Lois Delcambre
Neena Maldikar
Suki Kangas

cs.pdx.edu/~lmd/cs386
Relational DBs
1970 Edgar Codd
mathematical defin of a relation
and a query language
relational model
Schema for the relation

Student (id, name, age, major)

- **Attribute names**: id, name, age, major

One row
One tuple

{ (101, 'David', 21, 'CS')
(102, 'Mary', 20, 'EE')
(103, 'David', 30, 'CS') }

Domains for the attributes
- **id**: integer
- **name**: character varying (40)
- **age**: 3 digit integer
- **major**: character * 15
\(3 \) \(1 \) \(0 \) \(1 \)
\(1 \) \(0 \) \(2 \)
\(0 \) \(3 \), \(\ldots \), \(3 \)

id-domain \(\times \) name-domain \(\times \) age-domain \(\times \) major-domain

current instance of a relation - the Student relation - is a subset of the cross product of the domains.
relational algebra

select age <= 20 from Student

query

note: relations are sets
\(\text{Student}(id, \text{name}, \text{age}, \text{major}) \)

\[
\begin{align*}
\text{project} \quad \Pi_{\text{major}, \text{name}} \quad \text{Student} \\
\text{query} \quad \Phi \quad (\text{`cs', `David'}) \\
\quad \quad (\text{`EE', `Mary'})
\end{align*}
\]
Cross product \(\times \)

\[
\text{Student} \times \text{Student}
\]

\[
(\text{Mid Student}) \times (\text{Mid Student})
\]

<table>
<thead>
<tr>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
</tr>
<tr>
<td>101</td>
</tr>
<tr>
<td>102</td>
</tr>
<tr>
<td>103</td>
</tr>
<tr>
<td>101</td>
</tr>
<tr>
<td>102</td>
</tr>
<tr>
<td>103</td>
</tr>
<tr>
<td>101</td>
</tr>
<tr>
<td>102</td>
</tr>
<tr>
<td>103</td>
</tr>
<tr>
<td>103</td>
</tr>
<tr>
<td>103</td>
</tr>
</tbody>
</table>
\[\wedge \cup \] union intersection set difference

For the query to be well-formed, the two relations must have the same number of columns and corresponding attributes must be defined on the same domain. Union-compatible.
employee(emp_id, name, gender, job)

position(id, title)
7.a. Employee

\[\pi \text{ employee}
\text{emp.id, name, gender, job} \]

\[\sigma \text{ employee emp.id=emp.id} \]

\[
\begin{align*}
6. & \quad \sigma \text{ Employee job=7} \\
7. & \quad \pi \text{ employee name, gender, job} \\
8. & \quad (\pi \text{ emp.id Employee}) \times (\pi \text{ emp.id Employee})
\end{align*}
\]
\((\pi_{e1.\text{emp-id}, e1.\text{gender}}(e1)) \times (\pi_{e2.\text{emp-id}, e2.\text{gender}}(e2))\)
SQL - standard language
- queries and many more kinds of statements
- tables: default, bags (they can have duplicates)

dbclass.cs.pdx.edu

a site where you each have a DB
\[
\pi (0) \; (\text{employee } \times \text{ position}) = \text{job = id}
\]

\[
\text{SELECT } \ldots \text{ employee, position}
\]

\[
\text{WHERE job = id}
\]
CREATE TABLE widget
 (sku integer, primary key,
 name character (15),
 price integer)

INSERT INTO widget

VALUES (104, 'small motor', 20),
 (105, 'med. motor', 30)

ALTER TABLE widget RENAME TO
ALTER TABLE widget ADD COLUMN weight integer
Query 1:
(—
—)
INTERSECT
(—
—)

Query 2:
(SELECT ...
FROM ...
WHERE ...)
UNION
(SELECT ...
FROM ...
WHERE ...)

Query 3:
(—)
EXCEPT
(—)