This problem is intended to familiarize you with one of the basic switching dc-to-dc converters—the buck converter (Fig. 1), fundamentals of its operation, assumptions usually made and practical limitations.

![Buck Converter Diagram]

Fig. 1 Buck Switching dc-to-dc Converter

Switch S is periodically for interval DTs in position A and for interval DTs = (1-D) T_s in position B, where f_s = 1/T_s is the switching frequency and D is defined as switch duty ratio.

I. Let C = 0

a. After a large number of cycles the inductor current becomes periodic and the steady-state is established as shown in Fig. 2. From the fundamental differential equations determine exactly the current levels I_1 and I_2 characterizing this steady state.

b. By assuming that R/L << f_s in your answer to part (a) find the average inductor current I_L and determine an approximation to the inductor current ripple Δi_L ≈ I_2 - I_1.

c. Obtain an expression for the relative magnitude of the output voltage switching ripple ΔV/V.

![Inductor Current Waveform]

Fig. 2 Inductor Current Waveform
POWER ELECTRONICS

II. Let $C \neq 0$.

 a. Assuming that the output voltage switching ripple Δv is small compared to its dc value V, derive an approximation for its relative magnitude $\Delta v/V$. Hint: assume that L sees only the dc component of v, that is V, whereas C sees only the ac component of i_L.

III. Find and compare the values of L required to make $\frac{\Delta v}{V} = 0.0025$ (or 0.25%) for two cases: (a) $C = 0$; (b) $C = 10 \mu F$. Use the following parameters and justify the approximations:

\[V_g = 15 \text{ V}, \quad V = 7.5 \text{ V}, \quad T_s = 50 \mu \text{sec}, \quad R = 100 \text{ ohm}. \]

IV. The ideal switch S in Fig. 1 is now realized by the transistor, diode configuration as shown in Fig. 3. Assume that the transistor can be modelled in saturation by a constant voltage source $V_s = 0.5 \text{ V}$, and diode by a constant voltage source $V_F = 1.0 \text{ V}$ in its on state, while they have infinite resistance in their off states. Assume also that the converter operates in the continuous conduction mode (inductor current never falls to zero).

![Fig. 3 Practical Implementation of Buck Converter](image)

a. Find an expression for output voltage $V = f_1 (D, V_s, V_F, V_g)$

b. Find an expression for the efficiency $\eta = f_2 (V, D, V_s, V_F)$ and put it in the form $\eta = f_3 (V_g, V_s, V_F) f_4 (V, V_F)$

c. Using the results of part (a) and (b) calculate the efficiency η for the following cases:

\[V_g = 15 \text{ V}, \quad V = 7.5 \text{ V}; \quad V_g = 90 \text{ V}, \quad V = 15 \text{ V}; \quad V_g = 15 \text{ V}, \quad V = 2.5 \text{ V}; \]

Based on these results, what range of power supply voltages are the most difficult to obtain in an efficient manner? Any suggestions for the improvement?
SOLUTION

BUCK CONVERTER

\[I(t) = \frac{V_0}{L} (1 - e^{-\frac{t}{\tau}}) + I_1 e^{-\frac{t}{\tau}} \] (1)

With switch in position A

\[i_L(t) = h e^{-\frac{t}{\tau}} \] (2)

With switch in position B

At steady state we have \(i_L(0) = i_L(T_s) \)

\(\Rightarrow \Delta i_L \big|_{0}^{T_s} = \Delta i_L \big|_{0}^{\infty} \) (3)

By \((1) + (3) \)

\[I_2 = \frac{V_0}{L} \left(1 - e^{-\frac{T_s}{\tau}}\right) + I_1 e^{-\frac{T_s}{\tau}} \] (4)

Also by \((2) + (3) \)

\[I_1 = I_2 e^{-\frac{T_s}{\tau}} \] (5)

\((4) + (5) \Rightarrow \)

\[I_2 = \frac{V_0}{L} \left(1 - e^{-\frac{T_s}{\tau}}\right) + I_1 e^{-\frac{T_s}{\tau}} \]
\[I_2 = \frac{V_y}{R} \left(\frac{1 - e^{-\frac{D'}{T_S}}}{1 - e^{-\frac{D}{T_S}}} \right) \] \hspace{1cm} (6)

\[I_1 = \frac{V_y}{R} \left(\frac{1 - e^{-\frac{D}{T_S}}}{1 - e^{-\frac{D'}{T_S}}} \right) e^{-\frac{D'}{T_S}} \] \hspace{1cm} (7)

By

where \(\frac{D}{T_S} \ll \frac{D'}{T_S} \), the exponentials may be approximated by the first two terms of the Taylor series.

From (6), it becomes:

\[I_2 = \frac{V_y}{R} \left(\frac{1 - \left[1 - \frac{D}{T_S}\right]}{1 - \left[1 - \frac{D'}{T_S}\right]} \right) \]

\[\Rightarrow I_2 = \frac{V_y}{R} D \] \hspace{1cm} (8)

Also (7) becomes:

\[I_1 = \frac{V_y}{R} \left(1 - \frac{D}{T_S} \right) \] \hspace{1cm} (9)

\[\delta_{i_2} \triangleq I_2 - I_1 = \frac{V_y D D'T_S}{L} \]
With $n/L < f_s$, waveform is exactly linear.

Average inductor current $I_{avg} = I_1 + \frac{1}{2} (I_2 - I_1)$

$$I_{avg} = \frac{V_0 D}{R} \left(1 - \frac{E}{L} D' T_5 \right) + \frac{V_0 D D' T_5}{2L}$$

$$I_{avg} = \frac{V_0 D}{R} \left(1 - \frac{E}{L} D' T_5 + \frac{E}{L} D' T_5 \right)$$

$$I_c = \frac{V_0 D}{R} \left(1 - \frac{E}{L} D' T_5 \right)$$

$$I_c \approx \frac{V_0 D}{R} \text{ since } \frac{E}{L} D' T_5 \ll 1$$

\[
\frac{\Delta V}{V} = \frac{\delta I_c R}{V_0 D \left(1 - \frac{E}{L} D' T_5 \right)} \approx \frac{V_0 D}{R} \text{ since } \frac{E}{L} D' T_5 \ll 1
\]
\[V = \frac{1}{2} \left(\frac{D^2}{2} + \frac{D^2}{2} \right) \Delta R \]

\[\frac{dV}{\Delta R} = \frac{1}{2} D^2 \]

The absolute voltage with

\[\frac{dV}{\Delta R} = \frac{1}{2} \frac{D^2}{2} \Delta R \]

\[V = \frac{1}{2} \left(\frac{D^2}{2} + \frac{D^2}{2} \right) \Delta R \]

\[\frac{dV}{\Delta R} = \frac{1}{2} D^2 \]

From the falling slope of the voltage

\[\frac{dV}{\Delta R} = \frac{1}{2} \frac{D^2}{2} \Delta R \]

\[V = \frac{1}{2} \left(\frac{D^2}{2} + \frac{D^2}{2} \right) \Delta R \]

\[\frac{dV}{\Delta R} = \frac{1}{2} D^2 \]

\[\frac{dV}{\Delta R} = \frac{1}{2} \frac{D^2}{2} \Delta R \]

\[V = \frac{1}{2} \left(\frac{D^2}{2} + \frac{D^2}{2} \right) \Delta R \]

\[\frac{dV}{\Delta R} = \frac{1}{2} D^2 \]

\[\frac{dV}{\Delta R} = \frac{1}{2} \frac{D^2}{2} \Delta R \]

\[V = \frac{1}{2} \left(\frac{D^2}{2} + \frac{D^2}{2} \right) \Delta R \]

\[\frac{dV}{\Delta R} = \frac{1}{2} D^2 \]

\[\frac{dV}{\Delta R} = \frac{1}{2} \frac{D^2}{2} \Delta R \]

\[V = \frac{1}{2} \left(\frac{D^2}{2} + \frac{D^2}{2} \right) \Delta R \]

\[\frac{dV}{\Delta R} = \frac{1}{2} D^2 \]
ALTERNATIVE METHOD TO FIND RIPPLE VOLTAGE

With the assumption that all the ripple current flows through the output capacitor and that no dc current flows through the capacitor, then the capacitor current looks like the following.

\[i_c \]

\[+b \]

\[-c \]

\[\Delta i \]

\[m_1 \]

\[m_2 \]

\[\tau_1 \]

\[\tau_2 \]

\[D \tau_1 \]

\[D \tau_2 \]

\[T_s \]

\[\text{Fig. 1} \]

The ripple voltage due to this ripple current can be evaluated from the basic capacitor equation:

\[i = c \frac{dv}{dt} \]

\[\Rightarrow \quad \frac{1}{c} \int i(t) \, dt = v(t) \quad (1) \]

The current equations are given from inspection of Fig. 1 as follows:
\[i(t) = \begin{cases} \frac{m_1}{2} t - b, & 0 \leq t \leq DT_s \\ -m_2 (t - DT_s) + b, & DT_s \leq t \leq T_s \end{cases} \quad (2a) \]

\[v(t) = \begin{cases} \frac{1}{c} \int_0^t (m_1 t - b) \, dt, & 0 \leq t \leq DT_s \\ \frac{1}{c} \int_{DT_s}^t \left[-m_2 (t - DT_s) + b \right] \, dt, & DT_s \leq t \leq T_s \end{cases} \]

Eqs. (2) describes one cycle of capacitor current. To find one cycle of capacitor voltage we use (1) together with (2):

\[v(t) = \begin{cases} \frac{1}{c} \left(\frac{m_1}{2} t^2 - bt \right), & 0 \leq t \leq DT_s \\ \frac{1}{c} \left[-\frac{m_2}{2} t^2 + (m_2 DT_s + b) t + \frac{m_2}{2} DT_s^2 - (m_2 DT_s + b) T_s \right], & DT_s \leq t \leq T_s \end{cases} \quad (3a) \]

Eqs. 3 describes one cycle of capacitor voltage ripple.
We can differentiate (3a) and (3b) to determine when the maximum and minimum values of ripple occurs.

\[
\frac{dU(t)}{dt} = 0 \quad \Rightarrow \quad m_1 t - b = 0 \quad \Rightarrow \quad t = \frac{b}{m_1}, \quad (4a)
\]

\[
-m_2 t + m_2 DT_s + b = 0 \quad \Rightarrow \quad t = \frac{m_2 DT_s + b}{m_2}, \quad (4b)
\]

\[DT_s \leq t \leq T_s\]

Now, for the buck converter:

\[
m_1 = \frac{V_g - V}{L} = \frac{D'V_g}{L} \]

\[
m_2 = \frac{V}{L} = \frac{DV_g}{L} \]

\[b = \frac{\Delta i}{2} = \frac{D'V_g DT_s}{L} \]

By finding second derivatives, we can see that the minimum in the volt-ge ripple occurs at

\[
t = \frac{b}{m_1} = \frac{D'V_g T_s}{2} \quad \frac{D'V_g}{2} = \frac{DT_s}{2}
\]
which is within the interval of validity \((0 \leq t \leq DT_s)\) of the first subinterval. In fact, the minimum in the output voltage occurs halfway through the first subinterval.

Similarly, the maximum in the output voltage occurs at

\[
t = \frac{m_2 DT_s + b}{m_2} = DT_s + \frac{b}{m_2} = DT_s + \frac{\gamma b'}{2k} DT_s
\]

\[
= DT_s + \frac{D'T_s}{2}
\]

which is at the center of the second subinterval and (hence) within its appropriate region of validity.

Now

\[
|\Delta v| = |v_{\text{min}} - v_{\text{max}}|
\]

\[
= \frac{1}{c} \left[\frac{m_1}{2} \left(\frac{DT_s}{2} \right)^2 - b \ \frac{DT_s}{2} \right]
\]

\[
- \frac{1}{c} \left[-\frac{m_2}{2} \left(DT_s + \frac{D'T_s}{2} \right)^2 + (m_2 DT_s + b)(DT_s + \frac{D'T_s}{2}) \right]
\]

\[
+ \frac{m_2}{2} \left(D^2 T_s^2 - (m_2 DT_s + b) DT_s \right)
\]
\[\frac{1}{c} \left(\frac{D' V_g D^2 T_s^2}{2L} - \frac{D V_g V_T s}{2L} \frac{D T_s}{2} \right)\]

\[-\frac{1}{c} \left(-\frac{D V_g}{2L} \left(\frac{D T_s + D' V_T}{2} \right)^2 + \left(\frac{D V_g}{L} \frac{D T_s}{2} + \frac{D V_g D' V_T}{2L} \right) \left(\frac{D T_s + D' V_T}{2} \right) \right)\]

\[+ \frac{D V_g}{2L} D^2 T_s^2 - \left(\frac{D V_g}{L} \frac{D T_s}{2} + \frac{D V_g D' V_T}{2L} \right) \frac{D T_s}{2} \]

\[= \frac{1}{c} \left[\frac{D' D^2 V_g T_s^2}{8L} - \frac{D' D^2 V_g T_s^2}{4L} + \frac{D V_g}{2L} \left(\frac{D^2 T_s^2 + D' T_s^2 + D D' T_s^2}{4} \right) \right] \]

\[- \frac{D D' V_g T_s^2}{2L} - \frac{D' D V_g T_s^2}{2L} - \frac{D D' V_g T_s^2}{2L} \]

\[= \frac{1}{c} \left[\frac{D' D V_g T_s^2}{L} \right] \left[\frac{D}{8} - \frac{D}{4} + \frac{D^2}{2D'} + \frac{D'}{4} + \frac{D}{8} - \frac{D^2}{4} + \frac{D}{2} - \frac{D}{4} - \frac{D}{2} - \frac{D'}{4} \right] \]

\[= \frac{1}{c} \left[\frac{D' D V_g T_s^2}{L} \right] \left[\frac{1}{8} - \frac{1}{4} \right] = \frac{D' D V_g T_s^2}{8 LC} = \Delta u\]
\[\frac{L}{R} = 0.01, \quad T_s = 50 \times 10^{-6} \Rightarrow \frac{L}{R} \gg T_s \]

\[C = 10 \mu F \quad \Rightarrow \text{approximate formula is well justified} \]

\[\frac{\delta V}{V} = \frac{1}{8} \frac{L}{t_s^2} \]

\[\Rightarrow \quad L = \frac{1}{8} \left(1 - \frac{7s}{15} \right) \left(50 \times 10^{-6} \right) \]

\[\frac{1}{10 \times 10^{-6}} \left(0.0025 \right) \]

\[= 6.25 \gg H \]

\[\frac{L}{R} = 6.25 \times 10^{-2}, \quad T_s = 50 \times 10^{-6} \Rightarrow \frac{L}{R} \gg T_s \]

\[\Rightarrow \text{approximate formula is well justified}. \]
\[
\frac{V}{V_g} = \left(\frac{V_3 - V_5 + V_4}{V_g} \right) - \frac{V_4}{V_g}
\]

\[
\frac{V}{V_g} = D - \left(\frac{D_3 V_3 + D_4 V_4}{V_g} \right)
\]

\[\text{Also}\]
\[
\eta = \frac{\text{output power}}{\text{input power}}
\]

\[\eta = \frac{\frac{V}{V_g \cdot D \cdot l_2}}{D} \quad \text{I}_2 - \text{average inductor current}
\]

\[
\eta = \frac{\sqrt{V_3}}{D} = \frac{\text{real voltage gain}}{\text{ideal voltage gain}}
\]

\[\eta = \frac{\frac{V}{D \cdot V_g}}{D} \quad \text{(A)}
\]

\[\text{output power} = \frac{l_2^2 R}{1 + l_2 (V_3 D^2 + l_2 V_4 D')}
\]

\[\text{power loss} = \text{power loss in transformer} + \text{power loss in diode}
\]

\[I_2 = \frac{l_2^2 R}{l_2^2 R + l_2 V_3 D + l_2 V_4 D'} \]
\[N_{mn} = \frac{V}{R} \]

(1)

\[Q = \frac{V}{V + V_s D + V_f D'} \] (2)

(A) + (B) \implies

\[Q = \frac{V}{V + V_s V + V_f \left(1 - \frac{V}{V_s}
ight)} \]

(3)

\[Q = \frac{V}{V + V_s + V_f} \cdot \frac{V}{V + V_f} \]

(c)

\[V_s = 0.5 \text{, } V_f = 1.0 \]

i) \[\frac{V_f}{V} = \frac{15}{7.5} \text{, } \eta = \frac{15 - 0.5 + 1}{7.5 + 1} = \frac{15}{7.5 + 1} \]

\[\eta = 0.91 \] √

ii) \[\frac{V_f}{V} = \frac{9.0}{15} \text{, } \eta = \frac{9.0 - 0.5 + 1}{9.0 + 1} = \frac{15}{9.0 + 1} \]

\[\eta = 0.94 \] √

iii) \[\frac{V_f}{V} = \frac{15}{2.5} \text{, } \eta = \frac{15 - 0.5 + 1}{2.5 + 1} = \frac{15}{2.5 + 1} \]

\[\eta = 0.74 \] √
High efficiency is most difficult to obtain when the output voltage is small.

In general, high efficiency is difficult to obtain when either input or output voltages are low and comparable to transistor and diode drops. Simultaneous low input and low output voltage converters are more inefficient.

To improve efficiency, one might use a diode with a lower voltage drop, such as a Schottky diode. A transistor with lower saturation voltage would also increase efficiency.

PROBLEMS

2.1 Analysis and design of a buck-boost converter: A buck-boost converter is illustrated in Fig. 2.28(a), and a practical implementation using a transistor and diode is shown in Fig. 2.28(b).

![Fig. 2.28](image)

(a) Find the dependence of the equilibrium output voltage V and inductor current I on the duty ratio D, input voltage V_i, and load resistance R. You may assume that the inductor current ripple and capacitor voltage ripple are small.

(b) Plot your results of part (a) over the range $0 \leq D \leq 1$.

(c) Dc design: for the specifications

\[
\begin{align*}
V_i &= 30 \text{ V} \\
V &= -20 \text{ V} \\
R &= 4 \Omega \\
f_s &= 40 \text{ kHz}
\end{align*}
\]

(i) Find D and I

(ii) Calculate the value of L that will make the peak inductor current ripple Δi equal to ten percent of the average inductor current I.

(iii) Choose C such that the peak output voltage ripple ΔV is 0.1 V.

(d) Sketch the transistor drain current waveform $i_t(t)$ for your design of part (c). Include the effects of inductor current ripple. What is the peak value of i_t? Also sketch $i_t(t)$ for the case when L is decreased such that Δi is 50% of I. What happens to the peak value of i_t in this case?

(e) Sketch the diode current waveform $i_d(t)$ for the two cases of part (d).

In a certain application, an unregulated dc input voltage can vary between 18 and 36 V. It is desired to produce a regulated output of 28 V to supply a 2 A load. Hence, a converter is needed that is capable of...
both increasing and decreasing the voltage. Since the input and output voltages are both positive, converters that invert the voltage polarity (such as the basic buck–boost converter) are not suited for this application.

One converter that is capable of performing the required function is the nonisolated SEPIC (single-ended primary inductance converter) shown in Fig. 2.29. This converter has a conversion ratio \(M(D) \) that can both buck and boost the voltage, but the voltage polarity is not inverted. In the normal converter operating mode, the transistor conducts during the first subinterval (\(0 \leq t \leq DT_a \)), and the diode conducts during the second subinterval (\(DT_a \leq t \leq T \)). You may assume that all elements are ideal.

(a) Derive expressions for the dc components of each capacitor voltage and inductor current, as functions of the duty cycle \(D \), the input voltage \(V_i \), and the load resistance \(R \).

(b) A control circuit automatically adjusts the converter duty cycle \(D \), to maintain a constant output voltage of \(V = 28 \) V. The input voltage slowly varies over the range \(18 \) V \(\leq V_i \leq 36 \) V. The load current is constant and equal to 2 A. Over what range will the duty cycle \(D \) vary? Over what range will the input inductor current dc component \(I_L \) vary?

2.3 For the SEPIC of Problem 2.2,

(a) Derive expressions for each inductor current ripple and capacitor voltage ripple. Express these quantities as functions of the switching period \(T \); the component values \(L_1, L_2, C_1, C_2 \); the duty cycle \(D \); the input voltage \(V_i \); and the load resistance \(R \).

(b) Sketch the waveforms of the transistor voltage \(V_{ge}(t) \) and transistor current \(i_{g}(t) \), and give expressions for their peak values.

2.4 The switches in the converter of Fig. 2.30 operate synchronously: each is in position 1 for \(0 \leq t \leq DT_a \), and in position 2 for \(DT_a \leq t \leq T \). Derive an expression for the voltage conversion ratio \(M(D) = V/V_i \). Sketch \(M(D) \) vs. \(D \).

2.5 The switches in the converter of Fig. 2.31 operate synchronously: each is in position 1 for \(0 \leq t \leq DT_a \), and in position 2 for \(DT_a \leq t \leq T \). Derive an expression for the voltage conversion ratio \(M(D) = V/V_i \). Sketch \(M(D) \) vs. \(D \).
Solution to Problem 2.2

A dc voltage regulator based on the SEPIC Converter analysis

Fig. 2.29, p. 38

A caveat

Label voltage and current for each inductor and capacitor. Defined directions of current and voltage must be consistent:

\[
\begin{align*}
\text{voltage} & \quad \uparrow \ \uparrow \\
\text{current} & \quad \downarrow \ \downarrow
\end{align*}
\]

A caveat

First subinterval: \(0 \leq t \leq D T_s \)

Transistor is on, diode is off

Circuit becomes

Inductor voltages and capacitor currents for this subinterval:

\[
\begin{align*}
v_{L1}(t) &= v_g \quad v_{L2}(t) = v_{C1}(t) \quad i_{C1}(t) = -i_{L2}(t) \quad i_{C2}(t) = -v(t)/R
\end{align*}
\]
Note that each inductor voltage and capacitor current has been expressed in terms of quantities that have small ripple when \(L_1, L_2, C_1, \) and \(C_2 \) are sufficiently large. We can therefore make the small ripple approximation and write
\[
\begin{align*}
i_{L_1}(t) &\approx I_{L_1} \\
v_{C_1}(t) &\approx V_{C_1} \\
i_{L_2}(t) &\approx I_{L_2} \\
v(t) &\approx V
\end{align*}
\]

So we obtain
\[
\begin{align*}
v_{L_1}(t) &= V_g \\
v_{L_2}(t) &= V_{C_1} \\
i_{c_1}(t) &= -I_{L_2} \\
i_{c_2}(t) &= -\frac{V}{R}
\end{align*}
\]

We could have written the equations for subinterval 1 in other ways. For example, we could have expressed \(i_{c_1}(t) \) as
\[
i_{c_1}(t) = i_{L_1}(t) - i_{Q_1}(t)
\]

While this equation is true, it is not as useful because the switching ripple in the transistor current \(i_{Q_1}(t) \) is not small:

\[i_{Q_1}(t)\]
Second subinterval: \(DT_5 \leq t \leq T_5 \)

Transistor is off, diode is on

Circuit becomes

Inductor voltages and capacitor currents for this subinterval:

\[v_{L1}(t) = v_g - v_{c1}(t) - v(t) \]
\[v_{L2}(t) = -v(t) \]
\[i_{c1}(t) = i_{L1}(t) \]
\[i_{c2}(t) = i_{L1}(t) + i_{L2}(t) - v(t)/R \]

Again, note that \(v_{L1}, v_{L2}, i_{c1}, \) and \(i_{c2} \) are expressed in terms of quantities that have small ripple (i.e., \(i_{L1}(t), i_{L2}(t), v_{c1}(t), v(t), \) and \(v_g \)) and not as functions of quantities whose ripples are not small (such as \(v_{L1}(t), v_{c2}(t), i_{c1}(t), i_{c2}(t), \) and \(i_Q(t) \)). Use of the small ripple approximation now leads to

\[v_{L1}(t) \approx v_g - v_{c1} - V \]
\[v_{L2}(t) \approx -V \]
\[i_{c1}(t) \approx I_{L1} \]
\[i_{c2}(t) \approx I_{L1} + I_{L2} - V/R \]
Waveforms:

\[V \enspace v(t) \]
\[V_0 \]
\[D' T_3 \]
\[V_0 - V_{c1} - V \]
\[D T_3 \]
\[V_{c1} \]
\[D T_3 \]
\[D' T_3 \]
\[-V \]
\[I_{L1} \]
\[D T_3 \]
\[D' T_3 \]
\[-I_{L2} \]
\[I_{L1 + I_{L2} - V/R} \]
\[-V/R \]

Volt-second balance
\[<DV_0>_T_3 = D(0) + D'(V_0 - V_{c1} - V) = 0 \]
\[<V_{L2}>_T_3 = D(V_{c1}) + D'(-V) = 0 \]

Charge balance
\[<I_{c1}>_{T_3} = D(-I_{L2}) + D'(I_{L1}) = 0 \]
\[<I_{c2}>_{T_3} = D(-\frac{V}{R}) + D'(I_{L1} + I_{L2} - \frac{V}{R}) = 0 \]

with \(D' = 1 - D \)
Four equations and four unknowns \((V, V_c, I_{L1}, I_{L2})\).

Solution:

\(V_c = V_g\)

\(V = \frac{D}{1-D} V_g\)

\(I_{L1} = \frac{D}{1-D} \frac{V}{R} = \frac{(D)^2 V_g}{R}\)

\(I_{L2} = \frac{V}{R} = \frac{D}{1-D} \frac{V_g}{R}\)

Part (b): Voltage regulator behavior

Controller automatically adjusts \(D\) to maintain \(V = 28\) volts.

Input voltage varies over the range \(18 \leq V_g \leq 36\).

Load current \(= 2A = \frac{V}{R}\), so \(R = \frac{(28\text{ volts})}{(2\text{ amps})} = 14.5\text{ ohms}\).

Over what ranges do \(D\) and \(I_{L1}\) vary?

We know that \(V = \frac{D}{1-D} V_g\). Solve for \(D\):

\[V - DV = DV_g\]

\[V = D(V + V_g)\]

\[\Rightarrow D = \frac{V}{V + V_g}\]

\[
\begin{array}{cccc}
V & V_g & D & I_{L1} \\
28 & 18 & \frac{28}{46} = 0.609 & \frac{28^2}{(18)(46)} = 3.11\text{ A} \\
28 & 36 & \frac{28}{64} = 0.438 & \frac{28^2}{(36)(14)} = 1.56\text{ A} \\
\end{array}
\]

End of problem 2.2
Solution to Problem 2.3

See solution to problem 2.2 for subinterval circuits, equations, small ripple approximation, capacitor current and inductor voltage waveforms, and solution for dc voltages and currents.

a) Derive expressions for inductor current ripples and capacitor voltage ripples

Inductor L_1

Voltage waveform (from problem 2.2):

$$v_{L_1}(t) \uparrow V_g$$

$$\leftarrow DT_3 \rightarrow \quad \leftarrow DT_3 \rightarrow$$

$$V_g - V_{L_1} - V$$

$$t$$

Slope of inductor current is found using $L_1 \frac{di_1(t)}{dt} = v_{L_1}(t)$

so

$$\frac{di_1(t)}{dt} = \frac{v_{L_1}(t)}{L_1}$$

During a given subinterval, the voltage $v_{L_1}(t)$ is essentially constant \Rightarrow constant slope $\frac{di_1(t)}{dt}$.

$$i_1(t)$$

slope $\frac{V_g - V_{L_1} - V}{L_1}$

De component I_{L_1}

ripple Δi_1

$$0 \quad DT_3 \quad T_3$$

t
Peak ripple (i.e., peak-to-average) = Δi_{L1}
peak-to-peak ripple = $2\Delta i_{L1}$

During first subinterval, $i_{L1}(t)$ changes from $(I_{L1} - \Delta i_{L1})$ to $(I_{L1} + \Delta i_{L1})$, for a total change of $2\Delta i_{L1}$.

\[
\text{(change in $i_{L1}(t)$)} = \text{(slope)} \times \text{(time)}
\]

\[
2\Delta i_{L1} = \left(\frac{V_0}{L_1}\right)DT_3 \quad \text{for first subinterval}
\]

so

\[
\Delta i_{L1} = \frac{V_0DT_3}{2L_1}
\]

The same result could be derived via a similar analysis of subinterval 2.

Inductor L_2

Voltage waveform from problem 2.2:

\[
\begin{array}{c}
\text{Voltage } V_{i2}(t) \\
\text{Waveform}
\end{array}
\]

\[
\begin{array}{c}
\text{Voltage } V_{i2}(t) \\
\text{Waveform}
\end{array}
\]

so we obtain

\[
\begin{array}{c}
i_{L2}(t) \\
\text{Graph}
\end{array}
\]

slope $\frac{V_{i2}}{L_2}$

Δi_{L2}

Δi_{L2}

DC component I_{L2}
First subinterval:

\[2 \Delta i_{L2} = \left(\frac{V_{c1}}{L_{L2}} \right) (D T_S) \]

change in \(i_{L2}(t) \)
slope time

Solve for \(\Delta i_{L2} \):

\[\Delta i_{L2} = \frac{V_{c1} D T_S}{2 L_{L2}} \]

In problem 2.12, it was found that \(V_{c1} = V_y \). So

\[\Delta i_{L2} = \frac{V_y D T_S}{2 L_{L2}} \]

Capacitor \(C_1 \)

Current waveform from problem 2.12:

\[i_{L1}(t) \]

so the capacitor voltage waveform is found using the relationship

\[i_{c1}(t) = C_1 \frac{dV_{c1}(t)}{dt} \]

Slope \(\frac{dV_{c1}(t)}{dt} = \frac{i_{c1}(t)}{C_1} \)

During a given subinterval, the current \(i_{c1}(t) \) is essentially constant \(\Rightarrow \) constant slope.

Slope during first subinterval \(0 \leq t \leq D T_S \) is \(\frac{-I_{L2}}{C_1} \)

Slope during second subinterval \(D T_S \leq t \leq 2 D T_S \) is \(I_{L1}/C_1 \)
During the first subinterval, $v_{c1}(t)$ changes by

\[
\Delta v_{c1} = \begin{pmatrix} -I_{L2} \\ \frac{1}{C_1} \end{pmatrix} \begin{pmatrix} -DT_3 \\ \text{change during} \\ \text{slope} \\ \text{time} \end{pmatrix}
\]

Solve for Δv_{c1}:

\[
\Delta v_{c1} = \frac{I_{L2} DT_3}{2 C_1}
\]

Substitute solution for I_{L2} (from problem 2.2): $I_{L2} = \frac{D}{(D')^2} \frac{V_0}{R}$

\[
\Delta v_{c1} = \left(\frac{D}{D'} \right)^2 \frac{V_0 T_3}{2 RC_1}
\]
Capacitor C_2

Current waveform $i_{c2}(t)$ from problem 2.2:

So the capacitor voltage waveform is

Change in capacitor voltage during first subinterval is

$$(-2\Delta v) = \left(-\frac{v}{RC_2}\right)(DT_3)$$

$$\Rightarrow \Delta v = \frac{VDT_3}{2RC_2}$$

Substitute solution for V from problem 2.2: $V = \frac{B}{D'}V_3$

$$\Delta v = \frac{D^2}{D'} \frac{V_3T_5}{2RC_2}$$
b) Sketch the waveforms of the transistor voltage $v_{DS}(t)$ and transistor current $i_D(t)$, and give expressions for their peak values.

Again, refer to schematic and waveforms in solution to problem 2.2. The transistor current $i_D(t) = i_{Q1}(t)$ is sketched in the problem 2.2 solution.

The transistor drain-to-source voltage $v_{DS}(t)$ is equal to approximately zero during the first subinterval, when the transistor conducts. During the second subinterval, the transistor is off and the diode conducts. The converter circuit is then as sketched on p.3 of the prob.2.2 solution. It can be seen that

$$v_{DS}(t) = v_c(t) + v(t) \quad \text{for subinterval 2}$$

small ripple approximation

$$v_{DS}(t) \approx v_c(t) + V$$

$$= v_g + \frac{D'}{D} V_g$$

using solution for $v_c(t)$ and V

$$= v_g \left(\frac{D'}{D} \right)$$

note $D' + D = 1$

$$= \frac{1}{D'} v_g$$

A caveat: Eq.(6) above is expressed in terms of quantities that have small ripple: $v_c(t)$ and $v(t)$. We could have instead written $v_{DS}(t) = v_g - v_{L1}(t)$, but the result would not be useful because the switching ripple in $v_{L1}(t)$ is not small and cannot be ignored.
So the transistor voltage waveform is

\[v_{DS}(t) \]

\[v_{a}(t) + v_{1}(t) \]

\[v_{g/D}(t) \]

End of problem 2.3
We wish to find the state equations for the above circuit. We will model the transformer as follows:

\[
\begin{bmatrix}
\end{bmatrix} \rightarrow \begin{array}
\text{IDEAL TRANSFORMER}
\end{array}
\]

so that the above circuit appears as:

\[
\begin{bmatrix}
\end{bmatrix}
\]

Find the state equations with

\[x = [i_1, i_2, i_3, v_1, v_2, v_3]^T\]

We consider the outputs to be \(v_1\), the voltage across \(L_1\); \(i_3\), the current through \(C_3\); and \(v_2\), the voltage across \(C_2\), therefore

\[y = [v_1, i_3, v_2]^T\]

Clearly show what your \(\{A, B, C, E\}\) matrices are.
Solution

\[i_1 - i_3 \]

\[L_1, \quad L_2, \quad L_3, \quad C_1, \quad C_2, \quad R \]

\[N \]

\[\text{NODE 1} \]

\[\text{NODE 2} \]

\[\text{LOOP 1} \]

\[\text{LOOP 2} \]

\[\text{LOOP 3} \]

Fig. 1

KVL Loop 1

\[V_g + L_1 \frac{di_1}{dt} + Nv_3 + v_T = 0 \Rightarrow \frac{L_1}{dt} i_1 = -v_1 - NV_3 + V_g \] \((1) \)

KVL Loop 2

\[L_3 \frac{di_3}{dt} - NV_3 = 0 \Rightarrow \frac{L_3}{dt} i_3 = NV_3 \] \((2) \)

KCL Node 1

\[i_2 = C_2 \frac{dv_2}{dt} + \frac{v_2}{R} \Rightarrow \frac{C_2}{dt} dv_2 = i_2 - \frac{v_2}{R} \] \((3) \)

KCL Node 2

\[C_1 \frac{dv_1}{dt} = i_1 - \frac{v_1}{SR1} \] \((4) \)
KVL Loop 3 =>

\[N_3(v_1-v_3) \]

\[i_2 \]

\[v_x \]

\[i_2 \]

\[L_2 \]

\[u_2 - L_2 \]

\[v_2 \]

\[C_2 \]

\[R \]

\[\text{FIG. 2} \]

\[\text{THE VARIABLE} \]

\[\frac{v_3}{SR_2 + SR_3} \]

\[i_2 \left(\frac{SR_2}{SR_2 + SR_3} \right) + L_2 \frac{d}{dt} i_2 + u_2 = 0 \]

\[\Rightarrow L_2 \frac{d}{dt} i_2 = -i_2 \left(\frac{SR_2}{SR_2 + SR_3} \right) - \frac{v_2 + v_3}{SR_2 + SR_3} \quad \text{(5)} \]

We have 5 state equations now, we need the state equations involving \(C_3 \frac{dv_3}{dt} \). This is done as follows.

From Fig. 3 we see that voltage \(v_x \) is

\[v_x = \frac{v_3}{SR_2 + SR_3} - i_2 \left(\frac{SR_2}{SR_2 + SR_3} \right) \quad \text{(A)} \]
From Fig. 2 we are

\[i_x = N(c_1 - i_3) - c_3 \frac{d v_3}{dt} \quad (b) \]

... and also

\[u_x = (i_x - i_2) \frac{s_2 \parallel s_3}{s_2 + s_3} \quad (c) \]

\[b + (c) \quad \Rightarrow \]

\[u_x = \left[N(c_1 - i_3) - c_3 \frac{d v_3}{dt} - i_2 \right] \frac{s_2 \parallel s_3}{s_2 + s_3} \quad (d) \]

\[(a) \quad + (d) \quad \Rightarrow \]

\[\frac{v_3}{s_2 + s_3} - i_2 \frac{s_2 \parallel s_3}{s_2 + s_3} = \left[N(c_1 - i_3) - c_3 \frac{d v_3}{dt} - i_2 \right] \frac{s_2 \parallel s_3}{s_2 + s_3} \]

\[\Rightarrow -\frac{v_3}{s_2 + s_3} \frac{1}{s_2 + s_3} + i_2 \frac{s_2 \parallel s_3}{s_2 + s_3} + N(c_1 - i_3) - i_2 = c_3 \frac{d v_3}{dt} \]

since \[s_2 \parallel s_3 = \frac{s_2 \times s_3}{s_2 + s_3} \]

\[\Rightarrow c_3 \frac{d v_3}{dt} = N(c_1 - s_2 \parallel s_3) i_2 - N(c_1 - i_3) - v_3 \frac{s_2 \parallel s_3}{s_2 + s_3} \quad (6) \]
Arranging eqs. (1) - (6) in matrix form we have

\[\begin{bmatrix}
 e_1 \\
 e_2 \\
 e_3 \\
 v_1 \\
 v_2 \\
 v_3 \\
\end{bmatrix} =
\begin{bmatrix}
 0 & 0 & -\frac{1}{L_1} & 0 & -\frac{N}{L_1} & \frac{1}{L_1} \\
 0 & -\frac{\text{sec} L_{1,53}}{L_2} & 0 & 0 & -\frac{1}{L_2} & \frac{\text{sec} L_{1,53}}{L_2} \\
 0 & 0 & 0 & 0 & 0 & 0 \\
 \frac{L}{C_1} & 0 & 0 & -\frac{1}{C_{1,51}} & 0 & 0 \\
 0 & \frac{L}{C_2} & 0 & 0 & -\frac{1}{C_2} & 0 \\
 \frac{N}{C_3} & -\left(\frac{\text{sec} L_{3,53}}{\text{sec} L_{3,53}}\right) & -\frac{N}{C_3} & 0 & 0 & -\frac{1}{C_3},\text{sec} L_{3,53} \\
\end{bmatrix}
\begin{bmatrix}
 e_1 \\
 e_2 \\
 e_3 \\
 v_1 \\
 v_2 \\
 v_3 \\
\end{bmatrix} + \frac{1}{C_3} v_g

A

B
\[y = \begin{bmatrix} v_2^1 \\ v_2^2 \\ v_2^3 \\ v_2^4 \end{bmatrix} \]

Using eqn (1) with \(v_2^1 = \frac{dL_3}{dt} \) we have

\[v_2^1 = -v_1 - Nv_3 + V_g \]

Using eqn (6) with \(i_3 = c_3 \frac{dv_3}{dt} \) we have

\[i_2^s = Ni_1 - \frac{sr_3}{sr_2 + sr_3} i_2^s - Ni_3 - \frac{v_3}{sr_2 + sr_3} \]

Therefore the output eqn. is given by

\[y = \underbrace{\begin{bmatrix} 0 & 0 & 0 & -1 & 0 & -N & \frac{sr_3}{sr_2 + sr_3} & c_3 & 0 \\ Ni_1 & -\frac{sr_3}{sr_2 + sr_3} i_2 & -N & 0 & 0 & -\frac{1}{sr_2 + sr_3} & c_2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{sr_3}{sr_2 + sr_3} & c_3 & 0 \end{bmatrix}}_{C} \begin{bmatrix} c_1 \\ i_1 \\ v_1 \\ v_2 \\ v_3 \end{bmatrix} + \underbrace{\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}}_{E} V_g \]
I. **Buck-Boost Converter**

1. A small 1.5 volt solar array is to be used to power a 5 volt, 1 ampere load. It has been decided to use a buck-boost converter in this application. A suitable transistor is found with an on-resistance of 35 mΩ, and a Schottky diode is found with a forward voltage drop of 0.5 volts.

![Diagram of Buck-Boost Converter]

 - $V_S = 1.5 \text{ Volts}$
 - $V_{\text{out}} = 5 \text{ Volts}$

 a) Derive an equivalent circuit which models the dc properties of this converter. Include transistor and diode conduction losses, as well as inductor copper loss, but neglect all other sources of converter inefficiency.

 b) How large can the inductor winding resistance be and still allow this converter to operate at 70% efficiency? At what duty ratio will the converter then operate?

 c) Plot the converter output voltage and efficiency over the range $0 \leq D \leq 1$ for the value of inductor winding resistance selected in part b).
SOLUTIONS

BUCK-BOOST CONVERTER

R. Tymerski

I. BUCK-BOOST CONVERTER

a)

\[i_c = i_{L} - i_{R} \]

\[v_{L} = -V - v_{D} - v_{Z} \]

\[i_{C} = \frac{-V}{R} \]

\[i_{C} = i - \frac{V}{R} \]

Inductor volt-sec balance

\[<v_{L} > = D \left(v_{G} - i_{R} - i_{L} \right) - D^{'} \left(v_{G} + v_{D} + i_{L} \right) = 0 \]

\[\Rightarrow \quad D v_{G} - i_{L} - \dot{i_{R}} - D^{'} v_{D} - D^{'} V = 0 \] (1)

Charge balance

\[<i_{C} > = - D \frac{V}{R} + D^{'} \left(i - \frac{V}{R} \right) = 0 \quad \Rightarrow \quad \dot{i} - \frac{V}{R} = 0 \] (2)
Circuit satisfying loop equation (1):

\[\begin{align*}
 & \text{Diagram:} \\
 & I_{\text{loop}} = I_1 + I_2 \\
 & V_i = V_0 \\
 & D'V \end{align*} \]

Circuit satisfying node equation (2):

\[\begin{align*}
 & \text{Diagram:} \\
 & D' \end{align*} \]

Combining:

\[\begin{align*}
 & \text{Diagram:} \\
 & I_{\text{loop}} = I_1 + I_2 \\
 & V_i = V_0 \\
 & D' \end{align*} \]
Can now reflect primary side into secondary.

\[\eta = \frac{P_{out}}{P_{in}} = \frac{(D')V}{\pi D^2} = \frac{D'V}{D^2 V_g} \]

\[\begin{align*} &\eta = \frac{D'V}{D^2 V_g} \\
&\quad \Rightarrow \quad D \eta V_g = V - D V \\
&\quad \Rightarrow \quad D (V + \eta V_g) = V \\
&\quad \Rightarrow \quad D = \frac{V}{V + \eta V_g} \\
&\eta = 0.7; \quad V_g = 1.5; \quad V = 5 \\
&\quad \Rightarrow \quad D = \frac{5}{5 + 0.7(1.5)} \\
&\quad \Rightarrow \quad D = 0.8269 \]
To find I_L we write loop equation of Fig. 2

\[-\frac{D}{y} V_y + D' I_\text{om} \left[\frac{D}{Y^2} I_\text{om} + \frac{I_L}{Y^2}\right] + V_D + V = 0.\]

Multiply the above equation by Y^2 →

\[-D'D' V_y + DD'I_\text{om} + D'I_L + D^2 (V + V_D) = 0.\]

⇒ $D'I_L = DD'V_y - DD'I_\text{om} - D^2 (V + V_D)$

Now the output current (i.e. load current) is

from Fig. 2 = $D'I = 4$

⇒ $I_L = \left(0.8249\right)\left(1.0 - 0.1249\right)\left(1.5\right) - \left(0.8249\right)\left(1.2 - 0.35\right) - \left(1 - 0.8249\right)^2\left(5 + 0.5\right)$

$I_L = 20.5 \text{ m}\text{A}$

c) From Fig. 2 using voltage divider rule

\[V = \frac{R}{R + \frac{D}{Y^2} I_\text{om} + \frac{I_L}{Y^2}} (D'y - V_D) \quad \text{(**)}\]

Also, from before

\[\eta = \frac{D' D}{D' V_y} \quad \text{(***)}\]

Can use (***) and (****) to get plots.
These -ve values are meaningless.
duty cycle D. This model can be easily manipulated and solved using familiar techniques of conventional circuit analysis.

2. The model can be refined to account for loss elements such as inductor winding resistance and semiconductor on-resistances and forward voltage drops. The refined model predicts the voltages, currents, and efficiency of practical nonideal converters.

3. In general, the dc equivalent circuit for a converter can be derived from the inductor volt-second balance and capacitor charge balance equations. Equivalent circuits are constructed whose loop and node equations coincide with the volt-second and charge balance equations. In converters having a pulsating input current, an additional equation is needed to model the converter input port; this equation may be obtained by averaging the converter input current.

REFERENCES

PROBLEMS

3.1 The inductor of a buck-boost converter has winding resistance R_L. All other losses can be ignored.
 (a) Derive an expression for the nonideal voltage conversion ratio V/V_p.
 (b) Plot your result of part (a) over the range $0 \leq D \leq 1$, for $R_1/R = 0$, 0.01, and 0.05.

3.2 The inductor of a buck-boost converter has winding resistance R_L. All other losses can be ignored. Derive an equivalent circuit model for this converter. Your model should explicitly show the input port of the converter, and should contain two dc transformers.

3.3 To reduce the switching harmonics present in the input current of a certain buck converter, an input filter is added as shown in Fig. 3.30. Inductors L_1 and L_2 contain winding resistances R_{L1} and R_{L2}, respectively. The MOSFET has on-resistance R_m and the diode forward voltage drop can be modeled by a constant voltage V_D plus a resistor R_D. All other losses can be ignored.
 (a) Derive a complete equivalent circuit model for this circuit.
 (b) Solve your model to find the output voltage V.
 (c) Derive an expression for the efficiency. Manipulate your expression into a form similar to Eq. (3.35).

3.4 A 1.5 V battery is to be used to power a 5 V, 1 A load. It has been decided to use a buck-boost converter in this application. A suitable transistor is found with an on-resistance of 35 mΩ, and a Schottky diode is

![Fig. 3.30](image)

1.5 V

![Fig. 3.31](image)

![Fig. 3.32](image)
Solution to Problem 3.3

Converter circuit, Fig. 3.30:

Model inductor winding resistances R_{L1} and R_{L2}, MOSFET on-resistance R_{on}, and diode forward voltage drop (constant voltage V_D plus voltage across effective resistance R_D).

Subinterval 1 \(0 < t < T_s \), Q_1 on, D_1 off

Inductor voltages and capacitor current expressed as functions of quantities that have small ripple:

1. $v_{L1}(t) = V_g - i_1(t)R_{L1} - v_{c1}(t)$
2. $v_{L2}(t) = v_{c1}(t) - i_2(t)R_{on} - i_2(t)R_{L2} - v(t)$
3. $i_{c1}(t) = i_1(t) - i_2(t)$
4. $i_{c2}(t) = i_2(t) - v(t)/R$
Small-ripple approximation:

\[i_1(t) \approx I_1, \quad i_2(t) \approx I_2, \quad v_{c1}(t) \approx V_{c1}, \quad v(t) \approx V \]

we get

\[v_1(t) \approx v_3 - i_1 R_{L1} - v_{c1} \]
\[v_2(t) \approx v_{c1} - i_2 R_{L2} - i_2 R_{L2} - v \]
\[i_{c1}(t) \approx I_1 - I_2 \]
\[i_{c2}(t) \approx I_2 - V/R \]

\[DT_3 < t < T_5 \quad Q_1 \text{ off, } \quad Q_2 \text{ on} \]

Subinterval 2

\[v_{L1}(t) = v_3 - i_1(t) R_{L1} - v_{c1}(t) \]
\[v_{L2}(t) = -v_3 - i_2(t) R_{L2} - i_2(t) R_{L2} - v(t) \]
\[i_{c1}(t) = i_1(t) \]
\[i_{c2}(t) = i_2(t) - v(t)/R \]

Small ripple approximation:

\[v_{L1}(t) \approx v_3 - I_1 R_{L1} - v_{c1} \]
\[v_{L2}(t) \approx -v_3 - I_2 R_{L2} - I_2 R_{L2} - V \]
\[i_{c1}(t) \approx I_1 \]
\[i_{c2}(t) \approx I_2 - V/R \]
Switched waveforms:

\[V_{L1}(t) \]

\[V_3 - I_1 R_{L1} - V_{C1} \quad (= 0) \]

\[DT_3 \quad T_3 \quad t \]

\[V_{L2}(t) \]

\[V_{L1} - I_2 (R_m + R_L) - V \]

\[DT_3 \quad DT_3 \quad t \]

\[V_b - I_2 (R_b + R_L) - V \]

\[I_{Cl}(t) \]

\[I_1 \]

\[DT_3 \quad DT_3 \quad t \]

\[I_1 - I_2 \]

\[I_{eb}(t) \]

\[I_2 - V/R \quad (= 0) \]

\[t \]
Equate average inductor voltages and capacitor currents to zero:

\(\langle \epsilon_L(t) \rangle = 0 = V_0 - I_1 R_{L1} - V_c \)

\(\langle \epsilon_L(t) \rangle = 0 = D \left[V_{c1} - I_2 (R_{on} + R_L) - V \right] + D' \left[-V_D - I_2 (R_D + R_L) - V \right] \)

\(\langle i_{c1}(t) \rangle = 0 = D \left[I_1 - I_2 \right] + D' \left[I_1 \right] \)

\(\langle i_{c2}(t) \rangle = 0 = I_2 - V/R \)

Derive equivalent circuit

Inductor \(L_1 \):

\(\langle \epsilon_L \rangle = 0 = V_0 - I_1 R_{L1} - V_c \)

A loop equation containing \(L_1 \), with current \(I_1 \)

Inductor \(L_2 \):

\(\langle \epsilon_L \rangle = 0 = D V_{c1} - D R_{on} I_2 - dV_D I_2 - R_L I_2 - V - D' V_0 \)

A loop equation containing \(L_2 \), with current \(I_2 \)
Capacitor C_1: $\langle i_{\text{c1}} \rangle = 0 = I_1 - DI_2$

A node equation containing C_1, with voltage V_{c1}

Capacitor C_2: $\langle i_{\text{c2}} \rangle = 0 = I_2 - V/R$

A node equation including C_2, with voltage V.

Diagram of the circuit with capacitors and nodes.
Write circuits together:

Note that 1:1 transformers are not needed in these locations—a direct connection will suffice. In fact, in the actual converter there is no switching at these points. Inductor L_1 is directly connected to C_1, and L_2 is always connected to C_2.

The D_{I2} and DV_{C1} dependent sources form a 1:1 effective dc transformer.
b) Solve model to find V

Push V_g and R_{L1} through dc transformer:

Combine elements:

Voltage divider formula:

$$V = \left(DV_g - D'V_D \right) \frac{R}{R + D^2 R_{L1} + D'R_{01} + D'R_0 + R_L}$$

c) Derive an expression for efficiency η. Manipulate into form similar to Eq. (3.35)

From the equivalent circuit on page 6,

$P_{in} = V_g I_1$

$P_{out} = V I_2$

and $I_1 = DI_2$
So
\[\eta = \frac{P_{\text{out}}}{P_{\text{in}}} = \frac{V I_2}{V_g I_1} = \frac{1}{D} \frac{V}{V_g} \]

From part (b),
\[\frac{V}{V_g} = \left(D - \frac{D'}{V_g} \frac{V_d}{V_g} \right) \frac{R}{R + D^2 R_{L1} + D R_{m} + D'R_d + R_{L2}} \]
(note that it is OK for the right side of the equation to depend on \(V_g \)).

So
\[\eta = \left(1 - \frac{D'}{D} \frac{V_d}{V_g} \right) \frac{1}{\left(1 + \frac{D^2 R_{L1}}{R} + D \frac{R_m}{R} + D' \frac{R_d}{R} + \frac{R_{L2}}{R} \right)} \]

This is a good design-oriented way to express the efficiency, because it exposes how each loss element reduces the efficiency. The effect of the diode voltage drop \(V_d \) is expressed in terms of \(V_g \), while the loss resistances are compared to \(R \). The various losses also depend on duty cycle.
60 Steady-State Equivalent Circuit Modeling, Losses, and Efficiency

(a) Derive equivalent circuit models for both converters, which model the converter input and output ports as well as the transistor conduction loss.

(b) Determine the duty cycles that cause the converters to operate with the specified conditions.

(c) Compare the transistor conduction losses and efficiencies of the two approaches, and conclude which converter is better suited to the specified application.

3.6 It is desired to interface a 300 V battery to a 400 V, 10 A load using a dc–dc converter. Two possible approaches, using boost and buck–boost converters, are illustrated in Fig. 3.33. Using the assumptions described above (before Problem 3.5), determine the efficiency and power loss of each approach. Which converter is better for this application?

3.7 A buck converter is operated from the rectified 230 V ac mains, such that the converter dc input voltage is

\[V_s = 325 \pm 20\% \]

A control circuit automatically adjusts the converter duty cycle \(D \), to maintain a constant dc output voltage of \(V = 240 \) V dc. The dc load current \(I \) can vary over a 10:1 range:

\[10 \, A \geq I \geq 1 \, A \]

The MOSFET has an on-resistance of 0.8 \(\Omega \). The diode conduction loss can be modeled by a 0.7 V source in series with a 0.2 \(\Omega \) resistor. All other losses can be neglected.

(a) Derive an equivalent circuit that models the converter input and output ports, as well as the loss elements described above.

(b) Given the range of variation of \(V_s \) and \(I \) described above, over what range will the duty cycle vary?

(c) At what operating point (i.e., at what value of \(V_s \) and \(I \)) is the converter power loss the largest? What is the value of the efficiency at this operating point?

3.8 In the Cuk converter of Fig. 3.34, the MOSFET has on-resistance \(R_m \) and the diode has a constant forward voltage drop \(V_d \). All other losses can be neglected.

(a) Derive an equivalent circuit model for this converter. Suggestion: if you don’t know how to handle some of the terms in your dc equations, then temporarily leave them as dependent sources. A more
Solution to Problem 3.6

Interface a 300V battery to a 400V, 10A load.
Investigate boost and buck-boost converters; which has better efficiency?
MOSFET has 0.5Ω on-resistance. All other losses can be ignored.

Boost converter

\[v_g + 300V \quad \text{transistor on, diode off} \]
\[v_L(t) = v_g - i_L(t)R_m \approx v_g - I_L R_m \]
\[i_c(t) = \frac{v(t)}{R} \approx -\frac{v}{R} \]

\[v_L(t) = v_g - v(t) \approx v_g - V \]
\[i_c(t) = \frac{i_L(t) - \frac{v(t)}{R}}{R} \approx I_L - \frac{V}{R} \]

\[\Delta v_L(t) = 0 = D(v_g - I_L R_m) + D'(v_g - V) = v_g - D R_m I_L - D' V \]

Charge balance
\[\Delta i_c(t) = 0 = D\left(-\frac{V}{R}\right) + D'\left(I_L - \frac{V}{R}\right) = D'I_L - \frac{V}{R} \]
Construct equivalent circuit

Conservation loop equation
\[(V_1) = 0 = V_g - D R_m I_L - \beta' \]

\[V_g = \frac{I_L}{D R_m} \]

Capacitor - node equation
\[D' I_L = \frac{\beta}{R} \]

Combine circuits, replace dependent sources with D' : 1 transformer

Solution:
\[I_L = \frac{V}{D R} \]
\[V = \frac{1}{D'} V_g \]
\[I_L = \frac{V}{D R} \]
\[\eta = \frac{1}{1 + \frac{D}{(D')^2} \frac{R_m}{R}} \]
\[P_{loss} = I_L^2 D R_m \]

For the values \(V_g = 300 \), \(V = 400 \), \(R = 40 \), \(R_m = 0.5 \)

Find \(D \) and \(\eta \) (and also \(I_L \) and \(P_{loss} \))

Solve quadratic equation for \(D \) (arising from \(\frac{V}{V_g} = \frac{1}{1-D} \frac{1}{D^2} \frac{R_m}{R} \))
\[\Rightarrow D = 0.2543 \] (note \(D \rightarrow 0.2500 \) for \(R_m \rightarrow 0 \))

(2)
Then \(\eta = 0.9943 \)
\[I_L = 13.44A \]
\[P_{loss} = 22.7\ W \]

Buck-boost converter

\[V_s = 300\, V \]

\[R = 40\, \Omega \]

\[400\, V = v^- \]

transistor on, diode off

\[v_L(t) = V_s - i_L R_{on} \approx V_s - I_L R_{on} \]

\[i_c(t) = -v(t)/R \approx -V/R \]

\[i_s(t) = i_L(t) \approx I_L \]
transistor off: \(DT_3 < t < T_3 \) diode on

\[
\begin{align*}
V_g &= \frac{1}{V} \\
V_L(t) &= -V(t) \propto -V \\
i_c(t) &= i_L(t) - V(t)/R \approx I_L - V/R \\
i_g(t) &= 0
\end{align*}
\]

Volt-second balance:
\[
\langle V_L(t) \rangle = 0 = D(V_g - I_L D \text{on}) + D'(-V)
\]

Charge balance:
\[
\langle i_c(t) \rangle = 0 = D(-V/R) + D'(I_L - V/R)
\]

Average input current:
\[
\langle i_g \rangle = I_g = D(I_L) + D'(0)
\]

Construct equivalent circuit:

Inductor loop equation:
\[
D V_g - I_L D \text{on} - D' V = \langle V_L \rangle = 0
\]
Capacitor node equation: \(D' I_L - \frac{V}{R} = \langle i_c \rangle = 0 \)

Input current (node) equation: \(I_g = D I_L \)

Draw circuit models together:

Model including ideal dc transformers:
Solution of model:

\[V = \frac{D}{D'} \cdot V_g \cdot \frac{R}{R + \frac{D}{(D')^2} \cdot R_{on}} \Rightarrow \frac{V}{V_g} = \frac{D}{D'} \cdot \frac{1}{1 + \frac{D}{(D')^2} \cdot \frac{R_{on}}{R}} \]

\[\eta = \frac{1}{1 + \frac{D}{(D')^2} \cdot \frac{R_{on}}{R}} \]

\[I_L = \frac{V}{D' \cdot R} \]

\[P_{loss} = I_L^2 \cdot D \cdot R_{on} \]

Note that, with the exception of the extra factor of \(D \) in the \(\frac{V}{V_g} \) equation, all of the above equations are identical to the respective boost converter equations on page 2.

Because of the extra factor of \(D \), the buck-boost converter must operate at a larger duty cycle. This leads to increased inductor current, increased transistor conduction time, and increased power loss.

Solution:

\[D = 0.5813 \]

\[\eta = 0.9602 \quad 96.02\% \]

\[I_L = 23.89 \, A \]

\[P_{loss} = 165.8 \, W \]

—more than 7 times larger than boost heat sink must be 7 times larger
boost is much better than buck-boost in this application

End of problem 3.6
Switch Realisation

Problems

In Problems 4.1 to 4.6, the input voltage V_s is dc and positive with the polarity shown. Specify how to implement the switches using a minimal number of diodes and transistors, such that the converter operates over the entire range of duty cycles $0 \leq D \leq 1$. The switch states should vary as shown in Fig. 4.56. You may assume that the inductor current ripples and capacitor voltage ripples are small.

![Switch position diagram](image)

Fig. 4.56

For each problem, do the following:

(a) Realize the switches using SPST ideal switches, and explicitly define the voltage and current of each switch.

(b) Express the on-state current and off-state voltage of each SPST switch in terms of the converter inductor currents, capacitor voltages, and/or input source voltage.

(c) Solve the converter to determine the inductor currents and capacitor voltages, as in Chapter 2.

(d) Determine the polarities of the switch on-state currents and off-state voltages. Do the polarities vary with duty cycle?

(e) State how each switch can be realized using transistors and/or diodes, and whether the realization requires single-quadrant, current-bidirectional two-quadrant, voltage-bidirectional two-quadrant, or four-quadrant switches.
Specify how to implement the converter it operates over the entire range. You may assume that the voltage and current of each converter stage, as in Chapter 2, vary. Do the polarities vary with the realization of the two-quadrant, or...
Solution to problem 4.4

Realize switches using transistors and diodes, such that the converter operates in CCM over the entire range 0 ≤ D ≤ 1.

The inductor current ripples and capacitor voltage ripples are small.

\[
\begin{align*}
V_0 & \quad (+) \\
- & \quad (+) \\
+ & \quad (+) \\
- & \quad (+) \\
\end{align*}
\]

\[
\text{switch position}
\]

\[
\begin{align*}
1 & \\
2 & \\
0 & DT_5 \\
T_3 & \\
t & \\
\end{align*}
\]

\[
\begin{align*}
i_{L1} & \rightarrow \\
+V_{cc} & \rightarrow \\
+V_{cc} & \rightarrow \\
\end{align*}
\]

\[
\text{switch}
\]

Polarity of switch voltage can be arbitrarily defined. Switch current polarity must then be defined to flow through switch from + terminal to − terminal.

Subinterval 1: SW A and SW D are closed

Subinterval 2: SW B and SW C are closed
b) Express the on-state current and off-state voltage of each switch in terms of the converter inductor currents, capacitor voltages, and independent sources.

Switch A

- **On state:** \(i_A = i_{L1} - i_{L2}, v_A = 0 \) (subinterval 1)
- **Off state:** \(v_A = v_{c1}, i_A = 0 \) (subinterval 2)

Switch B

- **On state:** \(i_B = i_{L1} - i_{L2}, v_B = 0 \) (subinterval 2)
- **Off state:** \(v_B = -v_{c1}, i_B = 0 \) (subinterval 1)

Switch C

- **On state:** \(i_C = i_{L2}, v_C = 0 \) (subinterval 2)
- **Off state:** \(v_C = v_{c1}, i_C = 0 \) (subinterval 1)

Switch D

- **On state:** \(i_D = i_{L2}, v_D = 0 \) (subinterval 1)
- **Off state:** \(v_D = -v_{c1}, i_D = 0 \) (subinterval 2)
c) Solve the converter to determine the dc components of the inductor currents and capacitor voltages, as in chapter 2.

Inductor voltage and capacitor current waveforms using small ripple approximation:

\(v_{L1}(t) \)

\(v_3 \)

\(0 \)

\(DT_3 \rightarrow \)

\(DT_3 \rightarrow \)

\(v_3 - V_{c1} \)

\(v_{L2}(t) \)

\(V_{c1} - V_{c2} \)

\(0 \)

\(-V_{c1} - V_{c2} \)

\(i_{c1}(t) \)

\(I_{L2} \)

\(I_{L1} - I_{L2} \)

\(i_d(t) \)

\(I_{L2} - V/R \ (\sim 0) \)

\(3 \)
Volt-second balance on \(L_1 \): \(<v_{L1}> = 0 = D y_2 + D'(y_2 - V_{C1}) \)

Volt-second balance on \(L_2 \): \(<v_{L2}> = 0 = D(-V_{C1} - V_{C2}) + D'(V_{C2} - V_{C2}) \)

Charge balance on \(C_1 \): \(<i_{C1}> = 0 = D I_{L2} + D'(I_{L1} - I_{L2}) \)

Charge balance on \(C_2 \): \(<i_{C2}> = 0 = I_{L2} - V/R \)

Solution:

\[
V_{C1} = \frac{1}{D'} V_y
\]

\[
V_{C2} = (D' - D) V_{C1} = \frac{D'-D}{D'} V_y = \frac{1-2D}{1-D} V_y
\]

\[
I_{L2} = \frac{V}{R} = \frac{1-2D}{1-D} \frac{V_y}{R}
\]

\[
I_{L1} = \frac{D'-D}{D'} I_{L2} = \left(\frac{1-2D}{1-D}\right)^2 \frac{V_y}{R}
\]
d) Polarities of switch voltages and currents vs. duty cycle \(D \)

Switch A

- **On-state:** \(i_A = i_{41} - i_{42} = \left(\frac{1-2D}{1-D} \right)^2 \frac{V_3}{R} - \frac{1-2D}{1-D} \frac{V_3}{R} \)
 \[= \frac{1-2D}{1-D} \frac{V_3}{R} \left(\frac{1-2D}{1-D} - 1 \right) \]
 \[= \frac{V_3}{R} \frac{1-2D}{1-D} \frac{1-2D-(1-D)}{1-D} \]
 \[= \frac{V_3}{R} (1-2D) \frac{(-D)}{(1-D)^2} \]

 negative for \(D \leq \frac{1}{2} \), positive for \(D > \frac{1}{2} \)

- **Off-state:** \(V_A = V_{c1} = \frac{1}{1-D} V_3 \)
 positive for \(0 \leq D < 1 \)

Requires a current-bidirectional, two-quadrant switch:
Switch B

on state: \(i_B = i_{L1} - i_{L2} = \frac{V_3}{R} \frac{(1-2D)(-D)}{(1-D)^2} \)

Same as switch A.
Negative for \(D < \frac{1}{2} \), positive for \(D > \frac{1}{2} \)

off state: \(v_B = -v_{o1} = -\frac{1}{1-D} V_3 \)
Negative for \(0 \leq D \leq 1 \)

Requires a current-bidirectional two-quadrant switch that blocks negative \(v_B \):

(Note: if we had originally defined \(v_B \) and \(i_B \) with the opposite polarity, then we would have obtained a current-bidirectional two-quadrant switch having the same polarity and realization as switch A.)
Switch C

\[i_c = i_L = \frac{1-2D}{1-D} \frac{V_g}{R} \]

On state: \(i_c \) is positive for \(D < \frac{1}{2} \) and negative for \(D > \frac{1}{2} \).

Off state: \(v_c = v_{c1} = \frac{1}{1-D} V_g \) is positive for \(0 \leq D \leq 1 \).

Requires a current-bidirectional two-quadrant switch:

\[i_c \uparrow \quad v_c \downarrow \]
Switch D

on state: \(i_D = i_{L2} = \frac{1 - 2D}{1 - D} \frac{V_g}{R} \) positive for \(D < \frac{1}{2} \)

(same as switch C)

off state: \(V_D = -V_c1 = -\frac{1}{1 - D} V_g \) negative for \(0 \leq D \leq 1 \)

Requires a current-bidirectional two-quadrant switch that blocks negative voltage.
e) Implement switches in converter:

Of course, instead of BJTs, other devices such as MOSFETs or IGBTs could be used.

End of problem 4.4
1) For the buck-boost converter shown above, derive an expression for $K_{test}(D)$, the boundary value of $K = \frac{2L}{R_1}$ between the two inductor current conduction modes of the converter.

2) Derive an expression for the voltage gain, $M(D,K) = \frac{V_o}{V_i}$, of the converter operating in DCM, by using volt-sec. and amp-sec. balance considerations in the inductor and capacitor, respectively.

3) Redo (2) but now by equating input and output powers assuming 100% efficiency.

4) For $L = 1$ mH, $C = 1 \mu F$, $T_S = \frac{1}{20\times10^{-3}}$, $V_i = 15$ and $D = 0.3$, determine the critical value of load resistance R_{crit} for which the converter operates in DCM.

5) Plot the dc gain as a function of load resistance R for a range of $R \in [50, 5000]$ and for the values given in (4).
SOLUTION

Discontinuous Conduction in Buck-Boost Converter

During \(D_1 T_s \)
\[u_L = V_g \]

During \(D_2 T_s \)
\[u_L = -V \]

During \(D_3 T_s \)
\[u_L = 0 \]

1) Boundary Between Modes

CCM:
\[\Delta i = \frac{D T_s V_g}{2L} \ (\Delta i = \text{peak ripple in } L) \]

\[I_L = \frac{V}{D' R} \quad \text{average inductor current} \]

Boundary:
\[I_L > \Delta i \quad \text{for CCM} \]
\[I_L < \Delta i \quad \text{for DCM} \]

\[\Rightarrow \frac{V}{D' R} > \frac{D T_s V_g}{2L} \]

\[V_z = \frac{D}{D'} V_g \quad \text{in CCM} \]

\[\Rightarrow \frac{D}{D'^2} \frac{V_g}{R} > \frac{D T_s V_g}{2L} \]
or \[\frac{2k}{R T_0} > D^{1/2} \]

\[K > K_{cut}(D) \quad \text{for CCM} \]

\[K_{cut} = D^{1/2} \]

(1)

2) **Voltage Gain in DCM**

Volt-sec Balance on \(L \)

\[D \frac{V_1}{V} - D_2 V = 0 \implies V = \frac{D}{D_2} V_1 \]

(2)

** Amp-sec Balance in \(C_2 \)**

\[<i_d> = 0 \]

\[i_d = i_C + i_R \]

\[<i_d> = <i_R> = \frac{V}{R} \]

\[<i_d> = \frac{1}{T_s} \int_0^{T_s} i_d(t) \, dt \]

\[<i_d> = \frac{1}{T_s} \left(\frac{1}{2} \cdot i_{peak} \cdot D_2 \cdot T_s \right) = \frac{1}{T_s} \left(\frac{1}{2} \cdot \frac{D_2 \cdot T_s^2 V}{2L} \right) \]
\[\Rightarrow \quad \frac{V}{R} = \frac{D_2^2 T_s V}{2L} \]

\[\Rightarrow \quad D_2 = \sqrt{\frac{2L}{RT_s}} = \sqrt{K} \quad (3) \]

\[(2) + (3) \Rightarrow \quad \frac{V}{V_g} = \frac{D}{\sqrt{K}} \quad (4) \]

3) **ALTERNATIVE METHOD**

Note on alternative method for finding \(\frac{V}{V_g} \) may be given by equating input and output powers under assuming 100% efficiency.

- Input power = Output power

\[\Rightarrow \quad V_g \cdot I_{i,n_{ave}} = \frac{V^2}{R} \quad (5) \]

\[I_{i,n_{ave}} = \frac{1}{T_s} \int_0^{T_s} i_i(t) \, dt \]

\[= \frac{1}{T_s} \left[\frac{1}{2} \cdot \text{peak} \cdot DT_s \right] \]

\[= \frac{D^2 T_s V_g}{2L} \quad (6) \]
(5) \quad \Rightarrow \quad (6)

\[\frac{D^2 T_s V_g^2}{2 L} = \frac{v^2}{R} \]

\[\Rightarrow \quad \frac{V}{V_g} = \frac{D}{\sqrt{K}}, \quad K = \frac{2L}{R T_s} \]
4) From (1)

\[K_{crit} = (1 - D)^2 \]

\[\Rightarrow \frac{2L}{R_{crit} T_3} = (1 - D)^2 \]

\[\Rightarrow R_{crit} = \frac{2L f_S}{(1 - D)^2} \]

\[L = 10^{-3} \text{ H} ; \quad f_S = 80 \times 10^3 \quad \text{Hz} ; \quad D = 0.3 \]

\[\Rightarrow R_{crit} = \frac{2 \times 10^{-1} \times 80 \times 10^3}{(1 - 0.3)^2} \]

\[\Rightarrow R_{crit} = 327 \Omega \]
5) \(R \) \(\frac{V_g}{V_g|_{q=0.5}} \)

<table>
<thead>
<tr>
<th>(R)</th>
<th>(V_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>CCM</td>
</tr>
<tr>
<td>100</td>
<td>(\frac{V_g}{V_g} = \frac{D}{1-D})</td>
</tr>
<tr>
<td>150</td>
<td>= 0.3</td>
</tr>
<tr>
<td>200</td>
<td>= 0.3</td>
</tr>
<tr>
<td>250</td>
<td>= 0.43</td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>0.94</td>
</tr>
<tr>
<td>400</td>
<td>0.97</td>
</tr>
<tr>
<td>450</td>
<td>0.50</td>
</tr>
<tr>
<td>500</td>
<td>0.53</td>
</tr>
</tbody>
</table>

From (4) \(\frac{V_g}{V_g} = \frac{D}{\sqrt{2C/lv}} \)

Counter operates in CCM for \(R < R_{crit} \) \((R<327) \)

Counter operates in DCM for \(R > R_{crit} \) \((R>327) \)
(b) The load resistance is disconnected \(R \to \infty \), and the converter is operated with duty cycle 0.5. Sketch the inductor current waveform.

5.3 An unregulated dc input voltage \(V_g \) varies over the range \(35 \text{ V} \leq V_g \leq 70 \text{ V} \). A buck converter reduces this voltage to 28 V; a feedback loop varies the duty cycle as necessary such that the converter output voltage is always equal to 28 V. The load power varies over the range \(10 \text{ W} \leq P_{\text{load}} \leq 1000 \text{ W} \). The element values are:

\[
L = 22 \text{ \mu H} \quad C = 470 \text{ \mu F} \quad f_s = 75 \text{ kHz}
\]

Losses may be ignored.

(a) Over what range of \(V_g \) and load current does the converter operate in CCM?

(b) Determine the maximum and minimum values of the steady-state transistor duty cycle.

5.4 The transistors in the converter of Fig. 5.22 are driven by the same gate drive signal, so that they turn on and off in synchronism with duty cycle \(D \).

5.5 \(\) DCM mode boundary analysis of the Cuk converter of Fig. 5.23. The capacitor voltage ripples are small.

(a) Sketch the diode current waveform for CCM operation. Find its peak value, in terms of the ripple magnitudes \(\Delta i_{d1}, \Delta i_{d2} \), and the dc components \(i_1 \) and \(i_2 \), of the two inductor currents \(i_{d1} \) and \(i_{d2} \), respectively.

(b) Derive an expression for the conditions under which the Cuk converter operates in the discontinuous conduction mode. Express your result in the form \(K < K_{dc}(D) \), and give formulas for \(K \) and \(K_{dc}(D) \).

5.6 DCM conversion ratio analysis of the Cuk converter of Fig. 5.23.

(a) Suppose that the converter operates at the boundary between CCM and DCM, with the following element and parameter values:
unwith duty cycle 0.5. Sketch

V. A buck converter reduces
such that the converter output
\(P_{out} \approx 1000 \text{ W}. \) The element

\(XCM? \)

stor duty cycle.
re signal, so that they turn on

\[D = 0.4 \quad f_s = 100 \text{ kHz} \]

\[V_s = 120 \text{ V} \quad R = 10 \Omega \]

\[L_1 = 54 \mu \text{H} \quad L_2 = 27 \mu \text{H} \]

\[C_1 = 47 \mu \text{F} \quad C_2 = 100 \mu \text{F} \]

Sketch the diode current waveform \(i_D(t) \), and the inductor current waveforms \(i_1(t) \) and \(i_2(t) \). Label the magnitudes of the ripples and dc components of these waveforms.

(b) Suppose next that the converter operates in the discontinuous conduction mode, with a different choice of parameter and element values. Derive an analytical expression for the dc conversion ratio \(M(D, K) \).

(c) Sketch the diode current waveform \(i_D(t) \), and the inductor current waveforms \(i_1(t) \) and \(i_2(t) \), for operation in the discontinuous conduction mode.

5.7 DCM Mode Boundary Analysis of the SEPIC of Fig. 5.24

(a) Sketch the diode current waveform for CCM operation. Find its peak value, in terms of the ripple magnitudes \(\Delta i_{L1}, \Delta i_{L2} \) and the dc components \(I_1 \) and \(I_2 \) of the two inductor currents \(i_{L1}(t) \) and \(i_{L2}(t) \), respectively.

(b) Derive an expression for the conditions under which the SEPIC operates in the discontinuous conduction mode. Express your result in the form \(K < K_{on}(D) \), and give formulas for \(K \) and \(K_{on}(D) \).

5.8 DCM Conversion Ratio Analysis of the SEPIC of Fig. 5.24.

(a) Suppose that the converter operates at the boundary between CCM and DCM, with the following element and parameter values:

\[D = 0.4 \quad f_s = 100 \text{ kHz} \]

\[V_s = 120 \text{ V} \quad R = 10 \Omega \]

\[L_1 = 50 \mu \text{H} \quad L_2 = 75 \mu \text{H} \]

\[C_1 = 47 \mu \text{F} \quad C_2 = 200 \mu \text{F} \]
Solution to Problem 5.5
DCM mode boundary analysis
of the Cuk converter

R. W. Erickson
Fundamentals of
Power Electronics

CCM analysis of the Cuk converter is given in
Section 2.4. Some results:

\[V_{C1} = \frac{V_3}{D'} \]
\[V = -\frac{D}{D'} V_3 \]
\[I_1 = \left(\frac{D}{D'} \right)^2 \frac{V_3}{R} \]
\[I_2 = \frac{D}{D'} \frac{V_3}{R} \]

(note that the polarity of \(i_2 \) is reversed in
Section 2.4, and the quantities \(v_{C1} \) and \(V \)
are called \(v_i \) and \(v_e \) respectively).

Inductor current ripples (from Eq. (2.57)):

\[\Delta i_1 = \frac{V_3 D T_3}{2L_1} \]
\[\Delta i_2 = \frac{V_3 D T_3}{2L_2} \]
a) Sketch diode current waveform

\[i_d(t) = \begin{cases}
0 & \text{during subinterval 1 (diode off)} \\
 i_1(t) + i_2(t) & \text{during subinterval 2 (transistor off)}
\end{cases} \]

\[i_d(t) \]

\[i_d(t) = I_1 + I_2 + \Delta i_1 + \Delta i_2 \]

b) CCM/DCM mode boundary

The dc components of inductor currents, \(I_1 \) and \(I_2 \), depend on the load resistance \(R \). The inductor current ripples, \(\Delta i_1 \) and \(\Delta i_2 \), do not depend on the load resistance \(R \). When we increase \(R \), \(I_1 + I_2 \) decreases but \((\Delta i_1 + \Delta i_2) \) does not change. If we increase \(R \) such that \((I_1 + I_2) = (\Delta i_1 + \Delta i_2) \), then the diode current will be zero at the end of the switching period:

\[i_d(T_3) = (I_1 + I_2) - (\Delta i_1 + \Delta i_2) = 0 \]
If we further increase R, then $i_D(t)$ will reach zero before the end of the switching period. The diode then becomes reverse-biased, and the converter operates in the discontinuous conduction mode:

$$i_D(t) \uparrow \quad \text{DCM operation}$$

![Graph showing discontinuous conduction mode](image)

So the Cuk converter operates in DCM when

$$I_1 + I_2 < A_i_1 + A_i_2$$

Substitute the CCM expressions for I_1, I_2, A_i_1, A_i_2 (note that the CCM analysis is valid at the CCM/DCM boundary):

$$\left(\frac{D'}{D'}\right)^2 \frac{V_g}{R} + \frac{D}{D'} \frac{V_g}{R} < \frac{V_g T_S}{2L_1} + \frac{V_g D T_S}{2L_2}$$

Rearrange terms:

$$\Rightarrow \quad 2 \frac{L_{11} L_2}{R T_S} \leq \left(\frac{D'}{D'}\right)^2$$

$$K < K_{crit}(D) \quad \text{for DCM}$$

with $K = \frac{2 L_{11} L_2}{R T_S}$, $K_{crit} = \left(\frac{D'}{D'}\right)^2$

End of problem 5.5
Solution to Problem 5.6

Conversion ratio analysis of the Cuk converter in DCM

See solution to problem 5.5 for schematic and mode boundary analysis.

a) For the given values, we obtain

\[
K = \frac{2 \cdot L_{11} \cdot L_{2}}{R \cdot T_{s}} = \frac{2}{(10 \cdot 10^{-6})} \left(\frac{54 \mu \text{H} \parallel 27 \mu \text{H}}{10 \mu \text{s}} \right)
\]

\[
K = 0.36
\]

\[
K_{\text{crit}} = (1 - D')^2 = (1 - 0.4)^2 = 0.36
\]

so indeed \(K = K_{\text{crit}} \) and the converter operates at the boundary between CCM and DCM.

We can sketch the current waveforms \(i_{b}(t), i_{c}(t), \) and \(i_{2}(t) \) using the CCM analysis of Section 2.4.
From Eq. (2.53):

\[I_1 = \left(\frac{D}{D} \right)^2 \frac{V_S}{R} = \left(\frac{0.4}{0.6} \right)^2 \frac{(120)}{(10)} = 5.33 \, A \]

\[I_2 = \left(\frac{D}{D} \right) \left(\frac{V_S}{R} \right) = \left(\frac{0.4}{0.6} \right) \left(\frac{120}{10} \right) = 8.0 \, A \]

(Note: polarity of \(I_2 \) in Fig. 5.23 is reversed from polarity used in Section 2.4)

From Eq. (2.57):

\[\Delta i_1 = \frac{V_S DT_3}{2L_1} = \frac{(120)(0.4)(10 \mu s)}{(2)(54 \mu H)} = 4.44 \, A \]

\[\Delta i_2 = \frac{V_S DT_3}{2L_2} = \frac{(120)(0.4)(10 \mu s)}{(2)(27 \mu H)} = 8.88 \, A \]

\[I_1 = 5.33 \, A \]

\[I_1 + \Delta i_1 = 9.78 \, A \]

\[I_1 - \Delta i_1 = 0.87 \, A \]

\[I_2 = 8.0 \, A \]

\[I_2 + \Delta i_2 = 16.81 \, A \]

\[I_2 - \Delta i_2 = -0.31 \, A \]

\[\text{Note: } i_2(t) < 0 \text{ and } \Delta i_2 > I_2 \]

\[(2) \]
Diode current waveform

\[i_d(t) = \begin{cases}
 0 & \text{during } 0 < t < D T_3 \\
 i_1(t) + i_2(t) & \text{during } D T_3 < t < T_5
\end{cases} \]

Note \(i_d(T_5) = 0 \) (for this operating point at the CCM/DCM boundary)

Note that \(i_d(T_5) = 0 \) does not necessarily imply that \(i_1(T_5) = 0 \) and \(i_2(T_5) = 0 \) ! Rather, it implies that \(i_1(T_5) = -i_2(T_5) \).

(3)
If the load resistance is increased, then the dc currents I_1 and I_2 are decreased. The converter enters the discontinuous conduction mode, with the following waveforms:

![Waveform Diagram]

(solution to part c)
6) Solution of DC conversion ratio $M(D_1, K)$ in DCM

Voltage balance on L_1 and L_2:

\[
\langle v_{L_1} \rangle = D_1 v_3 + D_2 (v_3 - v_{c_1}) = 0 \\
\langle v_{L_2} \rangle = D_1 (v_{c_1} + V) + D_2 (V) = 0
\]

Charge balance on C_2:

\[
\begin{align*}
L_2 \frac{d}{dt} i_2 &= \frac{v}{R} \\
C_2 \frac{d}{dt} v_{c_2} &= \frac{1}{R} (v - v_{c_2})
\end{align*}
\]

Dc component $\langle i_{c_2} \rangle = 0$

Therefore, the dc load current $-\frac{V}{R}$ is equal to the dc component of inductor current $\langle i_2 \rangle = I_2$

\[
I_2 = -\frac{V}{R}
\]

Must compute $I_2 = \langle i_2 \rangle$. Inductor current waveform from previous page:

\[
\langle i_2 \rangle = \frac{1}{T_2} \sum_{t=0}^{T_2} i_2(t) dt = \frac{1}{T_2} \left[(2D_1 T_3)(-I_3) + (-I_3 + T_3 a_i_2) -2a_i_2 \right.
\]

\[+ (2a_i T_3)(-I_3) + (-I_3 + 2a_i_2) - (2D_3 T_2)(-I_3) \]

note $D_1 + D_2 + D_3 = 1$
simplify:

\[I_2 = -I_3 + (D_1 + D_2) \Delta i_2 \]

so

\[-I_3 + (D_1 + D_2) \Delta i_2 = -\frac{V}{R} \]

with \(\Delta i_2 = \frac{V_{c_1} + V}{2L_2} D_1 T_3 \)

Charge balance on \(C_1 \):

\[i_{c_1}(t) = \begin{cases}
- i_2(t) & \text{during } 0 \leq t \leq D_1 T_3 \\
i_1(t) & \text{during } D_1 T_3 \leq t \leq (D_1 + D_2) T_3 \\
(-I_2(t) = I_3) & \text{during } (D_1 + D_2) T_3 \leq t \leq T_3
\end{cases} \]

Capacitor charge balance:

\[\langle i_{c_1} \rangle = 0 = \frac{1}{T_3} \int_0^{T_3} i_{c_1}(t) \, dt = \frac{1}{T_3} \left[D_1 T_3 \frac{I_3 + (I_3 - 2\Delta I_2)}{2} \right. \\
+ D_2 T_3 \left. \frac{(I_3 + 2\Delta I_2) + I_3}{2} + D_3 T_3 I_3 \right] \]

(6)
Simplify:

$$0 = I_3 - D_1 \Delta i_2 + D_2 \Delta i_1$$

Summary of DCM equations:

(i) $$0 = (D_1 + D_2)V_g - D_2 V_{c1}$$ (volt-sec balance on L_1)

(ii) $$0 = (D_1 + D_2)V + D_1 V_{c1}$$ (volt-sec balance on L_2)

(iii) $$-I_3 + (D_1 + D_2)\Delta i_2 = -\frac{V}{R}$$ (charge balance on C_2)

(iv) $$0 = I_3 - D_1 \Delta i_2 + D_2 \Delta i_1$$ (charge balance on C_1)

with $$\Delta i_1 = \frac{V_g}{2L_1} D_1 T_S$$ (v)

$$\Delta i_2 = \frac{V_{c1} + V}{2L_2} D_1 T_S$$ (vi) (expressions for inductor current ripples)

Algebra: solve for $$M = \frac{V}{V_g}$$

from (i): $$V_{c1} = \frac{D_1 + D_2}{D_2} V_g$$

from (iii): $$V = -\frac{D_1}{D_1 + D_2} V_{c1} = -\frac{D_1}{D_2} V_g \Rightarrow M = \frac{V}{V_g} = -\frac{D_1}{D_2}$$

Eliminate I_3 from (iii) and (iv):

$$I_3 = (D_1 + D_2) \Delta i_2 + \frac{V}{R} = D_1 \Delta i_2 - D_2 \Delta i_1$$

solve for D_2:

$$D_2 (\Delta i_1 + \Delta i_2) = -\frac{V}{R} \Rightarrow D_2 = -\frac{V}{R} \frac{1}{\Delta i_1 + \Delta i_2}$$

(7)
Substitute (v) and (vi):

\[
D_2 = -\frac{V}{R} \frac{1}{(D_{1/3})(\frac{V_a}{2L_1} + \frac{V_{bc}+V}{2L_2})} = -\frac{V}{RD_{1/3}} \frac{2}{\frac{V_a}{L_1} + \frac{V_a}{L_2}}
\]

\[
= -\frac{V}{V_3} \frac{2L_{ill.2}}{D_{1/3} R_{1/3}} \Rightarrow D_2 = -\frac{MK}{D_1}
\]

Now substitute this expression for \(D_2\) into the previous expression for \(M\):

\[
M = -\frac{D_1}{D_2} = -\frac{D_1}{(-\frac{MK}{D_1})} \quad \text{note that, since } D_1 \text{ and } D_2 \text{ are positive, } M \text{ must be negative}
\]

Solve for \(M(D_1, K)\):

\[
M^2 = \frac{D_1^2}{K} \Rightarrow M(D_1, K) = \pm \frac{D_1}{\sqrt{K}} \quad \text{select minus sign}
\]

\[
M(D_1, K) = -\frac{D_1}{\sqrt{K}}
\]

(3) see page 4
The forward converter is a modification of the buck converter which incorporates an isolation transformer. It is often used in off-line applications.

Assume that the three-winding transformer can be modelled by a mutual inductance L_M and an ideal three-winding transformer, as below:

$$n_1i_1 + n_2i_2 + n_3i_3 = 0$$

$$\frac{v_1}{n_1} = \frac{v_2}{n_2} = \frac{v_3}{n_3}$$

Thus, the converter effectively contains two inductors: L and L_M. L_M is always operated in discontinuous conduction mode, while L usually operates in continuous conduction mode. Hence, the switch conduction sequence is:

<table>
<thead>
<tr>
<th>Interval</th>
<th>D_1T_S</th>
<th>D_2T_S</th>
<th>D_3T_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting switches</td>
<td>Q_1,D_2</td>
<td>D_1,D_3</td>
<td>D_3</td>
</tr>
</tbody>
</table>
1. Determine the dc conversion ratio V/V_g

2. It is desired to use this converter in the following off-line application:

 $V_g = 150$ volts
 $V = 5$ volts
 $P_{out} = 150$ watts

 Use $n_1 = n_2 = 10 n_3$.

 Determine the duty ratio D_1, and the value of L for which the peak-to-average current ripple Δi is 10% of the average inductor current I_0.

3. Sketch the waveforms for $i_M(t), v_1(t), i(t)$, and $V_1(t)$. Label salient features.

4. What are the transistor voltage and current stresses?

5. Over what range of duty ratios (D_1) do the volt-seconds on L_M balance to zero? How is your answer changed when $n_1 \neq n_2$?
Replacing the transformer with its model and drawing the three topologies which result from the following switch sequence:

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>D₁Ts</th>
<th>D₂Ts</th>
<th>D₃Ts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting Switches</td>
<td>Q₁, D₁</td>
<td>D₁, D₃</td>
<td>D₃</td>
</tr>
</tbody>
</table>

we have the following.
'\text{peak} = \frac{V_3 \cdot D \cdot T_s}{L_m} \\
\text{slope} = -\frac{\alpha_1}{\alpha_2} \frac{V_3}{L_m} \\
\text{slope} = \frac{\alpha_2}{\alpha_1} V_3 - V = \frac{\alpha_2 - 1}{\alpha_1} \frac{V_3}{L} \\
I_0 - \frac{V}{R} = \frac{\alpha_2}{\alpha_1} \frac{PV_2}{R} \\
-V + \frac{\alpha_2}{\alpha_1} V_3 = P' \frac{\alpha_2}{\alpha_1} V_3 \\
V_2 \\
-Fig. 3
1. Determine \(V/V_g \):

By volt-sec balance considerations on \(L \) we have

\[(-V + \frac{n_2}{n_1} V_g) D_1 = V D_1', \quad \text{where} \quad D_1' = 1 - D_1. \]

\[\Rightarrow \quad V = \frac{n_2}{n_1} D_1 V_g \]

2. \(V_g = 150 \); \(V = 5 \); \(P_{out} = 150 \); \(n_1 = n_2 = 10 \); \(n_3 \)

Determine \(D_1' \):

\[D_1' = \frac{n_1 V}{n_2 V_g} \]

\[\Rightarrow \quad D_1' = \frac{5 \times 10}{150} = 0.3333. \]

Determine \(L \):

\[P_{out} = \frac{V^2}{R} \Rightarrow R = \frac{V^2}{P_{out}} \]

\[\Rightarrow \quad R = \frac{(5)^2}{150} = 0.1667 \Omega \]

New \(\Delta i = 0.1 I_0 \) \((\text{by design})\)

\[\Delta i = \frac{n_2}{n_1} \frac{V_g}{2} \frac{\Gamma_{se}}{2} \]

\[I_0 = \frac{n_3}{n_1} \frac{D V_g}{2} \]
\[L = \frac{D_1 T_3 R}{0.2} \]

\[\Rightarrow L = \frac{0.6667 \times 0.1667}{25 \times 10^3 \times 0.2} = 22 \mu \text{H} \]

4) From Fig. 2 we see the maximum voltage stresses are

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>VOLTAGE STRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>((1 + \frac{n_1}{n_2}) V_g)</td>
</tr>
<tr>
<td>D1</td>
<td>((1 + \frac{n_2}{n_1}) V_g)</td>
</tr>
<tr>
<td>D2</td>
<td>(\frac{n_2}{n_1} V_g)</td>
</tr>
<tr>
<td>D3</td>
<td>(\frac{n_3}{n_2} V_g)</td>
</tr>
</tbody>
</table>

The evaluation of the current stress are a little more involved.

Current stress in Q1.

The current in Q2 has two components:

1) Magnetizing current in transformer
2) Reflected current in L
The maximum current stress can be seen from Fig. 3 to occur at the end of $D_1 T_5$.

\[I_{D_{2_{max}}} = \frac{V_g D_1 T_5}{L_m} + \frac{n_3}{n_1} \left[\frac{n_3}{n_1} \frac{V_g}{R} + D_1' n_3 \frac{V_g}{R} \frac{D_1 T_5}{2} \right] \]

\[I_{D_{2_{max}}} = \frac{V_g D_1 T_5}{L_m} \left(\frac{n_3}{n_1} \right)^2 \frac{D_1 V_g}{R} \left[\frac{1 + D_1' T_5 R}{2 L} \right] \]

Current Stress in Diode D_1

From Fig. 2 and Fig. 3, we can appreciate that the maximum current stress in D_1 occurs at the beginning of $D_2 T_5$.

\[I_{D_{1_{max}}} = \frac{n_1}{n_2} \frac{V_g D_1 T_5}{L_m} \]

Current Stress in D_2 and D_3

From Fig. 3, we see that the maximum current stress in diodes D_2 and D_3 occurs at the end of $D_1 T_5$ and at the beginning of $D_2 T_5$, respectively.

\[I_{D_{2_{max}}} = I_{D_{3_{max}}} = \frac{n_3}{n_1} \frac{V_g}{R} + D_1' \frac{n_3}{n_1} \frac{V_g}{R} \frac{D_1 T_5}{2} = \frac{n_3}{n_1} \frac{D_1 V_g}{R} \left[1 + D_1' T_5 R \right] \frac{2 L}{2 L} \]
5. For volt-sec. balance we require

\[\text{voltage} \leq \max \text{ -ve voltage} \]

\[D_1 V_g \leq \max \left\{ \frac{n_1}{r_2} V_g \left(1 - D_3 - D_3\right) \right\} \]

\[\text{max. occurs at } D_3 = 0 \]

\[\Rightarrow \quad D_1 V_g \leq \frac{n_1}{r_2} V_g (1 - D_1) \]

\[\Rightarrow \quad D_1 \left(1 + \frac{r_1}{r_2}\right) \leq \frac{n_1}{r_2} \]

\[\Rightarrow \quad D_1 \leq \frac{n_1}{n_1 + n_2} \]

\[\therefore \quad \text{for } n_1 = n_2 \Rightarrow D_1 \leq 0.5 \]
EE410PE MIDTERM

PROBLEM 1.

(a) Using the voltage-current equation for an inductor, show that the average voltage per switching period, \bar{v}, across an inductor in a PWM converter operating in steady state is zero.
PROBLEM 2.

For the following, express your results in terms of the relevant known quantities V_g, D, T_s and the component values L_1, L_2, C_1, C_2 and R.

Determine for the PWM converter of Fig. 1 (known as the SEPIC converter) operating in steady-state in the continuous conduction mode (CCM) the following:

(a) the peak current experienced by the transistor
(b) the peak voltage experienced by the transistor. Be sure to take into consideration the voltage ripple on C_1 but neglect the ripple on C_2.
(c) Using your results of a) and b), sketch the waveform of the transistor current for two switching cycles and below it, clearly showing the timing relationship, sketch the waveform of the transistor (collector-emitter) voltage. Label salient features on your sketch, such as the values at the top and bottom of slopes and the time scale.

![Diagram](image-url)
PROBLEM 3.

Derive an equivalent circuit model of the PWM boost converter of Fig. 2, which models the DC properties of the converter operating in the continuous conduction mode (CCM). Your model should take into consideration the non-ideality of the transistor switch, Q, which is to be modelled as a (small-valued) finite resistance r_{ON}, in its ON state, and a finite resistance r_{OFF} ($>> r_{ON}$) in its OFF state. All other components may be assumed to be ideal.

Fig. 2
PROBLEM 4.

Derive an expression for the peak-to-peak output voltage ripple for the buck converter of Fig. 3 for operation in the continuous conduction mode (CCM). Be sure to express your answer in terms of all relevant known quantities.
Problem 1:

\[i_L - \frac{3}{2} L = L \frac{di_L}{dt} - L \frac{du_L}{dt} \]

\[\langle u_L \rangle = \frac{1}{T_s} \int_0^{T_s} u_L(t) \, dt \]

\[= \frac{1}{T_s} \int_0^{T_s} L \frac{di_L}{dt} \, dt \]

\[= \frac{1}{T_s} \int_0^{T_s} di_L \]

\[= \frac{L}{T_s} \left[i_L(T_s) - i_L(0) \right] \]

In steady state \(i_L(T_s) = i_L(0) \)

\[\Rightarrow \langle u_L \rangle = 0 \]
Problem 2

\[V_1 = V_g \quad \text{(since zero average voltage across } L_1 \text{ and } L_2) \]

\[\text{Volt-sec in } L_2 \Rightarrow \quad \int V_g - \int V_2 = 0 \quad \Rightarrow \quad V_2 = \frac{D}{D^1} V_g \]

\[\Rightarrow \text{Output current} = \frac{D}{D^1} \frac{V_g}{R} \]

\[\Rightarrow \text{average current in } L_2 = I_2 = \frac{D}{D^1} \frac{V_g}{R} \quad \text{since average current in } L_1 = 0 \]

\[\text{average current in } L_1 : \quad I_{\text{avg}} = \int I_1 = \int \left(\frac{D}{D^1} \frac{V_g}{R} \right) \]

\[\Rightarrow \quad V_g I_1 = \left(\frac{D}{D^1} \frac{V_g}{R} \right)^2 \frac{1}{R} \]

\[\Rightarrow \quad I_2 = \left(\frac{D^2}{D^1} \frac{V_g}{R} \right) \]

Peak-peak current in \(L_1 \) = \(\Delta I_1 \)

\[= \frac{V_g}{L_1} DT_5 \]

Peak-peak current in \(L_2 \) = \(\Delta I_2 \)

\[= \frac{V_g}{L_2} DT_5 \]
Alternatively

Using charge balance to find \(I_1 + I_2 \)

\[c_1 : \frac{d}{d\tau} i_{c_1} = -c_2 \]
\[c_2 : \frac{d}{d\tau} i_{c_2} = -\frac{V_b}{R} \]

\[d'v_1 = c_1 \]
\[d'v_2 = c_1 + c_2 - \frac{V_b}{R} \]

\[\Rightarrow -d'v_2 + d'I_1 = 0 \]
\[\Rightarrow -d'v_2 + d'I_1 - d'I_2 = 0 \]

\[\Rightarrow I_1 = d' \left(\frac{dI_2}{d'} \right) \]

\[\Rightarrow I_2 = \frac{V_b}{R} \]

\[\Rightarrow I_1 = \frac{d}{d'} \frac{V_b}{R} = \left(\frac{d}{d\tau} \right) \frac{V_b}{R} \]
a) peak current in transistor = $I_1 + I_2 + \frac{A_{i1}}{2} + \frac{B_{i2}}{2}$

$$= \left(\frac{2}{D'} \right) \frac{V_g}{R} + \frac{V_g}{D'R} + \frac{V_g R T_s}{2C_1} + \frac{V_g R T_s}{2C_2}$$

$$= \frac{D V_g}{D'R} + \left(\frac{1}{C_1} + \frac{1}{C_2} \right) \frac{V_g R T_s}{2}$$

b) peak transistor voltage = $V_1 + V_2 + \frac{A V_{i1}}{2} + \frac{B V_{i2}}{2}$

neglect $A V_{i2}$;

$V_1 = V_g$

$V_2 = \frac{B}{D'} V_g$

need to find $A V_1$:

$$i = \frac{V}{c_1}$$

$$\Rightarrow A V_1 = \frac{I_1 D T_s}{C_1}$$

$$\Rightarrow$$ peak transistor voltage = $V_g + \frac{B}{D'} V_g + \frac{I_1 D T_s}{2 C_1}$

$$= \frac{V_g}{D'} \left[1 + \frac{B^2}{D'} \right] \frac{V_g R T_s}{2 C_1}$$
\[
\frac{DV_0}{D^2T} - \left(\frac{I_1 + I_2}{L_1 + L_2} \right) V_T \frac{I_1 T}{2} = \frac{I_1 + I_2}{L_1 + L_2} \frac{V_T I}{2}
\]

\[
\frac{V_0}{D'} = \frac{D}{D'} \frac{V_T}{2RC_1}
\]

\[
\frac{V_0}{D'} = \frac{D}{D'} \frac{V_R T}{2RC_1}
\]
Problem 3

\[D T_2 : i + v = 0 \]
\[D T_3 : i + v = 0 \]

\[V_L = V_j - i R_{on} \]
\[V_C = V_j - v \]

\[i_C = - \frac{v}{R} \]
\[i'_C = i - \frac{v}{R_{eff}} - \frac{v}{R} \]

Inductor Volt-sec. balance:

\[\Rightarrow \quad D (V_j - i R_{on}) + D' (V_j - v) = 0 \]

\[\Rightarrow \quad V_j - D I R_{on} - D' v = 0 \quad \text{(1)} \]

Capacitor charge balance:

\[\Rightarrow \quad - \frac{D v}{R} + D' I - \frac{3' v}{R_{eff}} - \frac{3' v}{R} = 0 \]

\[\Rightarrow \quad D' I = \frac{v}{R} + \frac{D' v}{R_{eff}} \quad \text{(2)} \]
\[V_g \quad D'_{ew} \quad \frac{D'_{ew}}{D'} \quad R \]

\[V_g \quad D'_{ew} \quad \frac{D'_{ew}}{D'} \quad \frac{r_{eff}}{D'} \quad R \]

\[\frac{D'_{ew}}{D'} : 1 \]
Problem 4: Method 1

\[V_g^+ \] \[- \] \[C \] \[\frac{V}{C} \] \[R \] \[L \] \[+ \] \[V_s \] \[+ \] \[- \] \[DT_s \] \[D'T_s \]

\(-V_g + L \dot{i} + u = 0 \Rightarrow \dot{i} = -\frac{u}{L} + \frac{V_g}{L}\)

The state eqns. are the same as for \(DT_s \) except \(V_g = 0 \)

\[
\frac{d}{dt} \begin{bmatrix} i \\ u \end{bmatrix} = \begin{bmatrix} \frac{1}{C} & -\frac{1}{RC} \\ \frac{1}{C} & -\frac{1}{RC} \end{bmatrix} \begin{bmatrix} i \\ u \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{L} \end{bmatrix} V_g
\]

\[A_1 = A_2; \quad b_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

\[\Delta x = (A_1 X + b_1 V_g) \Delta T_s \]

\[X = \begin{bmatrix} I \\ V \end{bmatrix} = \begin{bmatrix} \frac{DV_g}{R} \\ DV_g \end{bmatrix} \]

\(X = -A^{-1} b V_g \)
\[\Delta x = \left(\begin{bmatrix} 0 & -\frac{1}{L} \\ \frac{1}{L} & -\frac{1}{RC} \end{bmatrix} \begin{bmatrix} \frac{dV_3}{I} \\ \frac{dV_3}{V} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{L} \end{bmatrix} V_j \right) DT_s \]

\[b_x = \begin{bmatrix} \frac{-2V_3}{L} + \frac{V_3}{C} \\ \frac{2V_3}{RC} - \frac{dV_3}{RC} \end{bmatrix} DT_s \]

\[= \begin{bmatrix} \frac{3V_3}{L} DT_s \\ 0 \end{bmatrix} \]

\[\Delta u = 0 \]

\[\Rightarrow \text{need to find the second order component } b^{(2)} \]

\[b^{(2)} x = A \Delta x T_s \]

\[= \begin{bmatrix} 0 & -\frac{1}{L} \\ \frac{1}{L} & -\frac{1}{RC} \end{bmatrix} \begin{bmatrix} \frac{dV_3}{I} DT_s \frac{T_s}{8} \end{bmatrix} \]

\[= \begin{bmatrix} \frac{3V_3}{L} DT_s \frac{T_s}{8} \end{bmatrix} \Rightarrow \text{the peak-to-peak output voltage ripple} \]

\[= \frac{3V_3 T_s^2}{8LC} \]
Problem 4: Method 2

Assume all the inductor ripple goes through the capacitor.

\[
\delta V = \frac{\Delta Q}{C}
\]

\[
\frac{\Delta i}{2} = \frac{\delta V T_S}{2L} = \frac{\Delta i_d T_S}{2L}
\]

\[
\Rightarrow \Delta Q = \frac{1}{2} \left(\frac{T_S}{2} + \frac{T_S'}{2} \right) \frac{\Delta i_d V_g T_S}{2L}
\]

\[
= \frac{DD'V_g T_s^2}{8L}
\]

\[
\Rightarrow \Delta V = \frac{V_g DD'T_s^2}{7LC}
\]