Shor’s Factoring

Sources
Richard Spillman
Mike Frank
Isaac Chuang
Quantum Circuits

Quantum Fourier Transform Circuit

\[|y\rangle = \frac{1}{2^{n/2}} \sum_x e^{\frac{i2\pi y \cdot x}{2^n}} |x\rangle \]
Shor’s Factoring Algorithm

• Solves the >2000-year-old problem:
 – Given a large number N, quickly find the prime factorization of N. (At least as old as Euclid.)

• No polynomial-time (as a function of $n=\lg N$) classical algorithm for this problem is known.
 – The best known (as of 1993) was a number field sieve algorithm taking time $O(\exp(n^{1/3} \log(n^{2/3})))$
 – However, there is also no proof that a fast classical algorithm does not exist.

• Shor’s quantum algorithm takes time $O(n^2)$
 – No worse than multiplication of n-bit numbers!
More Details of Shor’s Algorithm

- Uses a standard reduction of factoring to another number-theory problem called the *discrete logarithm* problem.
- The discrete logarithm problem corresponds to finding the *period* of a certain periodic function defined over the integers.
- A general way to find the period of a function is to perform a *Fourier transform* on the function.
 - Shor showed how to generalize an earlier algorithm by *Simon*, to provide a *Quantum Fourier Transform* that is exponentially faster than classical ones.
Main Idea: Factoring

- Given two large prime numbers \(p \) and \(q \) it is easy to calculate their product
 - \(p = 15485863 \) and \(q = 15485867 \) then \(p \times q = 239813014798221 \)

- On the other hand, given a large number \(n \) it is very difficult to find two integers \(p \) and \(q \) such that \(n = p \times q \)
Powers of numbers mod N

- Given natural numbers (non-negative integers) $N \geq 1$, $x < N$, and x, consider the sequence:
 \[x^0 \mod N, x^1 \mod N, x^2 \mod N, \ldots \]
 \[= 1, x, x^2 \mod N, \ldots \]

- If x and N are relatively prime, this sequence is guaranteed not to repeat until it gets back to 1.

- **Discrete logarithm of y, base x, mod N:**
 - The smallest natural number exponent k (if any) such that $x^k = y \mod N$.
 - *I.e.*, the integer logarithm of y, base x, in modulo-N arithmetic. **Example:** $\text{dlog}_7 13 \mod N = ?$
Discrete Log Example

- \(N=15, \ x=7, \ y=13. \)
- \(x \)
- \(x^2 = 49 = 4 \pmod{15} \)
- \(x^3 = 4 \cdot 7 = 28 = 13 \pmod{15} \)
- \(x^4 = 13 \cdot 7 = 91 = 1 \pmod{15} \)

- So, \(\text{dlog}_7 13 = 3 \pmod{N} \),
 - Because \(7^3 = 13 \pmod{N} \).
The *order* of $x \mod N$

- **Problem:** Given $N>0$, and an $x<N$ that is relatively prime to N, what is the smallest value of $k>0$ such that $x^k = 1 \pmod{N}$?
 - This is called the *order of x* (mod N).

- From our previous example, the order of 7 mod N is...?
Order-finding permits Factoring

- A standard reduction of factoring N to finding orders mod N:
 - 1. Pick a random number $x < N$.
 - 2. If $\gcd(x,N) \neq 1$, return it (it’s a factor).
 - 3. Compute the order of x (mod N).
 - Let $r := \min k > 0: x^k \mod N = 1$
 - 4. If $\gcd(x^{r/2} \pm 1, N) \neq 1$, return it (it’s a factor).
 - 5. Repeat as needed.

- The expected number of repetitions of the loop needed to find a factor with probability > 0.5 is known to be only polynomial in the length of N.
Factoring Example

- For $N=15$, $x=7$...
- Order of x is $r=4$.
- $r/2 = 2$.
- $x^2 = 5$.
- In this case (we are lucky), both x^2+1 and x^2-1 are factors (3 and 5).

- Now, how do we compute orders efficiently?
Main Idea: Number Theory Trick

- Given an integer N to factor, create a function:
 - $f_N(a) = x^a \mod N$
 - x is a random integer such that $gcd(x,N) = 1$

- It turns out that $f_N(a)$ is periodic
 - For successive inputs $a = 0, 1, 2, \ldots$ The function values $f_N(0), f_N(1), \ldots$ will repeat (different x values will produce different patterns)
 - For a given x, the period of the pattern is r

There is a very good chance that the $gcd(N,x^{r/2} - 1)$ is a factor of N
Given an integer N to factor, create a function:
- $f_n(a) = x^a \mod N$
- x is a random integer such that $\gcd(x,N) = 1$

It turns out that $f_N(a)$ is periodic
- For successive inputs $a = 0, 1, 2, \ldots$ The function values $f_N(0), f_N(1), \ldots$ will repeat (different x values will produce different patterns)
- For a given x, the period of the pattern is r

There is a very good chance that the $\gcd(N,x^{r/2} - 1)$ is a factor of N

<table>
<thead>
<tr>
<th>a</th>
<th>$f_{15}(a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Select $x = 8$ then $f_{15}(a) = 8^a \mod 15$

$r = 4$

$8^2 - 1 = 63$

Find the $\gcd(63, 15) = 3$

3 is a factor of 15
Main Idea: Quantum Approach

- **Goal:** Find the period of $f_N(a)$

- **PROCESS:** construct a single quantum register then partition it into two parts
 - R1 and R2

- Store a superposition of all values of a in a
 - Evaluate $f_N(a)$ and place the result in b

Select $x = 8$ then $f_{15}(a) = 8^a \mod 15$

<table>
<thead>
<tr>
<th>a</th>
<th>$f_{15}(a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

$r = 4$

$8^2 - 1 = 63$

Find the $\gcd(63, 15) = 3$

3 is a factor of 15
Main Idea: Using b

- Now b is a superposition of all possible function values (it only took 1 evaluation)
 - Measure b – this causes it to collapse to a single value, say k
 - This means that for some a, \(x^a \mod N = k \)
 - Because a and b are entangled, a now contains a superposition of only those values of a such that \(x^a \mod N = k \)

Select \(x = 8 \) then \(f_{15}(a) = 8^a \mod 15 \)

<table>
<thead>
<tr>
<th>a</th>
<th>(f_{15}(a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

\(r = 4 \)

\(8^2 - 1 = 63 \)

Find the gcd(63, 15) = 3

3 is a factor of 15
Main Idea: Fourier Transform

- **Perform a Fourier Transform** on a to find the period r

- **Calculate the gcd** to find a possible factor
Quantum Order-Finding

- **Uses 2 quantum registers** (a,b)
 - $0 \leq a < q$, is the k (exponent) used in order-finding.
 - $0 \leq b < n$, is the y $(x^k \mod n)$ value
 - q is the smallest power of 2 greater than N^2.

- **Algorithm:**
 - 1. Initial quantum state is $|0,0>$, *i.e.*, $(a=0, b=0)$.
 - 2. Go to superposition of all possible values of a:
After Doing Hadamard Transform on all bits of a
After modular exponentiation

\[b = x^a \pmod{N} \]
State After Fourier Transform

Register b

Register a