.PPN	–	the	page	number	of	the	root	page.	
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	 status.SUM	–	the	“Permit	Supervisor	User	Memory	Access”	bit	in	the	status	reg	
	 status.MXR	–	the	“Make	Executable	Readable”	bit	in	the	status	reg	

Outputs:	
	 pa	–	physical	address	(34	bits)	
	 	 or	
	 access	exception	–	signal	a	page	fault	exception	and	abort	translation	

Temp	variables:	
	 a	–	pointer	to	(i.e.,	physical	address	of)	a	page	in	memory	
	 p	–	pointer	to	(i.e.,	physical	address	of)	a	PTE	in	memory	
	 pte	–	a	Page	Table	Entry,	as	fetched	from	memory	

Algorithm:	
	 Compute	“a”,	the	address	of	root	top-level	page	in	the	page	table	
	 	 a	!	satp.PPN	||	000000000000	
	 Compute	“p”,	the	address	of	the	PTE	in	the	top	level	page	
	 	 p	!	a	+	(	va.VPN[1]	||	00	)	
	 Read	from	memory	“pte”,	a	Page	Table	Entry	from	the	root-level	page	
	 	 pte	!	memory	[p]	
	 	 If	the	Physical	Memory	Protection	(PMP)	system	indicates	problems	
	 	 	 then	signal	an	exception	
	 If	this	PTE	is	not	valid	(i.e.,	pte.V	=	0	or	pte.XWR	is	an	invalid	value)	
	 	 then	signal	an	exception	
	 If	pte.XWR	≠	000	then…	
	 	 /*	This	PTE	is	a	leaf	PTE,	pointing	to	a	megapage.	*/	
	 	 If	pte.PPN[0]	≠	0000000000,	then	signal	an	exception	
	 	 Compute	the	physical	address	
	 	 	 pa	!	pte.PPN[1]	||	va.VPN[0]	||	va.OFFSET	
	 Else	(i.e.,	pte.XWR	=	000)…	
	 	 /*	We	do	not	have	a	leaf	PTE,	so	look	at	the	second	level.	*/	
	 	 Compute	“a”,	the	address	of	the	second	level	page	table	page	
	 	 	 a	!	pte.PPN[1]	||	pte.PPN[0]	||	000000000000	
	 	 Compute	“p”,	the	address	of	the	PTE	in	the	second	level	page	
	 	 	 p	!	a	+	(va.VPN[0]	||	00	)	
	 	 Read	from	memory	“pte”,	a	Page	Table	Entry	from	the	second	level	page	
	 	 	 pte	!	memory	[p]	
	 	 	 If	the	Physical	Memory	Protection	(PMP)	system	indicates	problems	
	 	 	 	 then	signal	an	exception	
	 	 If	this	PTE	is	not	valid	(i.e.,	pte.V	=	0	or	pte.XWR	is	an	invalid	value)	
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	 	 	 then	signal	an	exception	
	 	 If	pte.XWR	=	000,	then	we	do	not	have	a	leaf	PTE…	
	 	 	 then	signal	an	exception	
	 	 Compute	the	physical	address	
	 	 	 pa	!	pte.PPN[1]	||	pte.PPN[0]	||	va.OFFSET	
	 /*	“pte”	contains	the	leaf	Page	Table	Entry.	*/	
	 Make	sure	this	access	is	allowed	by	checking	the	X,	W,	R,	and	U	bits….	
	 	 If	pte.R	≠	1,	then	signal	an	exception	
	 	 If	pte.W	≠	1	and	this	is	a	WRITE,	then	signal	an	exception	
	 	 If	pte.X	≠	1	and	this	is	a	FETCH,	then	signal	an	exception	
	 	 If	the	current	mode	is	“User”…	
	 	 	 If	pte.U	=	0,	then	signal	an	exception	
	 	 If	the	current	mode	is	“Supervisor”…	
	 	 	 If	this	is	a	READ	&	pte.R	≠	1	&	status.MXR	≠	1,	then	signal	an	exception	
	 	 	 If	pte.U	=	1	and	status.SUM	=	0,	then	signal	an	exception	
	 Check	the	“accessed”	bit…	
	 	 If	pte.A	≠	1,	then	set	it	
	 Check	the	“dirty”	bit…	
	 	 If	this	is	a	WRITE	and	pte.D	≠	1,	then	set	it	
	 If	the	pte.A	or	pte.D	bits	were	changed…	
	 	 Either	
	 	 	 •		Signal	an	exception	(and	let	software	update	the	page	table)	
	 	 	 •		Write	the	Page	Table	Entry	back	to	memory.	
	 	 	 	 This	must	be	atomic	with	respect	to	the	earlier	reading	of	the	pte.	
	 	 	 	 If	the	PMP	system	indicates	problems,	then	signal	an	exception	

Sv39	(Three-Level	Page	Tables)	

Both	the	Sv39	and	Sv48	virtual	addressing	schemes	are	natural	extensions	of	the	
Sv32	scheme.	The	primary	difference	is	that	they	support	larger	virtual	address	
spaces	and	page	tables	that	are	3-levels	(for	Sv39)	and	4-levels	(for	Sv48),	instead	of	
2-levels.	

If	you	understand	Sv32	then	–	for	all	intents	and	purposes	–	you	already	understand	
Sv39	and	Sv48.	

With	Sv39,	virtual	addresses	are	39	bits	and	physical	addresses	are	56	bits.	
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We	can	summarize	the	Sv39	virtual	addressing	scheme	as	follows:	Sv39	is	identical	
to	Sv32,	with	these	exceptions:	

	 •	It	may	only	be	implemented	on	RV64	systems,	not	on	RV32	systems.	
	 •	Virtual	addresses	are	39	bits.	
	 •	The	maximum	virtual	address	space	is	239	=	512	GiBytes.	
	 •	The	physical	addresses	are	56	bits.	
	 •	The	page	size	is	unchanged	(i.e.,	4,096	bytes).	
	 •	The	page	tables	have	3	levels,	instead	of	2	levels.	
	 •	The	Page	Table	Entries	are	64	bits,	instead	of	32	bits.	
	 •	Each	page	of	the	page	table	contains	512	PTEs,	instead	of	1,204	PTEs.	
	 •	Offsets	into	the	page	tables	are	9	bits	(instead	of	10	bits)	since	29	=	512.	
	 •	The	RSW,	D,	A,	G,	U,	X,	W,	R,	and	V	bits	work	identically.	
	 •	Megapages	are	2	MiBytes,	instead	of	4	MiBytes.	
	 •	“Gigapages”	of	1	GiByte	are	also	supported.	

With	Sv39,	the	page	table	will	have	three	levels:	

RISC-V	Architecture	Summary	/	Porter	 	 Page	� 	of	� 	312 323



Chapter	9:	Virtual	Memory	

� 	

On	a	64-bit	machine,	addresses	are	initially	64	bits	long,	since	this	is	the	register	
length.	For	Sv39,	only	the	least	signi2icant	39	bits	are	used	to	address	into	the	virtual	
address	space.	The	remaining	25	bits	must	be	the	sign-extension	(not	zero-2illed)	of	
the	least	signi2icant	bits.	Otherwise,	an	exception	will	be	signaled.	

Sv48	(Four-Level	Page	Tables)	

With	Sv48,	virtual	addresses	are	48	bits	and	physical	addresses	are	56	bits.	
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We	can	summarize	the	Sv48	virtual	addressing	scheme	as	follows:	Sv48	is	identical	
to	Sv32	and	Sv39,	with	these	exceptions:	

	 •	It	may	only	be	implemented	on	RV64	systems,	not	on	RV32	systems.	
	 •	If	Sv48	is	supported,	then	Sv39	must	also	be	supported.	
	 •	Virtual	addresses	are	48	bits.	
	 •	The	maximum	virtual	address	space	is	248	=	256	TiBytes.	
	 •	The	physical	addresses	are	56	bits.	
	 •	The	page	size	is	unchanged	(i.e.,	4,096	bytes).	
	 •	The	page	tables	have	4	levels.	
	 •	The	Page	Table	Entries	are	64	bits,	the	same	as	Sv39.	
	 •	Each	page	of	the	page	table	contains	512	PTEs,	the	same	as	Sv39.	
	 •	Offsets	into	the	page	tables	are	9	bits,		the	same	as	Sv39.	
	 •	The	RSW,	D,	A,	G,	U,	X,	W,	R,	and	V	bits	work	identically.	
	 •	Megapages	are	2	MiBytes,	the	same	as	Sv39.	
	 •	Gigapages	are	1	GiByte,	the	same	as	Sv39.	
	 •	“Terapages”	of	512	GiBytes	are	also	supported.	

On	a	64-bit	machine,	addresses	are	initially	64	bits	long,	since	this	is	the	register	
length.	For	Sv48,	only	the	least	signi2icant	48	bits	are	used	to	address	into	the	virtual	
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address	space.	The	remaining	16	bits	must	be	the	sign-extension	(not	zero-2illed)	of	
the	least	signi2icant	bits.	Otherwise,	an	exception	will	be	signaled.	
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Besides	the	extensions	we	have	already	described,	the	RISC-V	spec	mentions	several	
additional	extensions	which	may	or	may	not	be	implemented.	The	speci2ications	for	
these	extensions	are	in	a	state	of	2lux,	so	we	will	simply	mention	their	existence	here.	

The	Decimal	Floating	Point	Extension	(“L”)	

Most	programmers	are	familiar	with	binary	2loating	point,	but	there	is	also	such	a	
thing	as	a	representation	of	2loating	point	numbers	using	a	decimal	base.	The	RISC-V	
spec	contains	nothing	speci2ic	for	this	extension	and	only	mentions	it	as	future	work.	

The	Bit	Manipulation	Extension	(“B”)	

The	RISC-V	spec	contains	nothing	speci2ic	for	this	extension	and	only	mentions	it	as	
future	work.	

The	Dynamically	Translated	Languages	Extension	(“J”)	

High	level	languages	often	require	dynamic	typing	checking,	garbage	collection	and	
dynamic	(just-in-time)	compiling,	so	including	specialized	instructions	to	support	
these	can	improve	performance.	However,	the	RISC-V	spec	contains	nothing	speci2ic	
for	this	extension	and	only	mentions	it	as	future	work.	

The	Transactional	Memory	Extension	(“T”)	
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The	RISC-V	spec	contains	nothing	speci2ic	for	this	extension	and	only	mentions	it	as	
future	work.	

The	Packed	SIMD	Extension	(“P”)	

Recall	that	SIMD	stands	for	“single	instruction,	multiple	data”.	The	goal	is	to	perform	
a	large	number	of	2loating	point	operations	simultaneously.	There	is	data	
parallelism,	but	not	full	concurrency	since	the	same	operation	is	performed	on	a	
collection	of	values.	A	single	operation	(such	as	“multiply”)	is	performed	in	parallel	
on	N	values,	followed	by	the	next	operation	after	all	N	multiplications	have	
completed.	

The	idea	with	this	extension	is	that	each	2loating	point	register	will	hold	more	than	
one	value.	For	this	extension,	the	2loating	point	registers	will	likely	be	larger	than	32	
or	64	bits.	For	example,	in	one	implementation	each	2loating	point	register	might	be	
1,024	bits	wide.	Thus	each	register	can	hold	more	than	one	value.	Since	16	×	64	=	
1,024,	each	register	can	hold	16	double	precision	values	at	once.	When	an	arithmetic	
instruction	(such	as	“add”	or	“multiply”)	is	executed,	the	operation	is	performed	on	
all	16	values	simultaneously.	

The	status	of	this	extension	is	unsettled.	It	may	be	dropped	altogether	in	favor	of	the	
“V”	Vector	SIMD	Extension.	

The	Vector	SIMD	Extension	(“V”)	

The	“V”	Vector	SIMD	extension	is	designed	to	accommodate	large	vectors	and	SIMD	
operation.	It	includes	a	set	of	32	vector	registers	(v0,	v1,	…	v31)	,	a	number	of	new	
con2iguration	CSR	registers,	and	additional	instructions.	The	RISC-V	speci2ication	is	
dif2icult	to	understand.	Furthermore,	this	extension	is	subject	to	revision	and	is	not	
yet	“frozen”.	

Performance	Monitoring	
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RISC-V	de2ines	a	collection	of	CSR	registers	devoted	to	measuring	hardware	
performance:	

	 mhpmcounter3	
	 mhpmcounter4	
	 			…	
	 mhpmcounter31	

	 mhpmevent3	
	 mhpmevent4	
	 			…	
	 mhpmevent31	

This	mechanism	is	not	described	in	the	spec,	beyond	saying	that	the	“events”	to	be	
counted	can	be	selected	by	setting	mhpmevent3,	mhpmevent4,…	.	

Debug/Trace	Mode	

The	RISC-V	spec	mentions	another	mode	called	“Debug	Mode”	and	several	related	
Control	and	Status	Registers	(CSRs)	named	tselect,	tdata1,	tdata2,	and	tdata3,	but	
the	spec	does	not	give	any	detail.	
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ABI	 Application	Binary	Interface	
AEE	 Application	Execution	Environment	
AMO	 Atomic	Memory	Operation	
ASID	 Address	Space	ID	
CSR	 Control	and	Status	Register	
cycle	 CSR[C00]:	Clock	cycle	counter,	User	Mode	
cycleh	 CSR[C80]:	Upper	half	of	cycle,	User	Mode	(RV32	only)	
dcsr	 CSR[7B0]:	Debug	control	and	status	
dpc	 CSR[7B1]:	Debug	PC	
dscratch	 CSR[7B2]:	Scratch	register	
DZ	 Divide	By	Zero	(a	bit	within	the	Floating	Point	Flags,	FFLAGS)	
fcsr	 CSR[003]:	Floating	Point	Control	and	Status	Reg	(frm	||	f2lags)	
f2lags	 CSR[001]:	Floating	pointing	2lags	
FFLAGS	 Floating	Point	Flags	(i.e.,	NX,	UF,	OF,	DZ,	NV)	
frm	 CSR[002]:	Dynamic	rounding	mode	
FRM	 Floating	Point	Rounding	Mode	
FS	 Field	in	status	register;	status	of	2loating	(clean/dirty/…)	
HART	 Hardware	Thread	
HBI	 Hypervisor	Binary	Interface	
HEE	 Hypervisor	Execution	Environment	
HEIP	 hypervisor	external	interrupt	
hpmcounter3	 CSR[C03]:	Event	counter	#3,	User	Mode	
hpmcounter31	 CSR[C1F]:	Event	Counter	#31,	User	Mode	
hpmcounter31h	 CSR[C9F]:	Upper	half	of	counter,	User	Mode	(RV32	only)	
hpmcounter3h	 CSR[C83]:	Upper	half	of	counter,	User	Mode	(RV32	only)	
hpmcounter4	 CSR[C04]:	Event	Counter	#4,	User	Mode	
hpmcounter4h	 CSR[C84]:	Upper	half	of	counter,	User	Mode	(RV32	only)	
HSIP	 hypervisor	software	interrupt	
HTIP	 hypervisor	timer	interrupt		
instret	 CSR[C02]:	Number	of	instructions	retired,	User	Mode	
instreth	 CSR[C82]:	Upper	half	of	instret,	User	Mode	(RV32	only)	
IR	 Instruction	Register	
ISA	 Instruction	Set	Architecture	 	
LR	 Link	Register	 	
marchid	 CSR[F12]:	Architecture	ID	 	
mcause	 CSR[342]:	Trap	cause	code,	Machine	Mode	 	
mcounteren	 CSR[306]:	Counter	enable,	Machine	Mode	 	
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mcycle	 CSR[B00]:	Clock	cycle	counter,	Machine	Mode	
mcycleh	 CSR[B80]:	Upper	half	of	cycle,	Machine	Mode	(RV32	only)	 	
medeleg	 CSR[302]:	Exception	delegation	register,	Machine	Mode	 	
MEIP	 machine	external	interrupt	 	
mepc	 CSR[341]:	Previous	value	of	PC,	Machine	Mode		
mhartid	 CSR[F14]:	Hardware	thread	ID	 	
mhpmcounter3	 CSR[B03]:	Event	counter	#3,	Machine	Mode	 	
mhpmcounter31	 CSR[B1F]:	Event	Counter	#31,	Machine	Mode	 	
mhpmcounter31h	 CSR[B9F]:	Upper	half	of	counter,	Machine	Mode	(RV32	only)	 	
mhpmcounter3h	 CSR[B83]:	Upper	half	of	counter,	Machine	Mode	(RV32	only)	 	
mhpmcounter4	 CSR[B04]:	Event	Counter	#4,	Machine	Mode	 	
mhpmcounter4h	 CSR[B84]:	Upper	half	of	counter,	Machine	Mode	(RV32	only)	
mhpmevent3	 CSR[323]:	Event	selector	#3,	Machine	Mode	
mhpmevent3	 CSR[324]:	Event	selector	#4,	Machine	Mode	
mhpmevent31	 CSR[33F]:	Event	selector	#31,	Machine	Mode	
mideleg	 CSR[303]:	Interrupt	delegation	register,	Machine	Mode	
mie	 CSR[304]:	Interrupt-enable	register,	Machine	Mode	
MIE	 Bit	in	status	register;	Machine	Mode	Interrupt	Enable	
mimpid	 CSR[F13]:	Implementation	ID	
minstret	 CSR[B02]:	Number	of	instructions	retired,	Machine	Mode	
minstreth	 CSR[B82]:	Upper	half	of	instret,	Machine	Mode	(RV32	only)	
mip	 CSR[344]:	Interrupt	pending,	Machine	Mode	
misa	 CSR[301]:	ISA	and	extensions	
MMU	 Memory	Management	Unit	
MPIE	 Bit	in	status	register;	Machine	Mode	Previous	Interrupt	Enable	
MPP	 Field	in	status	register;	Machine	Mode	–	Previous	Privilege	Mode	
MPRV	 Bit	in	status	register;	Modify	Privilege  
mscratch	 CSR[340]:	Temp	register	for	use	in	handler,	Machine	Mode	
MSIP	 machine	software	interrupt	
mstatus	 CSR[300]:	Status	register,	Machine	Mode	
MTIP	 machine	timer	interrupt		
mtval	 CSR[343]:	Bad	address	or	bad	instruction,	Machine	Mode	
mtvec	 CSR[305]:	Trap	handler	base	address,	Machine	Mode	
mvendorid	 CSR[F11]:	Vendor	ID		
MXR	 Bit	in	status	register;	Make	Executable	Readable	
NMI	 Non-maskable	interrupt	
NSE	 Nonstandard	extension	
NV	 Invalid	Operation	(a	bit	within	the	Floating	Point	Flags,	FFLAGS)	
NX	 Inexact	(a	bit	within	the	Floating	Point	Flags,	FFLAGS)	
OF	 Over2low	(a	bit	within	the	Floating	Point	Flags,	FFLAGS)	
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PC	 Program	Counter	
PMA	 Physical	Memory	Attribute	
PMP	 Physical	Memory	Protection	Unit	
pmpaddr0	 CSR[3B0]:	PMP	Address	#0	
pmpaddr1	 CSR[3B1]:	PMP	Address	#1	
pmpaddr15	 CSR[3BF]:	PMP	Address	#15	
pmpcfg0	 CSR[3A0]:	PMP	Con2iguration	word	#0	
pmpcfg1	 CSR[3A1]:	PMP	Con2iguration	word	#1	
pmpcfg2	 CSR[3A2]:	PMP	Con2iguration	word	#2	
pmpcfg3	 CSR[3A3]:	PMP	Con2iguration	word	#3	
PPN	 Physical	Page	Number	
PTE	 Page	Table	Entry	
RISC	 Reduced	Instruction	Set	Computer	
RM	 Rounding	Mode	Bits	
ROM	 Read	Only	Memory	
RV128	/	RV128I	 Instructions	present	only	on	128	bit	machines	
RV32	/	RV32I	 The	basic	instruction	set,	present	on	all	machines	
RV64	/	RV64I	 Instructions	present	only	on	64	and	128	bit	machines	
satp	 CSR[180]:	Address	translation	and	protection	
satp	 Supervisor	Address	Translation	and	Protection	CSR	
SBI	 Supervisor	Binary	Interface	
scause	 CSR[142]:	Trap	cause	code,	Supervisor	Mode	
scounteren	 CSR[106]:	Counter	enable,	Supervisor	Mode	
SD	 Field	in	status	register,	summarizes	FS	and	XS	2ields	
sedeleg	 CSR[102]:	Exception	delegation	register,	Supervisor	Mode	
SEE	 Supervisor	Execution	Environment	
SEIP	 supervisor	external	interrupt	
sepc	 CSR[141]:	Previous	value	of	PC,	Supervisor	Mode	
sideleg	 CSR[103]:	Interrupt	delegation	register,	Supervisor	Mode	
sie	 CSR[104]:	Interrupt-enable	register,	Supervisor	Mode	
SIE	 Bit	in	status	register;	Supervisor	Mode	Interrupt	Enable	
SIMD	 Single	instruction,	multiple	data	
sip	 CSR[144]:	Interrupt	pending,	Supervisor	Mode	
SP	 Stack	Pointer	
SPP	 Field	in	status	register;	Supervisor	Mode	–	Prev	Privilege	Mode	
SPIE	 Bit	in	status	register;	Supervisor	Mode	Prev	Interrupt	Enable	
sscratch	 CSR[140]:	Temp	register	for	use	in	handler,	Supervisor	Mode	
SSIP	 supervisor	software	interrupt	
sstatus	 CSR[100]:	Status	register,	Supervisor	Mode	
STIP	 supervisor	timer	interrupt		
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stval	 CSR[143]:	Bad	address	or	bad	instruction,	Supervisor	Mode	
stvec	 CSR[105]:	Trap	handler	base	address,	Supervisor	Mode	
SUM	 Bit	in	status	register;	Permit	Supervisor	User	Memory	Access	
SXL	 Field	in	status	register;	Emulation:	Reg	size	when	in	S	Mode	
tdata1	 CSR[7A1]:	Trigger	data	#1	
tdata2	 CSR[7A2]:	Trigger	data	#2	
tdata3	 CSR[7A3]:	Trigger	data	#3	
time	 CSR[C01]:	Current	time	in	ticks	
timeh	 CSR[C81]:	Upper	half	of	time	(RV32	only)	
TLB	 Translation	Lookaside	Buffer	
tselect	 CSR[7A0]:	Trigger	register	select	
TSR	 Bit	in	status	register;	Trap	SRET	instruction	 	
TW	 Bit	in	status	register;	Time-out	Wait	
TVM	 Bit	in	status	register;	Trap	Virtual	Memory	
ucause	 CSR[042]:	Trap	cause	code,	User	Mode	
UEIP	 user	external	interrupt	
uepc	 CSR[041]:	Previous	value	of	PC,	User	Mode	
UF	 Under2low	(a	bit	within	the	Floating	Point	Flags,	FFLAGS)	
uie	 CSR[004]:	Interrupt-enable	register,	User	Mode	
UIE	 Bit	in	status	register;	User	Mode	Interrupt	Enable	
uip	 CSR[044]:	Interrupt	pending,	User	Mode	
UPIE	 Bit	in	status	register;	User	Mode	Previous	Interrupt	Enable	
uscratch	 CSR[040]:	Temp	register	for	use	in	handler,	User	Mode	
USIP	 user	software	interrupt	
ustatus	 CSR[000]:	Status	register,	User	Mode	
UTIP	 user	timer	interrupt	
utval	 CSR[043]:	Bad	address	or	bad	instruction,	User	Mode	
utvec	 CSR[005]:	Trap	handler	base	address,	User	Mode	
UXL	 Field	in	status	register;	Emulation:	Reg	size	when	in	User	Mode	
VPN	 Virtual	Page	Number	
WFI	 Wait	For	Interrupt	
XOR	 Exclusive-Or	
XS	 Field	in	status	register;	status	of	extension	(clean/dirty/…)	
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About	the	Author		
Professor	Harry	H.	Porter	III	teaches	in	the	Department	of	Computer	Science	at	
Portland	State	University.	He	has	produced	several	video	courses,	notably	on	the	
Theory	of	Computation.	Recently	he	built	a	complete	computer	using	the	relay	
technology	of	the	1940s.	The	computer	has	eight	general	purpose	8	bit	registers,	a	
16	bit	program	counter,	and	a	complete	instruction	set,	all	housed	in	mahogany	
cabinets	as	shown.	Porter	also	designed	and	constructed	the	BLITZ	System,	a	
collection	of	software	designed	to	support	a	university-level	course	on	Operating	
Systems.	Using	the	software,	students	implement	a	small,	but	complete,	time-sliced,	
VM-based	operating	system	kernel.	Porter	has	habit	of	designing	and	implementing	
programming	languages,	the	most	recent	being	a	language	speci2ically	targeted	at	
kernel	implementation.	

Porter	holds	an	Sc.B.	from	Brown	University	and	a	Ph.D.	from	the	Oregon	Graduate	
Center.	

Porter	lives	in	Portland,	Oregon.	When	not	trying	to	2igure	out	how	his	computer	
works,	he	skis,	hikes,	travels,	and	spends	time	with	his	children	building	things.	

Professor	Porter’s	website:	www.cs.pdx.edu/~harry	
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