Techniques to Visualize and Monitor Transit Fleet Operations
Performance in Urban Areas

Wei Feng, Miguel Figliozzi*
Department of Civil and Environmental Engineering
Portland State University

Scott Price, Wu-chi Feng
Department of Computer Science
Portland State University

Kristina Hostetler
Urban and Regional Planning
Portland State University

*Corresponding author
Associate Professor
Department of Civil and Environmental Engineering
Portland State University
P.O. Box 751
Portland, OR 97207-0751
Email: figliozzi@pdx.edu

Submitted for presentation and publication to the
90th Annual Meeting of the Transportation Research Board
January 23–27, 2011

August 1, 2010

Word Count: 4,985 words + 2 tables + 8 figures = 7,485
Abstract. A healthy and efficient public transit system is indispensable to reduce congestion, emissions, energy consumption, and car dependency in urban areas. However, some bus routes chronically underperform. Uncertain travel times and passenger demand preclude schedule adherence and headway uniformity. In a stochastic environment, deviations from schedules are unavoidable leading to an overall decrease on level of service and capacity. This study focuses on TriMet’s Route 15 which experiences difficulties in terms of schedule adherence and headway regularity. TriMet is the transit provider in the Portland metropolitan region. TriMet’s Bus Dispatch System (BDS) has been collecting and archiving automated vehicle locator (AVL) and automatic passenger counter (APC) data since 1997; the availability of this rich AVL/APC archived data allows for substantial performance measurement methods, particularly data visualization techniques for route-level operations performance monitoring. Based on the analysis of a half-year’s worth of TriMet BDS data for Route 15, this paper offers two frameworks for visualizing bus route operations performance measures: 1) A static visualization performance measure framework based on color-coded time-space diagrams, which allows data analysis down to an hourly level and for different segments, aggregate over time or space, or provide single stop analysis; and 2) A dynamic interactive bus monitoring visualization framework based on Google Maps API, which demonstrates bus operations performance along a route for any chosen bus. This research provides novel ways to summarize and visualize vast amounts of transit data in an insightful and intuitive manner. Visualizations proposed in this study will aid transit agency managers and operators to identify operational problems, better understand how such problems propagate spatially and temporally across routes.

Keywords: transit performance, dynamic visualization, level of service, reliability