4F3 - Predictive Control

Lecture 3 - Predictive Control with Constraints

Jan Maciejowski
jmm@eng.cam.ac.uk
Constraints on System Variables

In practice, system variables are always constrained by:

- Physical limitations
 - Input constraints – e.g. actuator limits
 - State constraints – e.g. reservoir capacities
- Safety considerations (e.g. critical temperatures/pressures)
- Performance specifications (e.g. limit overshoot)

\[
1 \leq y_1 \leq 4 \\
1 \leq y_2 \leq 3 \\
1 \leq y_3 \leq 3 \\
1.5 \leq y_4 \leq 3 \\
1.5 \leq y_5 \leq 3
\]
Systems with Input Saturation

- A common system nonlinearity is *input saturation*.

\[
x(k + 1) = Ax(k) + B \text{sat}(u(k)) \quad \text{(nonlinear)}
\]

\[
y(k) = Cx(k)
\]

- Easily transformed into a constraint on a linear system:

\[
\underline{u}\{i\} \leq u\{i\} \leq \bar{u}\{i\}
\]

where \(v\{i\}\) is the \(i^{th}\) component (row) of a column vector \(v\).
Constrained LQR Problem

Problem: Given an initial state $x(0)$ at time $k = 0$, compute and implement an input sequence

$$\{u(0), u(1), \ldots, \}$$

that minimizes the infinite horizon cost function

$$\sum_{i=0}^{\infty} \left(x(k)^T Q x(k) + u(k)^T R u(k) \right)$$

while guaranteeing that constraints are satisfied for all time.

- It is usually impossible to solve this problem.
- Predictive control provides an approximate solution.
- RHC laws with constraints will be *nonlinear*.
Problem: Given an initial state \(x = x(k) \), compute a finite horizon input sequence \(\{u_0, u_1, \ldots, u_{N-1}\} \) that minimizes the finite horizon cost function

\[
x_N^T P x_N + \sum_{i=0}^{N-1} \left(x_i^T Q x_i + u_i^T R u_i \right)
\]

where

\[
x_0 = x
\]

\[
x_{i+1} = Ax_i + Bu_i, \quad i = 0, 1, \ldots, N - 1
\]

while guaranteeing that all constraints are satisfied over the prediction horizon \(i \in 0, 1, \ldots, N \).
1. Obtain measurement of current output/state.
2. Compute optimal finite horizon input sequence subject to constraints.
3. Implement first part of optimal input sequence.
4. Return to step 1.
1. Obtain measurement of current output/state.
2. Compute optimal finite horizon input sequence subject to constraints.
3. Implement first part of optimal input sequence.
4. Return to step 1.
1. Obtain measurement of current output/state.
2. Compute optimal finite horizon input sequence subject to constraints.
3. Implement first part of optimal input sequence.
4. Return to step 1.
1. Obtain measurement of current output/state.
2. Compute optimal finite horizon input sequence subject to constraints.
3. Implement first part of optimal input sequence.
4. Return to step 1.
Prediction Matrices

Recall that we previously solved for the sequence of predicted states X in terms of the stacked inputs U:

$$
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_N
\end{pmatrix}
:=
\begin{pmatrix}
 A \\
 A^2 \\
 \vdots \\
 A^N
\end{pmatrix}
\begin{pmatrix}
 x_0 \\
 u_0 \\
 u_1 \\
 \vdots \\
 u_{N-1}
\end{pmatrix}
+
\begin{pmatrix}
 B & 0 & \cdots & 0 \\
 AB & B & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 A^{N-1}B & A^{N-2}B & \cdots & B
\end{pmatrix}
\begin{pmatrix}
 u_0 \\
 u_1 \\
 \vdots \\
 u_{N-1}
\end{pmatrix}
$$

or, defining $x := x_0$,

$$
X := \Phi x + \Gamma U.
$$

The matrices Φ and Γ are the prediction matrices.
Incorporating Constraints

Now incorporate a set of linear inequality constraints on the predicted states x_i and inputs u_i.

$$M_i x_i + E_i u_i \leq b_i, \quad \text{for all } i = 0, 1, \ldots, N - 1$$

$$M_N x_N \leq b_N.$$

Many constraints take this form:

- $M_s = 0 \Rightarrow$ Input constraints only
- $E_s = 0 \Rightarrow$ State constraints only
- Can include constraints on outputs or controlled variables

For simplicity, assume that

$$E_i = E, \quad M_i = M \quad \text{and} \quad b_i = b \quad \text{for } i = 0, 1, \ldots, N - 1$$
Writing Constraints in Standard Form

Suppose we have the following input and output constraints:

\[u_{low} \leq u_i \leq u_{high}, \quad i = 0, 1, \ldots, N - 1 \]
\[y_{low} \leq y_i \leq y_{high}, \quad i = 0, 1, \ldots, N \]

Recalling that \(y_i = Cx_i \), this is equivalent to:

\[
\begin{pmatrix}
0 \\
0 \\
-C \\
+C
\end{pmatrix} x_i +
\begin{pmatrix}
-I \\
+I \\
0 \\
0
\end{pmatrix} u_i \leq
\begin{pmatrix}
-u_{low} \\
u_{high} \\
-y_{low} \\
y_{high}
\end{pmatrix} \quad \text{for } i = 0, 1, \ldots, N - 1
\]

Similar expression for terminal constraint (in terms of \(x_N \) only)
Writing Constraints in Standard Form

From the previous example, we can write the constraints in the form:

\[M_i x_i + E_i u_i \leq b_i, \quad \text{for all } i = 0, 1, \ldots, N - 1 \]

\[M_N x_N \leq b_N. \]

by defining:

\[
M_i := \begin{pmatrix} 0 \\ 0 \\ -C \\ +C \end{pmatrix}, \quad E_i := \begin{pmatrix} -I \\ +I \\ 0 \\ 0 \end{pmatrix}, \quad b_i := \begin{pmatrix} -u_{low} \\ +u_{high} \\ -y_{low} \\ +y_{high} \end{pmatrix}, \quad \text{for } i = 0, 1, \ldots, N - 1
\]

and

\[
M_N := \begin{pmatrix} -C \\ +C \end{pmatrix}, \quad b_N := \begin{pmatrix} -y_{low} \\ +y_{high} \end{pmatrix}
\]
Writing Constraints in Terms of x, X and U

- Taking all of the constraints together:

$$
\begin{pmatrix}
M_0 \\
0 \\
\vdots \\
0
\end{pmatrix}
x_0 +
\begin{pmatrix}
0 & \cdots & 0 \\
M_1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & M_N
\end{pmatrix}
\begin{pmatrix}
x_1 \\
\vdots \\
x_N
\end{pmatrix}
+
\begin{pmatrix}
E_0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & E_{N-1}
\end{pmatrix}
\begin{pmatrix}
u_0 \\
\vdots \\
u_{N-1}
\end{pmatrix}
\leq
\begin{pmatrix}
b_0 \\
b_1 \\
\vdots \\
u_N
\end{pmatrix}
$$

- By appropriately defining D, M, E and c (recalling $x := x_0$):

$$
Dx + MX + EU \leq c.
$$

- Next, will eliminate X using prediction matrices.
Writing Constraints in Terms of x and U

Substitute $X = \Phi x + \Gamma U$ into

$$Dx + MX + EU \leq c.$$

and collect terms. The constraints can be written in the form:

$$JU \leq c + Wx$$

where

$$J := M\Gamma + E$$

and

$$W := -D - M\Phi$$

Our constraints are now in terms of the input sequence U and the initial state $x = x_0 = x(k)$.

4F3 Predictive Control - Lecture 3 – p. 12/21
Writing Constraints in Terms of x and U

In summary, the basic procedure is:

- Define linear inequalities in u_i, x_i, y_i and z_i
- Write the constraints in the form:

$$M_i x_i + E_i u_i \leq b_i, \quad \text{for all } i = 0, 1, \ldots, N - 1$$
$$M_N x_N \leq b_N.$$

- Stack the constraints to get them in the form:

$$D x + MX + EU \leq c.$$

- Substitute $X = \Phi x + \Gamma U$ and rearrange to the form:

$$J U \leq c + W x.$$
Cost Function

Recall that the cost function

\[V(x, U) := x_N^T P x_N + \sum_{i=0}^{N-1} \left(x_i^T Q x_i + u_i^T R u_i \right) \]

can be rewritten (with \(x := x_0 \)) as

\[V(x, U) = \frac{1}{2} U^T G U + U^T F x + x^T (Q + \Phi^T \Omega \Phi) x \]

for some matrices \(F, G \) and \(\Omega \) (defined in lecture 2).

Remember that \(G \succ 0 \) if \(P \succeq 0, Q \succeq 0 \) and \(R \succ 0 \).
Quadratic Programming

Definition *Quadratic Program (QP)*

Given matrices Q and A and vectors c and b, the optimization problem:

$$\min_{\theta} \frac{1}{2} \theta^T Q \theta + c^T \theta$$

subject to: $A \theta \leq b$

is called a quadratic program (QP).

Proposition *If $Q \succ 0$ in the above quadratic program, then*

1) *The optimization problem is strictly convex.*

2) *A global minimizer can always be found.*

3) *The global minimizer is unique.*
Nature of Solutions to QPs

\[A \theta \leq b \]

- Constrained minimum
- Level set of cost function
- Unconstrained minimum
Writing Problems as QPs

Many problem types can be cast as QPs:

Example: Nonlinear constraint.

\[
\min_{\theta} \frac{1}{2} \theta^T Q \theta + c^T \theta \quad \Rightarrow \quad \min_{\theta} \frac{1}{2} \theta^T Q \theta + c^T \theta
\]

subject to: \(\max\{e^T \theta, f^T \theta\} \leq b \)

subject to: \(e^T \theta \leq b, f^T \theta \leq b \)

Example: Nonlinear cost function.

\[
\min_{\theta} |c^T \theta| \quad \Rightarrow \quad \min_{\theta, \delta} \delta
\]

subject to: \(A \theta \leq b \)

subject to: \(A \theta \leq b, c^T \theta - \delta \leq 0, -c^T \theta - \delta \leq 0 \)
Constrained Optimal Control as a QP

Our constrained optimal control problem is:

$$
\min_U \frac{1}{2} U^T GU + U^T F x
$$

subject to: $JU \leq c + W x$

This is a quadratic program in standard form. Substitute

$$
\theta \rightarrow U \quad Q \rightarrow G \quad c \rightarrow F x
$$

$$
A \rightarrow J \quad b \rightarrow (c + W x)
$$

The optimal solution is

1. A global minimum (when $G \succeq 0$).
2. Unique (when $G \succ 0$).
Solution via Quadratic Programming

- Some QP parameters are functions of the current state x
 - Without constraints, $U^*(x)$ is a linear function of x.
 - With constraints, $U^*(x)$ is nonlinear.

- Must calculate $U^*(x)$ by solving a QP online for each x.

- See JMM §3.2 and §3.3 for an introduction to solving QPs.

- In Matlab, our QP can be solved using

$$U = \text{quadprog}(G, F^*x, J, c+Wx)$$
Implementing the RHC Law

- The RHC input is the first part of the optimal input sequence:

\[\kappa_{rhc}(x) := u_0^*(x) = \left(I_m \ 0 \ \ldots \ 0 \right) U^*(x) \]

- Since \(U^*(x) \) is no longer linear, \(\kappa_{rhc} : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is a nonlinear control law.

- The dynamics of the closed loop system are nonlinear:

\[x(k+1) = Ax(k) + B\kappa_{rhc}(x) \]
Complexity of Solutions

Example: Double integrator

\[x(k + 1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} x(k) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u(k) \]

Constraints:

\[|u| \leq 1, \|y\|_\infty \leq 12 \]

Horizon length = 12

Quadratic cost with

\[Q = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad R = 1, \quad P = 1 \]

Solution: Controller with 57 regions. Each region \(i \) has \(u^*_i(x) = v_i + K_i x \)