Artificial Intelligence
CS 441/541
Fall term, 2008
Instructor: Melanie Mitchell

(These slides are available on the course web site)

Two-fold nature of AI:

• Philosophical:
 – “Can machines think, in principle?”
 – “Is this particular machine thinking [conscious, creative, …]”
 – Will machine thought be different from human thought?

• Practical:
 – Collection of techniques to automatically solve particular problems that require “intelligence” (whatever that is)
How could you tell if a program is intelligent [or conscious]?

“I believe that in about fifty years’ time it will be possible to programme computers…to make them play the imitation game so well that an average interrogator will not have more than 70 percent chance of making the right identification after five minutes of questioning.

— Alan Turing, Computing machinery and intelligence, 1950.
"In from three to eight years, we'll have a machine with the general intelligence of an average human being."

— Marvin Minsky to Life magazine, 1970

We can expect computers to pass the Turing test, indicating intelligence indistinguishable from biological humans, by the end of the 2020s.

— Ray Kurzweil, The Singularity is Near, 2005

“Long bets” prediction website
Milestones in AI History
(from AAAI website)

1936: Alan Turing publishes “On Computable Numbers, with an Application to the Entscheidungsproblem”

1950: Alan Turing publishes "Computing Machinery and Intelligence."

1956: John McCarthy coins the term, "Artificial Intelligence" at a Dartmouth computer conference.

1958: John McCarthy invents the Lisp language, an AI programming language, at Massachusetts Institute of Technology (MIT).

1964: Danny Bobrow shows that computers can understand natural language enough to solve algebra word programs (MIT).

1965: Joseph Weizenbaum builds ELIZA, an interactive program that carries on a dialogue in English on any topic (MIT).

1979: The first computer-controlled autonomous vehicle, the Stanford Cart, is built.

1983: Danny Hillis co-founds Thinking Machines, the first company to produce massively parallel computers.

1985: The drawing program, Aaron, created by Harold Cohen, is demonstrated at AI conference.
1990s: Major advances in all areas of AI. Significant demonstrations in machine learning, intelligent tutoring, case-based reasoning, multi-agent planning, scheduling, uncertain reasoning, data mining, natural language understanding and translation, vision, virtual reality and games.

Late 1990s: Web crawlers and other AI-based information-extraction programs become Web essentials.

2000s:
- Interactive robot pets become commercially available.
- MIT displays Kismet, a robot with a face that expresses emotions.
- Carnegie Mellon robot Nomad explores remote regions of Antarctica and locates meteorites.
- Mars rovers Spirit and Opportunity autonomously explore Mars
- Stanford University robot car Stanley wins DARPA Grand Challenge.
- Robotic vacuum cleaners, floor scrubbers, and lawn mowers become mainstream
"In from three to eight years, we'll have a machine with the general intelligence of an average human being."

— Marvin Minsky to Life magazine, 1970

“Easy things are hard.”

— Marvin Minsky, Society of Mind, 1988

Famous AI Debates

“Strong” vs. “weak” AI

“Symbolic” vs. “sub-symbolic” AI

“Neats” vs. “scruffies”
AI Demos

Tests of “true” intelligence
- Turing Test (e.g., Loebner Prize)
- Captchas
 - Words
 - Bongo
 - ESP-PIX
 - Guess-the-Google
- Breaking capchas

Natural language processing
- Eliza
- Jabberwock
- Start NL question answering
- Dragon Naturally Speaking

- Babelfish translation
- Sign-language translator glove
- Word-sense disambiguation

Arts
- EMI
 - Composer 1
 - Composer 2
 - Composer 3
- Aaron
- Picbreeder
- Sims evolved art
- Sims virtual creatures

ESP-PIX example
AI Demos

Search and game-playing
- Checkers
- Chess (Fritz)

Knowledge representation and reasoning
- Open Mind

Vision
- Face detection (see next slide)
- Content-based image retrieval 1
- Content-based image retrieval 2

Robotics
- Lipson lab videos
- Kismet
- ASIMO
- Roomba
- Stanley

Reasoning under uncertainty
- Bayesian reasoning about probabilities

http://www.leetsoftware.com/screenshots/sunset.jpg
Monty Hall shows you three doors. He tells you that behind one of them is a brand new car, and that there are goats behind the other two. He asks you to choose one of them. You choose door #1. He opens door #3 and reveals a goat. He then asks if you want to change your choice to door #1. Should you change?

The “Monty Hall problem”
Class overview

• **Class web page:**

 http://www.cs.pdx.edu/~mm/ArtificialIntelligenceFall2008

 – For schedule, slides, assignments, etc.

• **Class mailing list:**

 AIFall2008@cs.pdx.edu

• **Office hours:**

 M, W 2-3pm, or by appointment

• **TA:** TBA

• **Topics** (see syllabus)
• **Assignments:**
 – Reading, reading questions
 – Programming exercises
 – Paper presentations
 • Choose a topic of interest
 • Find and read a recent paper on that topic (published 2002 or later)
 – Using Google Scholar
 • Present it in class (15-20 minutes)
 • Grading based on clarity and correctness of presentation
 – Team AI programming project

Team Projects:

• **Goal:** Implement system that uses at least two different AI techniques, or compare performance of at least two different AI techniques.

• Work in teams of up to 4 people

• Final paper on project: 15-25 pages, including figures and references

• Next class: we’ll do some matchmaking

• **By Oct 13:** Teams should be formed, each with rough idea of project area

• **Week of Oct. 13:** I’ll meet with each team individually to discuss project plans
Sample projects

- Implement a game playing program that uses adversarial search and a human-written evaluation function to determine next move; compare with using a neural network learn to perform the evaluation of a game configuration.

- Implement a simple face-detection program, combining two different methods.

- Implement a hand-written digit recognition program, combining two different methods.

- Implement a simple NLP technique for determining the topic of a text, and compare with latent semantic analysis.

- Implement a simulation of a few of the Braitenberg vehicles, and experiment with their behavior in different environments.

- Implement a chat-box program using fixed rules, and one using a Bayesian network to determine what to say next. Compare the behavior of the two.
Grading:

Homework (reading questions and programming exercises): 50%

In-class presentation of paper 20%

Final project, presentation, and paper: 30%

Today’s assignment
Complete by next class (October 1)

- **Read:**

 Alan Turing: Computing Machinery and Intelligence

 (Linked from class web page)

- **Answer reading questions**

 - Hand in computer formatted answers

 - Check spelling!

- Why we’re starting by reading Turing
- Turing history (Hilbert’s questions, + Godel’s theorem, halting problem)