Today’s Agenda

• Continue Discussing Table Abstractions
• But, this time, let’s talk about them in terms of new non-linear data structures
 – trees
 – which require that our data be organized in a hierarchical fashion
Tree Introduction

• Remember when we learned about tables?
 – We found that none of the methods for implementing tables was really adequate.
 – With many applications, table operations end up not being as efficient as necessary.
 – We found that hashing is good for retrieval, but doesn't help if our goal is also to obtain a sorted list of information.
Tree Introduction

• We found that the binary search also allows for fast retrieval,
 – but is limited to array implementations versus linked list.
 – Because of this, we need to move to more sophisticated implementations of tables, using binary search trees!
 – These are "nonlinear" implementations of the ADT table.
Tree Terminology

- Trees are used to represent the relationship between data items.
 - All trees are hierarchical in nature which means there is a parent-child relationship between "nodes" in a tree.
 - The lines between nodes are called directed edges.
 - If there is a directed edge from node A to node B -- then A is the parent of B and B is a child of A.
Tree Terminology

- Children of the same parent are called siblings.
- Each node in a tree has at most one parent, starting at the top with the root node (which has no parent).
- Parent of n: The node directly above node n in the tree.
- Child of n: The node directly below the node n in the tree.
Tree Terminology

- **Root**: The only node in the tree with no parent.
- **Leaf**: A node with no children.
- **Siblings**: Nodes with a common parent.
- **Ancestor of n**: A node on the path from the root to n.
Tree Terminology

- **Descendant of n**
 - A node on a path from n to a leaf

- **Empty tree**
 - A tree with no nodes

- **Subtree of n**
 - A tree that consists of a child of n and the child's descendants

- **Height**
 - The number of nodes on the longest path from root to a leaf
Tree Terminology

• **Binary Tree**
 - A tree in which each node has at most two children

• **Full Binary Tree**
 - A binary tree of height h whose leaves are all at the level h and whose nodes all have two children; this is considered to be completely balanced
Binary Trees

• A binary tree is a tree where each node has no more than 2 children.
 – If we traverse down a binary tree -- for every node -- there are either no children (making this node a leaf) or there are two children called the left and right subtrees
 – (A subtree is a subset of a tree including some node in the tree along with all of its descendants).
Binary Search Trees

• The nodes of a binary tree contain values.

• For a **binary search tree**, it is really sorted according to the key values in the nodes.

 – It allows us to traverse a binary tree and get our data in sorted order!

 – For example, for each node n, all values greater than n are located in the right subtree...all values less than n are located in the left subtree. Both subtrees are considered to be binary trees themselves.
Binary Search Trees

Smith

Davies

Barnes

Montgomery

Taylor
NOT a Binary Search Tree
Binary Search Trees

• Notice that a binary tree organizes data in a way that facilitates searching the tree for a particular data item.

• It ends up solving the problems of sorted-traversal with the linear implementations of the ADT table.

• And, if reasonably balanced, it can provide a logarithmic retrieval, removal, and insertion performance!
Binary Trees

• Before we go on, let's make sure we understand some concepts about trees.
• Trees can come in many different shapes. Some trees are taller than others.
• To find the height of a tree, we need to find the distance from the root to the farthest leaf. Or....you could think of it as the number of nodes on the longest path from the root to a leaf.
Binary Trees

- Each of these trees has the same number of nodes -- but different heights:
Binary Trees

• You will find that experts define heights differently.

• For example, just by intuition you would think that the trees shown previously have a height of 2 and 4.

• But, for the cleanest algorithms, we are going to define the height of a tree as the following (next slide)
Binary Trees

- If a node is a root, the level is 1. If a node is not the root,
 - then it has a level 1 greater than its parent.
- If the tree is entirely empty,
 - then it has a height of zero.
- Otherwise, its height is equal to the maximum level of its nodes.
- Using this definition,
 - the trees shown previously have the height of 3, 5, and 5.
Full Binary Trees

- Now let's talk about full, complete, and balanced binary trees.
- A full binary tree has all of its leaves at level h.
- In the previous diagram, only the left hand tree is a full binary tree!
- All nodes that are at a level less than the height of the tree have 2 children.
A complete binary tree is one which is a full binary tree to a level of its height-1 ... – then at the last level, it is filled from left to right. For example:
Binary Search Trees

• This has a height of 4 and is a full binary tree at level 3.
• But, at level 4, the leaves are filled in from left to right!
• From this definition, we realize that a full binary tree is also considered to be a complete binary tree.
• However, a complete binary tree does not necessarily mean it is full!
Implementing Binary Trees

- Just like other ADTs,
 - we can implement a binary tree using pointers or arrays.
 - A pointer based implementation example:

```c
struct node {
    data value;
    node * left_child;
    node * right_child;
};
```
Binary Search Trees

• In what situations would the data being “stored” in the node...
 – be represented by a pointer to the data?
    ```
    struct node {
      data * ptr_value;
    }
    ```
 – when more than a single data structure needs to reference the same tree (e.g., two binary search trees referencing the same data but organized on two different keys!)
Binary Search Trees

• In what situations would the data being “stored” in the node...
 – be represented by a pointer to a LLL node?
    ```c
    struct tree_node {
        LLL_node * head;
    }
    ```
 – when each node’s data is actually a list of items (a general purpose list, stack, queue, or other ordered list representation)
Binary Search Trees

- In what situations would the data being “stored” in the node...
 - be represented by an array of data?
    ```c
    struct tree_node {
        data ** array;
    }
    ```
 - when each node’s data is actually a list of items (a general purpose list, stack, queue, or other ordered list representation), but where the size and efficiency of this data structure is preferred over a LLL
Implementing Binary Trees

class binary_tree {
 public:
 binary_tree();
 ~binary_tree();
 int insert(const data &);
 int remove(const key &);
 int retrieve (const key &, data [], int & num_matches);
 void display();
}
Implementing Binary Trees

//continued....class interface
private:
 node * root;
};

• Notice that instead of using “head” we use “root” to establish the “starting point” in the tree
• If the tree is empty, root is NULL.
Implementing Binary Trees

Root

Data Value

\[\begin{array}{c|c}
\text{Left} & \text{Right} \\
\hline
\text{Data Value} & \text{Root} \\
\end{array} \]

Left

Data Value

\[\begin{array}{c|c}
\text{Left} & \text{Right} \\
\hline
\text{Data Value} & \text{Left} \\
\end{array} \]

Right

Data Value

\[\begin{array}{c|c}
\text{Left} & \text{Right} \\
\hline
\text{Data Value} & \text{Right} \\
\end{array} \]

\text{etc.}
When we implement binary tree algorithms
- we have a choice of using iteration or recursion and still have reasonably efficient results
- remember why we didn’t use recursion for traversing through a standard linear linked list?
- now, if the tree is reasonably balanced, we can traverse through a tree with a minimal number of recursive calls
Traversing through BSTs

- Remember that a binary tree is either empty or it is in the form of a Root with two subtrees.
 - If the Root is empty, then the traversal algorithm should take no action (i.e., this is an empty tree -- a "degenerate" case).
 - If the Root is not empty, then we need to print the information in the root node and start traversing the left and right subtrees.
 - When a subtree is empty, then we know to stop traversing it.
Traversing through BSTs

- Given all of this, the recursive traversal algorithm is:

 Traverse (Root)

 If the Tree is not empty then
 Visit the node at the Root (maybe display)
 Traverse(Left subtree)
 Traverse(Right subtree)
Traversals through BSTs

- But, this algorithm is not really complete.
- When traversing any binary tree, the algorithm should have 3 choices of when to process the root:
 - before it traverses both subtrees (like this algorithm),
 - after it traverses the left subtree,
 - or after it traverses both subtrees.
- Each of these traversal methods has a name: preorder, inorder, postorder.
Traversing through BSTs

- You've already seen what the preorder traversal algorithm looks like...
 - it would traverse the following tree as:
 60, 20, 10, 5, 15, 40, 30, 70, 65, 85
 - but what would it be using inorder traversal?
 - or, post order traversal?
Traversals through BSTs

- The inorder traversal algorithm would be:
 Traverse (Root)
 If the Tree is not empty then
 Traverse (Left subtree)
 Visit the node at the Root (display)
 Traverse (Right subtree)
Traversing through BSTs

- It would traverse the same tree as: 5, 10, 15, 20, 30, 40, 60, 65, 70, 85;
- Notice that this type of traversal produces the numbers in order.
- Search trees can be set up so that all of the nodes in the left subtree are less than the nodes in the right subtree.
Traversals through BSTs

- The postorder traversal is:
 If the Tree is not empty then
 Traverse(Left subtree)
 Traverse(Right subtree)
 Visit the node at the Root (maybe display)

- It would traverse the same tree as:
 - 5, 15, 10, 30, 40, 20, 65, 85, 70, 60
Traversals through BSTs

• Think about the code to traverse a tree inorder using a pointer based implementation:

```cpp
void inorder_print(tree root) {
    if (root) {
        inorder_print(root->left_child);
        cout << root->value.name;
        inorder_print(root->right_child);
    }
}
```
Traversal through BSTs

- Why do we pass root by value vs. by reference?
 void inorder_print(tree root) {

- Why don’t we say??
 root = root->left_child;

- As an exercise, try to write a nonrecursive version of this!
Using BSTs for Table ADTs

- We can implement our ADT Table operations using a nonlinear approach of a binary search tree.
- This provides the best features of a linear implementation that we previously talked about plus you can insert and delete items without having to shift data.
- With a binary search tree we are able to take advantage of dynamic memory allocation.
Using BSTs for Table ADTs

- Linear implementations of ADT table operations are still useful.
- Remember when we talked about efficiency, it isn't good to overanalyze our problems.
- If the size of the problem is small, it is unlikely that there will be enough efficiency gain to implement more difficult approaches.
- In fact, if the size of the table is small using a linear implementation makes sense because the code is simple to write and read!
Using BSTs for Table ADTs

• For test operations, we must define a binary search tree where for each node -- the search key is greater than all search keys in the left subtree and less than all search keys in the right subtree.
 – Since this is implicitly a sorted tree when we traverse it inorder, we can write efficient algorithms for retrieval, insertion, deletion, and traversal.
 – Remember, traversal of linear ADT tables was not a straightforward process!
Using BSTs for Table ADTs

Let's quickly look at a search algorithm for a binary search tree implemented using pointers (i.e., implementing our Retrieve ADT Table Operation):

The following is pseudo code:

```c
int retrieve (tree *root, key &k, data & value){
    if (!root) //we have an empty tree
        return 0;
```
Using BSTs for Table ADTs

else if (root->value == k) {
 value = root->value;
 return 1;
}
else if (k < root->value)
 return retrieve(root->left_child, k, data);
else
 return retrieve(root->right_child, k, data);
For Next Time...

• To prepare for next class
 – write C++ code to insert a new data item at a leaf in the appropriate sub-tree using the binary search tree concept
 – think about what you might need to do to then remove an item?
 – what special cases will we need to consider?
 – how might we make a copy of a binary search tree?