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Abstract 

 
New fastest linearly independent (LI) transforms for 

ternary functions are introduced in this paper. The 
transforms operate over Galois Field (3) (GF(3)) and 
have smaller computational costs than ternary Reed-
Muller transform. The new transforms are built based on 
the known fastest LI transforms over GF(3) and the 
relations between them are shown. Several properties for 
the new transforms are presented. Experimental results for 
the new transforms are also listed and compared with the 
known fastest LI transforms over GF(3). 

 
1. Introduction 
 

Ternary switching functions are mappings 
{ } { }2,1,02,1,0: →nf  and can be considered in different 

algebraic structures with various polynomial expansions or 
spectral transforms. To develop the spectral transform 
theory for switching ternary functions, one needs to refer 
to abstract harmonic analysis that is a mathematical 
approach derived from the classical Fourier analysis [1]. 
Developments in harmonic analysis on finite Abelian 
groups resulted in various transforms such as Walsh, 
Reed-Muller, and their possible modifications that have 
many attractive features and are useful in applications 
such as a new theory of nonlinear signal and image 
processing [2−4] and many other areas of applied 
mathematics [5].  

Fastest linearly independent (LI) transforms over 
Galois Field (3) (GF(3)) have the simplest butterfly 
diagrams of all possible LI transforms over GF(3). In this 
paper, new fastest LI transforms over GF(3) and their 
properties are investigated and compared with the known 
fastest LI transforms over GF(3) [6]. The presented 
transforms and their properties shown here can be used as 
bases for analysis, synthesis, and testing of ternary 
functions as well as creating their spectral decision 
diagrams in a similar manner as for other polynomial 
expansions [1, 7, 8]. 

 

 
2. Basic definitions 
 
Definition 1. Let nM  be an N  × N  ( N  = n3 ) matrix 
with rows corresponding to minterms and columns 
corresponding to some ternary switching functions of n 
variables. If the sets of columns are linearly independent 
over GF(3), then nM  has only one inverse in GF(3) and is 
said to be linearly independent.  

Definition 2. Let nM  be an LI matrix of order N = n3  as 

specified in Definition 1 and F
r

 = [ ]TNFFF 110 ,,, −K  be 
the truth column vector of an n-variable ternary switching 
function ( )nxf  in a natural ternary ordering. Then, 

                                FMA n
rr 1−=  (1) 

and                                AMF n
rr

= , (2) 

where A
r

 = [ ]TNAAA 110 ,,, −K  represents the spectrum of 

( )nxf  based on nM , 1−
nM  is the inverse of nM  over 

GF(3), T  denotes transpose operator, and all the additions 
and multiplications are performed over GF(3).  

Definition 3. Let ( )nxf  be an n-variable ternary 
switching function. Then by Definitions 1 and 2 the LI 
expansion of ( )nxf  based on a ternary LI transform nM  
can be written as  

                   ( ) ∑
−

=

=
13

0

n

j
jjn gAxf , (3) 

where jg  ( )130 −≤≤ nj  denotes the ternary switching 

function whose truth vector is given by column j  of nM  

 and jA  denotes the j-th spectral coefficient in the 

spectrum of ( )nxf  based on nM . The additions and 
multiplications inside (3) are evaluated over GF(3). 

Groups of ternary LI transforms with lower 
computational cost than ternary Reed-Muller transform 
have been presented in [6] where they are classified into 
classes Y1, Y2, Z1, and Z2 based on their structure. There 



are six ternary LI transforms inside each class, where four 
of them have the same computational costs that are lower 
than the computational cost of the other two transforms in 
the class. In this paper, only those ternary fastest LI 
transforms with the lowest computational cost are 
discussed. Together, we refer to those transforms as 
known ternary fastest LI transforms.   

All the known ternary fastest LI transforms presented 
in [6] are recursive and can be defined in terms of the 
submatrices 1111 ,,, −−−− nnnn YJIO  or 1−nM , where 1−nO  

denotes a 11 33 −− × nn  submatrix with all its elements being 
zero, 1−nI  denotes the identity submatrix of size 

11 33 −− × nn ,  1−nJ  denotes the reverse identity matrix of 

dimension 11 33 −− × nn , and 1−nY  denotes a 11 33 −− × nn  
submatrix with all its elements being zero except for one 
element located at one corner of each matrix, depending 
on the location of 1−nY . Their recursive definitions have 
the following general form: 
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where each submatrix )(
1

j
nM − , }5,4,3,2,1{=j , has a 

dimension of 11 33 −− × nn  and contains one recursive 
equation which is either 111 ,, −−− nnn YXO  or 1−nM , where 

11 −− = nn IX  or 1−nJ . 

Definition 4. There are four ternary fastest LI transforms 
with the lowest computational cost in class Y1 [6]. Their 
forward transforms are defined recursively as 
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where 1−nO , 1−nI , 1−nJ , 1−nY , and 1−nM  have been 
defined before. Their inverse transforms can be obtained 
by simply replacing 1−nY  and 1−nM  in the forward 

transform with 12 −nY  and 1
1

−
−nM , respectively as shown in 

(9)−(12). 
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Definition 5. The operator rR ,1  on a nn 33 × matrix nM  is 

defined as performing 19 −−rn  counterclockwise rotations 
twice  involving  ( )198 −−⋅ rn  submatrices  each  of  order 

r3  (0 ≤ r ≤ n − 1). 

Example 1. Let 2M  = 
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Definition 6. The operator 2R  on a nn 33 ×  matrix nM  is 
defined as recursively applying operator rR ,1  on nM  for r 
= n−1, n−2,  …, 0. The square of operator 2R  is specified 

as ( ) ( )( )nn MRRMR 22
2

2 = . 

Definition 7. The forward and inverse ternary fastest LI 
transforms ( )nYM θ.1  and ( )( ) 1

.1
−

nYM θ  can be calculated by 
fast transform by representing them in the following 
factorized form  

 ( ) ∏
=

=
1

,.1
nj

jnnY KM θ
θ  (13) 



and           ( )( ) ( )∏
=

−− =
1 1

,
1

.1
nj

jnnY KM θ
θ , (14) 

where θ
jnK ,  and ( ) 1

,
−θ

jnK  denote the j-th factorized 

transform matrix of ( )nYM θ.1  and ( )( ) 1
.1

−
nYM θ , respectively 

( nj ≤≤1 , }5,4,2,1{∈θ ). Property 1 gives the general 

formulae for θ
jnK ,  and ( ) 1

,
−θ

jnK .  

Property 1. The factorized transform matrices of ( )nYM θ.1  

and ( )( ) 1
.1

−
nYM θ  ( }5,4,2,1{∈θ ) can be derived by using 

(15)−(22) as follows: 
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where θ
jjK ,  represents the identity matrix of size jj 33 ×  

with bottom left element replaced by ‘1’, ( ) 1
,

−θ
jjK  

represents the identity matrix of size jj 33 ×  with bottom 
left element replaced by ‘2’ ( }2,1{∈θ ), and 

⎩
⎨
⎧ +==

−

−
− otherwise.,

1 if,
1

1
1

n

n
n I

 jn JX  Note that 1−nO , 1−nI , and 

1−nJ  in (15)−(18) are the same as  in (5)−(12). 

Fig. 1 shows the forward and inverse butterfly 
diagrams for fast computation of the ternary fastest LI 

transforms ( )21.1YM  based on Definition 7 and Property 1. 
The same butterfly diagrams for the LI transform ( )22.1YM  
are shown in Fig. 2. In both figures, the solid and dashed 
line represents the values 1 and 2, respectively.  

 

 
(a)                                                     (b) 

Figure 1. Butterfly diagrams of ( )21.1YM : (a) Forward 
transform; (b) Inverse transform. 

 
(a)                                                     (b) 

Figure 2. Butterfly diagrams of ( )21.2YM : (a) Forward 
transform; (b) Inverse transform. 

 
Property 2[6]. The number of additions required to 
compute the spectra of ternary fastest LI transforms 

( )nYM θ.1  ( }5,4,2,1{∈θ ) is 12 −n .  

 
3. Ternary fastest LI transforms with 
permutation 
 

In this paper, we want to identify new ternary fastest 
LI transforms that have the same computational cost as the 
known ternary fastest LI transforms and can also be 
calculated efficiently by fast transforms while offering the 
possibility of more compact polynomial representations, 
i.e., have the smaller number of nonzero terms. One of the 
simplest ways to do that is by permuting the known 
ternary fastest LI transforms. Such class of ternary fastest 
LI transforms is defined in this Section. It should be noted 
that due to the relations between the known ternary fastest 
LI transforms, the LI expansions based on all the ternary 
fastest LI transforms with permutation cover the LI 
expansions based on all the known ternary fastest LI 
transforms. As such, the minimum number of nonzero 
spectral coefficients in the spectra of ternary fastest LI 
transforms with permutation is always smaller than or 
equal to the minimum nonzero spectral coefficient number 
in the spectra of all the known ternary fastest LI 
transforms.  



Permutation matrices are matrices that contain 
exactly one ‘1’ in each row and column. As such there are 
six possible permutation matrices of size 33×  and n6  
permutation matrices of size nn 33 ×  that can be derived 
from the Kronecker product of the 33×  permutation 
matrices. 
Definition 8. Let the six 33×  permutation matrices be 
denoted by 0ρ , 1ρ , 2ρ , 3ρ , 4ρ , and 5ρ , where 
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⎥
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5ρ . Then 

p
nP  is defined as the permutation matrix of size nn 33 ×  

with permutation number p  ( )160 −≤≤ np  that is 
calculated by  

                      
jp

nj

p
nP ρ

1

=
⊗= , (23) 

where >=<>< − 116 ,,, pppp nn K  is the n-digit six-
valued representation of p and ⊗  denotes Kronecker 
product [1, 2, 4, 5, 7].  
Due to the property of Kronecker product, the inverse of 

p
nP , denoted by ( ) 1−p

nP , is simply 

           ( ) ( ) 111 −

=

−
⊗=

jp
nj

p
nP ρ , (24) 

where 3ρ  and  4ρ  are inverses of each other and 0ρ , 1ρ , 

2ρ , and 5ρ  are self inverse. 

Definition 9. Let )( pM n  denote ternary fastest LI 

transform matrix of size nn 33 ×  with permutation number 
p  ( )160 −≤≤ np . Then )( pM n  and its inverse 

transform matrix ( ) 1)( −pM n  are defined as 

             ∏
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respectively. 

Property 3. There are altogether 123 −+ nn  nonzero 
elements inside both )( pM n  and ( ) 1)( −pM n . All the 
nonzero elements in )( pM n  are ‘1’s whereas inside 

( ) 1)( −pM n  n3  of the nonzero elements are ‘1’s and the 
rest are ‘2’s.  
Property 4. From Definition 9 and the relations between 
the ternary fastest LI transform matrices of classes Y1 and 
Z1 presented in [6], it can be established  that 

 
                    )0()1.1( nnY MM =  (27) 

        16
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              )16( 1
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          161
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n
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Property 5. Let ( )nxf  be an n-variable ternary switching 

function with the truth vector F
r

. Then there are 123 −− nn  

spectral coefficients in the spectrum of ( )nxf  based on 
)( pM n  whose values are equal to the values of the truth 

vector elements, i.e., their values can be directly obtained 
from F

r
 without any additions or multiplications. 

Furthermore, if 1F  is defined as the subset of the truth 
vector elements whose values affect the values of the 

12 −n  spectral coefficients that need to be calculated, 1F  

has n2  elements.  
Property 6. All possible ternary fastest LI matrix with 
permutation can be divided into n3  groups of size n2  
such that if ( )pS  is defined as the set of truth vector 
elements that are directly forwarded to the spectral 
coefficients of )( pM n , then all )( pM n  in the same 
group have identical set ( )pS . Therefore, the number of 
elements inside ( )pS  that have nonzero values gives the 
minimum number of nonzero elements for the 
corresponding group of )( pM n . 

Let the matrix Z  be defined as 
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Z , where 

the row and column index numbers start from zero. Then 
any two fastest LI matrices with permutation )( an pM  
and )( bn pM  belong to the same group if 
 1,1, jbja pp ZZ =  for nj ,,3,2 K=  

and        2,2, jbja pp ZZ =  for 1=j , (31) 

where >=<><
− 11

,,,6 aaaa pppp
nn

K  and 
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− 11

,,,6 bbbb pppp
nn

K . 

 

4. Generalized ternary fastest LI transforms 
 

The ternary fastest LI transforms with permutation 
defined in Section 3 can be further extended into a wider 
set of ternary fastest LI transforms by allowing the 
permutation to be located either in one side of the butterfly 
diagrams or between the butterfly diagram stages and by 
allowing the butterfly diagram stages to be reordered such 
as it has been done for binary fastest LI transforms [9]. 
The resulting ternary LI transforms are called generalized 
ternary fastest LI transforms. As reordering and 
permutation do not incur any additional cost, the 
computational cost of the generalized ternary fastest LI 
transforms are the same as the known ternary fastest LI 
transforms.  

Definition 10. Let ( )pM n ,,σϕθ  denote a generalized 

ternary fastest LI transform of dimension nn 33 ×  with 
ordering ϕ , permutation position σ  ( )11 +≤≤ nσ , and 

permutation number p  ( )160 −≤≤ np . Then 

( )pM n ,,σϕθ  is defined as 
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 (32)              
where }5,4,2,1{∈θ  and θ

jnK ,  and p
nP  have been defined 

in Property 1 and Definition 8, respectively.  
Property 7. The ordering ϕ  is an n-digit string in which 
every digit takes values from 1 to n and no two different 
digits in it are allowed to have the same values,  
                     ,,, 11 >=< − ϕϕϕϕ Knn , (33) 

{ } ( )njijin jii ≤≤==∈ ,1  iff  and ..., ,2,1   where ϕϕϕ . 

Property 8. Clearly, the inverse of ( )pM n ,,σϕθ  is simply 
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Property 9. Any two generalized ternary fastest LI 
matrices ( )111 ,,1 pM n σϕθ  and ( )222 ,,2 pM n σϕθ  are 

identical when 21 θθ = , 21 σσ = , 21 pp = , and 
}11|{ 111 −≤≤= σϕ jS j  =  }11|{ 222 −≤≤= σϕ jS j . 

Property 10. By (19), (21), and (32), it can be derived 
that 
          ( ) ( )( )',,,, 12

2
4 pMRpM nn σϕσϕ =  (35) 

and      ( ) ( )( )',,,, 22
2

5 pMRpM nn σϕσϕ = , (36) 
where >=<>< − 116 ,,, pppp nn K , jp'  = 0, 2, 1, 4, 3, 

and 5 if jp  = 0, 1, 2, 3, 4, and 5, respectively, and  

>=<>< − 116 ',,','' pppp nn K . 

 
5. Experimental results 

 
The calculation of the spectra based on all )( pM n  

and generalized ternary fastest LI transforms ( )pM n ,,σϕθ   
have been implemented in MATLAB and run for several 
binary benchmark functions that have been modified to 
represent ternary functions. The translation from binary to 
ternary cases has been done by changing every two input 
(output) bits in binary files to an input (output) symbol in 
ternary files. If the number of input and/or output 
variables is odd, then a zero bit is first added behind the 
binary cubes to make it even. For input (output), −− is 
converted to −, 00 is converted to 0, 01 is converted to 1, 
10 is converted to 2, and 11 is ignored (converted to 0). 
The resulting numbers of nonzero spectral coefficients 
inside the spectra of each ternary input function based on 

)0(nM , )16( −n
nM , )16( 1 −−n

nM , and )65( 1−⋅ n
nM  are 

listed in Table 1. Recall that those ternary fastest LI 
transforms with permutation correspond to the known 
ternary fastest LI transforms. In addition, the number of 
nonzero spectral coefficients for each input function based 
on all )( pM n  are compared and the minimum number is 
shown in the rightmost column of Table 1. Based on the 
numbers in Table 1, it can be seen that for some ternary 
functions )( pM n  reduces the number of terms required to 
represent them, which leads to faster calculation of the 
output value, for example for con1, rd84, 9sym, and alu4.  

In Table 2, the resulting minimum numbers of 
nonzero spectral coefficients that can be obtained by each 
type of ( )pM n ,,σϕθ  are shown. Comparing the numbers 
in Tables 1 and 2, it can be observed that for some ternary 
functions ( )pM n ,,σϕθ  can give more compact 
representations than )( pM n  in terms of smaller number 
of nonzero spectral coefficients. Since )( pM n  is a special 



case of ( )pM n ,,σϕθ , the minimum number of spectral 

coefficients based on all ( )pM n ,,σϕθ  is never larger that 
that based on )( pM n . This can be clearly seen from 
Table 2.  

 
Table 1. Number of nonzero spectral coefficients 

for )( pM n  

Number of nonzero spectral coefficients Input 
filename )0(nM  )16( −n

nM
 

)16( 1 −−n
nM

 
)65( 1−⋅ n

nM
 

Optimum
)( pM n  

xor5 10 10 10 10 9 
con1 45 46 45 47 42 
squar5 16 17 17 16 16 
z5xp1 53 53 53 53 53 
inc 52 51 51 52 51 
rd84 49 50 49 50 43 
misex1 52 53 53 52 51 
ex5 81 81 81 81 77 
9sym 116 123 125 116 107 
clip 153 157 156 153 150 
apex4 162 161 161 162 157 
ex1010 178 179 179 178 174 
alu4 2179 2179 2179 2179 2153 
misex3 2156 2161 2161 2156 2150 

 
Table 2. Minimum number of nonzero spectral 

coefficients for ),,( pM n σϕθ  

Input 
filename 

),,(1 pM n σϕ  ),,(2 pM n σϕ  ),,(4 pM n σϕ  ),,(5 pM n σϕ  

xor5 8 8 8 8 
con1 41 41 38 39 
squar5 15 15 16 15 
z5xp1 52 52 51 51 
inc 47 47 45 46 
rd84 42 43 41 43 
misex1 47 46 47 45 
ex5 76 77 75 75 
9sym 103 103 107 107 
clip 144 144 145 145 
apex4 155 155 153 153 
ex1010 174 174 174 174 

 

6. Conclusion 
 

Extension of the known ternary fastest LI transforms 
[6] to generate new classes of ternary fastest LI transforms 
with the same lowest computational cost have been 
presented. Several properties and relations for the 
transforms have also been given. The presented properties 
and relations can be used to reduce the time and 
computing resources required to obtain the most compact 

polynomial representation for a ternary function based on 
all the ternary fastest LI transforms.  

The theory presented in this paper may be of interest 
not only to researchers working in the area of ternary 
functions but also in other areas where mathematical 
models of ternary expansions and functions are used. The 
corresponding polynomial expansions over GF(3) can be 
used not only as bases for bio-orthogonal systems but also 
as the mathematical apparatus to analyze the stability of 
finite automata giving more flexibility than the known 
results for binary dynamic systems [5]. A unified approach 
to the generation of butterfly structures presented here can 
also be of interest for researchers developing multi-
resolution digital signal processing systems using 
unconventional applications of butterfly decomposition 
techniques [10].  
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