This is a closed-notes, closed-book exam.

1. PDA construction

 (a) Construct a PDA accepting the language

 \[A = \{ w \mid w \text{ has an equal number of } a\text{'s and } b\text{'s} \} \]

 (b) Justify your construction
 (c) Illustrate a computation of your machine on the string \(aabbbba \).

2. Not Regular

 Consider the language

 \[A = \{ w \mid w \text{ has an equal number of } a\text{'s and } b\text{'s} \} \]

 Use this language to demonstrate three techniques for showing that \(A \) is not regular.

 (a) Show \(A \) is not regular using the pumping lemma.
 (b) Show \(A \) is of infinite index.
 (c) Show \(A \) is not regular by using closure properties and the fact that
 \(\{ a^i b^i \mid i \geq 0 \} \) is not regular.

3. Shuffle Let \(A, B \subseteq \Sigma^* \) be languages. Define the shuffle of \(A \) and \(B \), \(A \odot B \) as follows:

 \[A \odot B = \{ x_1 y_1 \cdots x_k y_k \mid x_1 \cdots x_k \in A \text{ and } y_1 \cdots y_k \in B, x_i, y_i \in \Sigma^* \} \]

 For example, \(\{000\} \odot \{111\} \) includes the strings \(000111, 111000, 101010, \)
 \(010101, 011100, \ldots \).

 Define the shuffle closure of \(A \), \(A^{\odot} \), as follows:

 \[A^{\odot_0} = \{ \epsilon \} \]
 \[A^{\odot_{n+1}} = A^{\odot_n} \odot A \]
 \[A^{\odot} = \bigcup_{i \geq 0} A^{\odot_i} \]

 (a) Show the regular sets are closed under shuffle (\(\odot \)).
 (b) Show the regular sets are not closed under shuffle closure (\(\odot \)).