Instructions: Mark your answers on your Scantron form (Form No. 882-E) and hand it in when you are finished. You can keep the exam question sheets.

1. The net charge through a cross section of a circuit element is \(q(t) = 30 + 15t^2 + 5e^{-2t} \) C, \(t \) is in seconds. Find the current through the element in amperes.

 A: \(30 + 30t + 10t^2 \) A
 B: \(30t + 10e^{-2t} \) A
 C: \(30 + 30t - 10e^{-2t} \) A
 D: \(30t - 10e^{-2t} \) A
 E: none of the above

2. The voltage across the resistor in the figure below is \(U = 10 \) V, and the current through it is \(I_1 = e^{-t} \). Find the energy absorbed over the time interval \(t = 0 \) to \(t = \infty \).

 A: 10 J
 B: 20 J
 C: 30 J
 D: 40 J
 E: none of the above

3. Find \(\frac{V_o}{V_s} \) in the circuit below.

 A. 1/4
 B. 1/3
 C. 1/2
 D. 2/3
 E. 3/4
4. Find \(\frac{I_o}{I_s} \) in the circuit below.

A. 1/4
B. 1/3
C. 1/2
D. 2/3
E. 3/4

5. The current \(i \) is measured in two experiments which are performed on a Thevenin equivalent circuit as shown. What is the Thevenin equivalent resistance?

A. 0 \(\Omega \)
B. 1 \(\text{k}\Omega \)
C. 2 \(\text{k}\Omega \)
D. 10 \(\text{k}\Omega \)
E. \(\infty \) \(\text{k}\Omega \)
6. A battery, which can be modeled by a Thevenin equivalent circuit, has an open circuit voltage of 2 volts. When a 500Ω resistor is connected to the battery, the terminal voltage drops to 1 volt. How much power is dissipated in the Thevenin equivalent resistance of the battery under this condition?

A. 0.002 W
B. 0.005 W
C. 0.5 W
D. 2 W
E. 5 W

7. Find V_o in the circuit below.

A. $-3/2$ V
B. $-1/2$ V
C. 0 V
D. $1/2$ V
E. $3/2$ V

8. What is the current through the resistor below?

A. 1 A
B. 2 A
C. 0 A
D. cannot determine
E. none of the above
9. How many KVL equations can be written for this circuit?

A. 3
B. 4
C. 5
D. 6
E. 7

10. Determine the current I in the circuit below.

A. 1 A
B. 5 A
C. −1 A
D. −5 A
E. none of the above

11. For the three conductances connected as shown on the network below, the equivalent conductance G_{AB} is computed with the formula.

A. $G_{AB} = \sqrt{G_1 + G_2 + G_3}$
B. $G_{AB} = \sqrt{G_1^2 + G_2^2 + G_3^2}$
C. $G_{AB} = \frac{G_1 G_2 G_3}{G_1 + G_2 + G_3}$
D. $\frac{1}{G_{AB}} = \frac{1}{G_1} + \frac{1}{G_2} + \frac{1}{G_3}$
E. none of the above
12. In the network shown below, when $R = 4 \, \Omega$, the voltage $v_R = 6 \, V$. When $R = 0 \, \Omega$, $i_R = 2 \, A$. When $R = \infty$, v_R is

\begin{align*}
\text{A.} & \quad 6 \, V \\
\text{B.} & \quad 24 \, V \\
\text{C.} & \quad 8 \, V \\
\text{D.} & \quad 16 \, V \\
\text{E.} & \quad \text{none of the above}
\end{align*}

13. The node voltages shown in the partial network below are relative to some reference node not shown. The value of the voltage v_X is

\begin{align*}
\text{A.} & \quad -6 \, V \\
\text{B.} & \quad 16 \, V \\
\text{C.} & \quad 0 \, V \\
\text{D.} & \quad 10 \, V \\
\text{E.} & \quad \text{none of the above}
\end{align*}

14. The voltage across the $2 \, \Omega$ resistor in the circuit below is

\begin{align*}
\text{A.} & \quad 6 \, V \\
\text{B.} & \quad 16 \, V \\
\text{C.} & \quad -8 \, V \\
\text{D.} & \quad 32 \, V \\
\text{E.} & \quad \text{none of the above}
\end{align*}
15. The current i in the circuit below is

![Circuit Diagram]

A. $-2 \, A$
B. $5 \, A$
C. $3 \, A$
D. $4 \, A$
E. none of the above

16. The value of the voltage v for the circuit below is

![Circuit Diagram]

A. $4 \, V$
B. $6 \, V$
C. $8 \, V$
D. $12 \, V$
E. none of the above

17. For the network below, the equivalent resistance R_{TH} to the right of terminals a and b is

![Circuit Diagram]

A. 1
B. 2
C. 5
D. 10
E. none of the above
18. For the network below, the Thevenin equivalent voltage V_{TH} across terminals a and b is

A. -3 V
B. -2 V
C. 1 V
D. 5 V
E. none of the above

19. For the network below, the Norton equivalent current source I_N and equivalent parallel resistance R_N across terminals a and b are

A. $1 \text{ A}, 2 \Omega$
B. $1.5 \text{ A}, 25 \Omega$
C. $4 \text{ A}, 2.5 \Omega$
D. $0 \text{ A}, 5 \Omega$
E. none of the above

20. In applying the superposition principle to the circuit below, the current i due to the 4 V source acting alone is

A. 8 A
B. -1 A
C. 4 A
D. -2 A
E. none of the above