Indexing and Query Processing

What will we cover?

- Key concepts and terminology
- Inverted index structures
 - Organization, creation, maintenance
 - Compression
 - Distribution
- Answering queries with inverted indexes
 - Cosine, phrase (not probabilistic)
 - Optimizations
 - Fielded queries
- Other approaches (?): signatures, suffix trees
Some Scenarios

- **Web search**
 - Lots of storage and CPU
 - Frequent new documents
 - Updates of existing documents
 - Lots & lots of queries
 - Absolutely current?

Scenarios (2)

- **Company repository**
 - Servers might be provisioned for collection size
 - Documents might be fairly static
 - Moderate to low query rate

- **Desktop search**
 - What % of your disk is documents?
 - Low query rates, but don’t want to hog disk, CPU
 - Would like to be very up to date: last save
Why isn’t this a database problem?

- Indexing selected columns vs. indexing nearly everything
 - In both cases, want to be able to read an “entry” rapidly
- Identifying the “parts” of the “record” to index
 - words, stems, phrases
 - column values in a particular row

DB vs. IR indexing (cont.)

- Kinds of queries supported
 - $A=v$ $A<v$
 - \{kw1, kw2, kw3\} “kw1 kw2 kw3”
- What’s involved in producing a prefix of the answer: ranking vs. sorting
- Update patterns
 - Change a row: two index entries
 - Change a document: many index entries
Weighted Matching

Rather than being 0 or 1, match is a numeric score
Can be used for defining the result set (via a threshold)
Can be used for ranking results obtained by other methods
 - Google is Boolean retrieval + ranking (on relevance and quality)

Relevance Scores

Relevance of document to the query may be the main means of ranking for a “closed” collection
- New articles
- Tech support notes
- Reviews

Some search interfaces give you the relevance scores

http://search.state.ct.us/
Examples of Numeric Scores

1. How many different terms from the query are in the document
2. How many occurrences of query terms are in the document
3. +2 for query term in title, +1 for body (different zones in the document)
Query: exploring moon

Exploring the Outer Planets
While landing on a gas giant is unlikely, it may be possible on a planetary moon.

Exploring the Moon
The moon was the first extra-terrestrial body to have an earth-launched lander.

How to support this kind of scoring?
Qualified terms:
- moon.title
- moon.body
- exploring.title

Have different inverted lists for each.

Vector Space Model (VSM)

- Indexing terms are coordinates in a high-dimensional information space
- Documents and queries represented as n-dimensional vectors: $(w_1, w_2, ..., w_n)$
 - n = total number of terms
 - w_i is weight of the i-th term
 - derived from a term-weighting algorithm
 - often uses some form of word-frequency calculation
 - vector is conceptual, not stored directly
Example Vectors

Weight = term count

D1. The red rooster crows.

D2. The crows are black.

D3. The red rooster and the black rooster.

VSM: Score is Vector Similarity

- Allows assignment of non-binary weights to index terms
- Allows computation of similarity between documents and queries
 - Usually calculated as the cosine of the angle between two vectors d_i and q (or a variation on that calculation)
Cosine Measure

\[w_{d,t} = \text{weight of term } t \text{ in document } d \]
\[w_{q,t} = \text{weight of term } t \text{ in query } q \]
\[W_d = \left(\sum_t (w_{d,t})^2 \right)^{1/2} \]
\[W_q = \left(\sum_t (w_{q,t})^2 \right)^{1/2} \]

Similarity of \(q \) and \(d \)
\[S_{q,d} = \frac{\left(\sum_t w_{d,t} \cdot w_{q,t} \right)}{W_d \cdot W_q} \]

Cosine Example

- Similarity of D1 and D2
\[\frac{(0 \cdot 1 + 1 \cdot 1 + 1 \cdot 0 + 1 \cdot 0)}{3^{1/2} \cdot 2^{1/2}} \]

- Similarity of D1 and D3
\[\frac{(0 \cdot 1 + 1 \cdot 0 + 1 \cdot 1 + 1 \cdot 2)}{3^{1/2} \cdot 6^{1/2}} \]

- Can treat query as a “mini-document”
Improving on Term Counts

Straight term frequency isn’t effective as a term weight

On web:

<table>
<thead>
<tr>
<th>term</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>computer</td>
<td>706M</td>
</tr>
<tr>
<td>forensics</td>
<td>7.5M</td>
</tr>
<tr>
<td>course</td>
<td>641M</td>
</tr>
</tbody>
</table>

Document with (3 1 6) would score the same as a document with (2 5 3)

“Boost” terms based on rarity.

TF*IDF

- Frequency of term t in document d
 - Term Frequency (TF) $f_{d,t}$
 - Frequency of term in the entire collection
 - Document Frequency (DF) is # documents with term
 - Low document frequency = good discriminator
 - TF*IDF used as term weight for a document
 - IDF is inverse of document frequency (usually calculated as $\log (N/f_t)$ where N = #docs in collection, f_t = #docs with term t)
Example TF*IDF Weights

Suppose 5 billion documents

\[
\begin{align*}
\text{computer: } & \log(5\text{B}/706\text{M}) = \\
\text{forensics: } & \log(5\text{B}/7.5\text{M}) = \\
\text{course: } & \log(5\text{B}/641\text{M}) = \\
\end{align*}
\]

\[
(3 \ 1 \ 6) \to \\
(2 \ 5 \ 3) \to
\]

Variants of TF*IDF

- Many variations on term-weighting have been tried, e.g.
 - Logarithmic term frequencies
 - Term frequencies normalized to max term frequency and scaled to fall in range 0.5 – 1
 - Most useful terms seem to be ones with medium frequency
- Query terms may be weighted or binary
 - Weighted may be useful for long queries, such as documents or long descriptions of information needs
Another Weight Model

Used by Zobel & Moffat (why the fudge factors?)

Main thing here is what the inputs are
(Base of logarithm isn’t critical)

\[
\begin{align*}
 w_{q,t} &= \ln(1 + N/f_t) \\
 w_{d,t} &= 1 + \ln(f_{d,t})
\end{align*}
\]

Calculating Cosine Measure (s. 15)

What can we calculate in advance of seeing the query?

- \(f_{d,t}\), hence \(w_{d,t}\), hence \(W_d\)
- Note that \(w_{q,t}\) only depends on \(t\)
 So can compute query term weights in advance for all terms
 (then select the ones we need for a given query)
What changes on update?

- $f_{d,t}$, $w_{d,t}$, W_d for new or updated document d

- What about $w_{q,t}$?

 Recall $w_{q,t} = \ln(1 + N/f_t)$

- Consider adding one new document
- New ratio is $(N+1)/f_t$ or $(N+1)/(f_t+1)$
- 1314/65

Can omit W_q factor sometimes

If we are just comparing $S_{q,d}$ values, then we can ignore W_q, since it is the same for every d.

(but perhaps not if we are combining $S_{q,d}$ with other measures)
Naïve calculation

For each \(d \) in \(D \)
\[
S \leftarrow 0
\]
For each \(t \) in \(q \)
\[
S \leftarrow S + (w_{d,t} \times w_{q,t})
\]
\[
S_{d,q} \leftarrow S/W_d \times W_q
\]

Note that not every query term needs to be in the document

Could modify to set \(S_{d,q} \leftarrow 0 \) if any query term is missing

Better calculation scheme

For each \(t \) in \(q \)
\[
\text{For each } d \text{ containing } t
\]
\[
\ldots
\]

Will need to keep a partial result (accumulator) for multiple documents
Phrase queries

- **Need to tell** “eggs and ham” **from** "ham and eggs"

- **Options**
 - Search for terms, then post-process by checking actual documents
 - Remember positions for each term in each document
 - Index phrases or partial phrases (for example, all two-term combinations)

What Should Indexing Speed up?

- **Boolean queries**
 Need to know which documents contain particular words; combine lists of documents

- **Cosine (or other) similarity**
 Finding documents in order of similarity to a query

- **Phrase (or proximity) queries**
 Determining adjacent (or nearby) word occurrences
Sample Documents

d1
Would you like them in a house?
Would you like them with a mouse?

d2
Say!
In the dark?
Here in the dark?
Would you, could you, in the dark?

d3
I would not, could not in a tree.
Not in a car! You let me be.

Inverted List Structure

Term dictionary, with doc frequencies

t a be car could dark here house I in let
f_t 3 1 1 2 1 1 1 2 4 1

t like may me mouse not say see so the
f_t 3 2 1 1 2 2 1 1 1

t them tree try will with would you
f_t 3 2 1 1 1 3 5
Inverted List Structure (2)

Term frequencies, in each document

\(t: \ <d, f_{d,t}>, \ldots \)

a: \(<d1,2>, <d3,2>, <d4,1>\)

be: \(<d3,1>\)

\ldots

in: \(<d1,1>, <d2,3>, <d3,2>, <d4,1>\)

\ldots

you: \(<d1,2>, <d2,2>, <d3,1>, <d4,3>, <d5,4>\)

Inverted list structure (3)

Document info: doc id, \(W_d\)

For example, \(d3\)

I would not, could not in a tree.
Not in a car! You let me be.

I would not could in a tree car you
1 1 3 1 2 2 1 1 1

let me be
1 1 1

Do we need the document contents?
Example similarity calculation

\[q = \{\text{not, in, tree}\} \]
\[w_{q,t} = 1.25 \ 0.81 \ 1.25 \]
\[W_q = (1.25^2 + 0.81^2 + 1.25^2)^{1/2} \]
\[\approx 1.94 \]
\[S_{q,d_3} = \frac{(1.25 \times 2.099 + 0.81 \times 1.693 + 1.25 \times 1)}{4.37 \times 1.94} \]
\[\approx \frac{(2.62 + 1.37 + 1.25)}{2.25} \]
\[\approx 2.33 \]

Indexing word positions

Might want to list all word positions in an index for phrase or proximity queries

For term \(t \), let \(f_{d,t} = k \)

\[\langle d; \ k; \ p_1, \ p_2, \ldots \ p_k \rangle \]

in: \(\langle d_1; \ 1; \ 5 \rangle, \langle d_2; \ 3; \ 2,6,13 \rangle, \langle d_3; \ 2; \ 6,10 \rangle, \langle d_4; \ 1; \ 12 \rangle \)

Might associate info with each occurrence:
In title? Capitalized? Font size?
Problem with word positions

- Slows down search when all you need is word frequency
- Could have two indexes, with and without word positions

Phrase index

- Count of occurrences of phrase
 - There are a lot of phrases
 - How to choose which ones?
 - One possibility: index just two-word phrases where the first word is common.

```
red: “red flag” “red light”
    “red hot” “red square”
```

Then “red hot coals” is processed as “red hot” + coals, plus position check