Announcements

- HW#5 due, HW#6 assigned – due on MONDAY!!!!
- Midterm on Tuesday, 11/7 at class time
 - Everything up to and including chap 8, app. A,B,C
- Today:
 - FSM optimization
 - State minimization using Implicant method
 - State assignment
 - FSM partitioning
FSM Optimization Flow Chart

- State tables
 - identify and remove equivalent states

- State minimization
 - assign unique binary code to each state

- State assignment
 - use unassigned state-codes as don’t care

- Combinational logic optimization

- netlist

Successive partitioning algorithm for state minimization

- **Goal**
 - identify and combine states that have equivalent behavior

- **Algorithm sketch**
 1. place all states in one set
 2. initially partition set based on the output behavior
 3. successively partition the resulting subsets based on next state transitions
 4. repeat (3) until no further partitioning is possible
 - states left in the same set are equivalent

- **Polynomial time procedure**
Method of successive partitions

<table>
<thead>
<tr>
<th>Input Sequence</th>
<th>Present State</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$X=0$</td>
<td>$X=1$</td>
</tr>
<tr>
<td>Reset</td>
<td>S_0</td>
<td>S_1 S_2</td>
<td>0 0</td>
</tr>
<tr>
<td>0</td>
<td>S_1</td>
<td>S_3 S_4</td>
<td>0 0</td>
</tr>
<tr>
<td>1</td>
<td>S_2</td>
<td>S_5 S_6</td>
<td>0 0</td>
</tr>
<tr>
<td>00</td>
<td>S_3</td>
<td>S_0 S_0</td>
<td>0 0</td>
</tr>
<tr>
<td>01</td>
<td>S_4</td>
<td>S_0 S_0</td>
<td>1 0</td>
</tr>
<tr>
<td>10</td>
<td>S_5</td>
<td>S_0 S_0</td>
<td>0 0</td>
</tr>
<tr>
<td>11</td>
<td>S_6</td>
<td>S_0 S_0</td>
<td>1 0</td>
</tr>
</tbody>
</table>

(S_0) (S_1 S_2) (S_3 S_5) (S_4 S_6)

Minimized FSM

<table>
<thead>
<tr>
<th>Input Sequence</th>
<th>Present State</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$X=0$</td>
<td>$X=1$</td>
</tr>
<tr>
<td>Reset</td>
<td>S_0</td>
<td>S_1 S_2</td>
<td>0 0</td>
</tr>
<tr>
<td>0</td>
<td>S_1</td>
<td>S_3 S_4</td>
<td>0 0</td>
</tr>
<tr>
<td>1</td>
<td>S_2</td>
<td>S_5 S_6</td>
<td>0 0</td>
</tr>
<tr>
<td>00</td>
<td>S_3</td>
<td>S_0 S_0</td>
<td>0 0</td>
</tr>
<tr>
<td>01</td>
<td>S_4</td>
<td>S_0 S_0</td>
<td>1 0</td>
</tr>
<tr>
<td>10</td>
<td>S_5</td>
<td>S_0 S_0</td>
<td>0 0</td>
</tr>
<tr>
<td>11</td>
<td>S_6</td>
<td>S_0 S_0</td>
<td>1 0</td>
</tr>
</tbody>
</table>

(S_0) (S_1 S_2) (S_3 S_5) (S_4 S_6)
Implication chart method: Basic Concepts

Compatibility:

Si, Sj are compatible if for each input they have consistent outputs, and their successors are the same or compatible.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Conditionally compatible:

Si, Sj are conditionally compatible if their outputs and next states are consistent for some pairs of successors (Si, Sj) ≠ (Ski, Skj)

Implication chart method: Triangular table definition

We fill the cells of triangular table as follows:

- v – if pair of states is compatible,
- x – if pair of states in incompatible,
- (i,j) – pair (pair of successors), if the pair is conditionally compatible.
Triangular table – example

To get compatible states iteratively cross out all incompatibles.
Calculating Maximal classes of Compatibility

Compatible pairs: (1,2); (1,3); (1,5); (2,3); (2,4); (2,5); (3,5); (3,6); (4,6)

1,2
1,3
1,5
2,3
2,4
2,5
3,5
3,6
4,6

Minimization Algorithm

1) Find all **pairs of compatible states**,

2) Calculate **maximal sets of compatible states (MCC)**,

3) Select sets that satisfy the so-called **Covering condition (a) and closure condition (b)**:
 a) Each state must be in at least one class;
 b) For each input symbol all next states of each class must be included into one class.
Covering Condition - example

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCC = \{\{1,2,3,5\}, \{3,6\}, \{2,4\}, \{4,6\}\}

Closure condition - example

For selected classes \{1,2,3,5\}, \{4,6\} we calculate their successors

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Condition of covering and closure – second try

MCC = \{\{1, 2, 3, 5\}, \{3, 6\}, \{2, 4\}, \{4, 6\}\}

Another example
Maximal compatibility class

Compatible states:

MCC:

Testing successor states

Table of successors
Covering and closure – final state selection

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>–</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>–</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>8</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2,5,8</th>
<th>3,4,5</th>
<th>3,4,6</th>
<th>4,5,7</th>
<th>4,6,7</th>
<th>1,3</th>
<th>1,7</th>
<th>6,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ(0,S)</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>δ(1,S)</td>
<td>1</td>
<td>45</td>
<td>45</td>
<td>58</td>
<td>58</td>
<td>46</td>
<td>68</td>
<td>–</td>
</tr>
</tbody>
</table>

Minimizing states may not yield best circuit

- Example: edge detector - outputs 1 when last two input changes from 0 to 1

\[Q_1^+ = X \ (Q_1 \text{xor} \ Q_0) \]
\[Q_0^+ = X \ Q_1' \ Q_0' \]
Edge detector – ad hoc solution

- "Ad hoc" solution - not minimal but cheap and fast

Minimizing incompletely specified FSMs

- Equivalence of states
 - transitive when machine is fully specified
 - not transitive when don't cares are present
FSM Optimization Flow Chart

State tables
- identify and remove equivalent states

State minimization
- assign unique binary code to each state

State assignment
- use unassigned state-codes as don’t care

Combinational logic optimization

netlist

State assignment strategies

- Choose bit vectors to assign to each “symbolic” state
 - huge number even for small values of state bits and states
 - intractable for state machines of any size
 - heuristics are necessary for practical solutions – no guarantee of optimality
 - optimize some metric for the combinational logic
 - size (amount of logic and number of FFs)
 - speed (depth of logic and fanout)
 - dependencies (decomposition)

- Possible strategies
 - sequential – just number states as they appear in the state table
 - random – pick random codes
 - one-hot – use as many state bits as there are states
 - output – use outputs to help encode states
 - heuristic – rules of thumb that seem to work in most cases
One-hot state assignment

- Simple
 - easy to encode
 - easy to debug
- Small logic functions
 - each state function requires only predecessor state bits as input
- Good for programmable devices
 - lots of flip-flops readily available
 - simple functions with small support (signals its dependent upon)
- Impractical for large machines
 - too many states require too many flip-flops
 - decompose FSMs into smaller pieces that can be one-hot encoded

Heuristics for state assignment

- Encode adjacent states to minimize # of state bit changes
 - Use state maps

<table>
<thead>
<tr>
<th>Transition</th>
<th>1st case</th>
<th>2nd case</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0 - S1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S0 - S2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S1 - S3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S2 - S3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S3 - S4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S4 - S1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

26
Heuristics for state assignment

- **Goal**: maximize groupings of 1s in the next state & output functions
 - Helps minimize next state logic
- **Guidelines**:
 1. Adjacent codes to states that share a common next state
 \[
 \begin{array}{c|ccc}
 i & Q & Q^+ & O \\
 \hline
 a & c & j & i * a + i * b \\
 b & c & k & \end{array}
 \]
 2. Adjacent codes to states that share a common ancestor state
 \[
 \begin{array}{c|ccc}
 i & Q & Q^+ & O \\
 \hline
 a & b & j & i * a \\
 k & a & c & l & c = k * a \\
 \end{array}
 \]
 3. Adjacent codes to states that have a common output behavior
 \[
 \begin{array}{c|ccc}
 i & Q & Q^+ & O \\
 \hline
 a & b & j & i * a + i * c \\
 c & d & j & d = i * c \\
 \end{array}
 \]

Output-based encoding

- Reuse outputs as state bits
 - why create new functions for state bits when output can serve as well
 - fits in nicely with synchronous Mealy implementations

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Present State</th>
<th>Next State</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>TL</td>
<td>TS</td>
</tr>
<tr>
<td>0 - -</td>
<td>HG</td>
<td>HG</td>
<td>0 0 0 10</td>
</tr>
<tr>
<td>- 0 -</td>
<td>HG</td>
<td>HG</td>
<td>0 0 0 10</td>
</tr>
<tr>
<td>1 1 -</td>
<td>HG</td>
<td>HY</td>
<td>1 0 0 10</td>
</tr>
<tr>
<td>- - 0</td>
<td>HY</td>
<td>HY</td>
<td>0 0 1 10</td>
</tr>
<tr>
<td>- - 1</td>
<td>HY</td>
<td>FG</td>
<td>1 0 1 10</td>
</tr>
<tr>
<td>1 0 -</td>
<td>FG</td>
<td>FG</td>
<td>0 1 0 00</td>
</tr>
<tr>
<td>0 - -</td>
<td>FG</td>
<td>FY</td>
<td>1 1 0 00</td>
</tr>
<tr>
<td>- 1 -</td>
<td>FG</td>
<td>FY</td>
<td>1 1 0 00</td>
</tr>
<tr>
<td>- - 0</td>
<td>FY</td>
<td>FY</td>
<td>0 1 0 01</td>
</tr>
<tr>
<td>- - 1</td>
<td>FY</td>
<td>HG</td>
<td>1 1 0 01</td>
</tr>
</tbody>
</table>

Sources: TSR, Katz, Boriello, Vahid, Perkowski
Current state assignment approaches

- For tight encodings using close to the minimum number of state bits
 - used in custom chip design
- One-hot encoding
 - easy for small state machines
 - generates small equations with easy to estimate complexity
 - common in FPGAs and other programmable logic
- Output-based encoding
 - ad hoc - no tools
 - most common approach taken by human designers
 - yields small circuits for most FSMs

FSM Optimization Flow Chart

- State tables
- State minimization
 - identify and remove equivalent states
- State assignment
 - assign unique binary code to each state
- Combinational logic optimization
 - use unassigned state-codes as don’t care
- netlist
State Partitioning

- Helps for large state machines
 - E.g. when next state logic is too large to implement in a programmable logic component
- Introduce *idle* states to synchronize partitioned FSMs

![State Partitioning Diagram]

Partition rules

- Source/destination transformation
 - Source/destination transformation
 - Source/destination transformation
 - Hold condition for the idle state
 - Multiple transitions to same source/destination

![Partition rules Diagram]
State Partitioning Example

Summary of FSM Optimization

- State minimization
 - straightforward in fully-specified machines
 - computationally intractable, in general (with don’t cares)

- State assignment
 - many heuristics
 - best-of-10-random just as good or better for most machines
 - output encoding can be attractive (especially for PAL implementations)

- State partitioning
 - Used for larger state machines for ease of implementation
 - Introduce “idle” states at the interface
 - Change transition conditions according to the rules of partitioning