CS 457/557: Functional Languages

Lecture 4: Laws; Folds

Mark P Jones and Andrew Tolmach Portland State University

Lawful Programming

How can we give useful information about a function without necessarily having to give all the details of its definition?

Informal description:

"map applies its first argument to every element in its second argument ..."

Type signature: map :: (a -> b) -> [a] -> [b]

Laws:

Normally in the form of equalities between expressions ...

Algebra of Lists

map preserves identities, distributes over composition and concatenation:

map id= idmap (f.g)= map f. map gmap f (xs ++ ys)= map f xs ++ map f ys

... continued

filter distributes over concatenation

filter p (xs ++ ys) = filter p xs ++ filter p ys

Filters and maps:

filter p . map f = map f . filter (p . f)

 Composing filters:
 filter p . filter q = filter r where r x = q x && p x

Aside: Extensionality

Two functions are equal if they give the same results on the same arguments

 $f = g \Leftrightarrow \forall x. f x = g x$

• Hence f = g

Laws Describe Interactions

- A lot of laws describe how one operator interacts with another
- Example: interactions with reverse:
 - reverse . map f = map f . reverse
 - reverse . filter p = filter p . reverse
 - map f . map g = map (f . g)
 - reverse (xs ++ ys) = reverse ys ++ reverse xs
 - reverse . reverse = reverse
- Caution: stating a law doesn't make it true! (e.g., the last two laws for reverse are not true of all lists...)

Uses for Laws

Laws can be used:

- To capture/document deep intuitions about program behavior
- To support reasoning about program behavior
- To optimize or transform programs (either by hand, or in a compiler)
- As properties to be tested
- As properties to be proved

concat

concat :: [[a]] -> [a] concat [[1,2], [3,4,5], [6]] = [1,2,3,4,5,6]

Laws:

- filter p . concat = concat . map (filter p)
- map f . concat = concat . map (map f)
- concat . concat = concat . map concat

Folds!

A list xs can be built by applying the (:) and [] operators to a sequence of values:

 $XS = X_1 : X_2 : X_3 : X_4 : ... : X_k : []$

Suppose that we are able to replace every use of (:) with a binary operator (\oplus) , and the final [] with a value n:

 $xs = x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus ... \oplus x_k \oplus n$

 \clubsuit The resulting value is called foldr (\oplus) n xs

Many useful functions on lists can be described in this way.

Graphically

 $f = foldr (\oplus) n$

Example: sum

sum = foldr(+) 0

12

Example: product

product = foldr (*) 1

Example: length

length = foldr (x ys -> 1 + ys) 0

Example: map

map f = foldr (x ys -> f x : ys) []

Example: filter

filter p = foldr (\x ys -> if p x then x:ys else ys) []

Formal Definition

foldr :: $(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b$ foldr cons nil [] = nil foldr cons nil (x:xs) = cons x (foldr cons nil xs)

Applications

sum	= foldr (+) 0
product	= foldr (*) 1
length	= foldr ($x ys \rightarrow 1 + ys$) 0
map f	= foldr (\x ys -> f x : ys) []
filter p	= foldr c []
where c x	ys = if p x then x:ys else ys
xs ++ ys	= foldr (:) ys xs
and	= foldr (&&) True
or	= foldr () False

Patterns of Computation

- foldr captures a common pattern of computations over lists
- As such, it is a very useful function in practice to include in the Prelude
- Even from a theoretical perspective, it is very useful because it makes a deep connection between functions that might otherwise seem very different ...
- From the perspective of lawful programming, one law about foldr can be used to reason about many other functions

A law about foldr

- If (⊕) is an associative operator with unit n, then foldr (⊕) n xs ⊕ foldr (⊕) n ys
 = foldr (⊕) n (xs ++ ys)
- $(x_1 \oplus ... \oplus x_k \oplus n) \oplus (y_1 \oplus ... \oplus y_j \oplus n)$ $= (x_1 \oplus ... \oplus x_k \oplus y_1 \oplus ... \oplus y_j \oplus n)$
- All of the following laws are special cases:
 sum xs + sum ys = sum (xs ++ ys)
 product xs * product ys = product (xs ++ ys)
 and xs && and ys = and (xs ++ ys)
 or xs || or ys = or (xs ++ ys)

foldl

There is a companion function to foldr called foldl: foldl :: (b -> a -> b) -> b -> [a] -> b foldl s n [] = n foldl s n (x:xs) = foldl s (s n x) xs

♦ For example: foldl s n [e₁, e₂, e₃] = s (s (s n e₁) e₂) e₃ = ((n `s` e₁) `s` e₂) `s` e₃

foldr vs foldl

Uses for fold

- Many of the functions defined using foldr can be defined using foldl:
 - sum = fold (+) 0

product = foldl (*) 1

- There are also some functions that are more easily defined using foldl: reverse = foldl (\ys x -> x:ys) []
- When should you use foldr and when should you use fold!? When should you use explicit recursion instead? ... (to be continued)

foldr1 and foldl1

Variants of foldr and foldl that work on nonempty lists:

foldr1:: $(a \to a \to a) \to [a] \to a$ foldr1 f [x]= xfoldr1 f (x:xs)= f x (foldr1 f xs)

foldl1 :: $(a \rightarrow a \rightarrow a) \rightarrow [a] \rightarrow a$ foldl1 f (x:xs) = foldl f x xs

Notice:

- No case for empty list
- No argument to replace empty list
- Less general type (only one type variable)

Uses of foldl1, foldr1

From the prelude: minimum = foldl1 min maximum = foldl1 max

Not in the prelude: commaSep = foldr1 (\s t -> s ++ ", " ++ t)

Example: Adding Commas

To make large numbers easier to read, it is common to insert a comma after every third digit, starting from the right.

Example: 1234567 -> "1,234,567"

The show function can turn an Integer into a String, but how do we insert the commas?

Example: Adding Commas

commas

- = reverse
 - . foldr1 (\s t -> s++","++t)
 - . group 3
 - . reverse
 - . show

Summary

Folds on lists have many uses

- Folds capture a common pattern of computation on list values
- In fact, there are similar notions of fold functions on many other algebraic datatypes ...
 - (Hence the Foldable type class...)