SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 1(1), 1-4(JANUARY 1988)

Implementing Prototype Testing Tools

DICK HAMLET

Center for Software Quality Research, Department of Computer Science,
Portland State University, Box 751, Portland, OR 97207; hamlet@cs.pdx.edu

SUMMARY

Testing tools are softwar e analyzer sthat use information from particular executions of a program as well
as information about a specification and the program text itself. Research prototypes of such tools are
essential to investigate the ideas they embody. Often, hand calculation is so tedious and error-pronethat
an investigator cannot obtain any intuition about his or her ideas without an implementation to aid in
experiments. Traditionally, such tools have been implemented in conventional high-level languages (e.g., C,
Pascal), a processthat takes moretime than a prototype should. The technology of compiler gener ator sand
logic programming, applied to the idea of self-instrumenting programs, drastically shortensthe prototype
cycle.

This paper describes a general method for implementing prototype tools, gives examples of several old
and new testing techniquesfitted into the method, and discussesthe ease with which such prototypes may
be changed.

KEY WORDS Instrumented programs Test coverage Testing tools

INTRODUCTION

Program testing is the art of executing software on individual input valuesto learn about its
behavior. Both “executing” and “individual input values’ are important; the art enters when
the person conducting the test must pick the inputs. A computer does the executing. The
results of the test executions are a so important; it should not be part of the art that the person
must guess at their correctness, but thisis often true today. A program-testing tool isitself a
piece of software, whose purposeisto aid the human tester, to automate part of the testing, to
generate test input values, or to perform analysis on the test results, etc. What distinguishesa
testing tool from other development-support software is the presence of program executions.

Research prototypes of program-testing tools are often essential in devel oping testing tech-
niques. Systematictesting involvesnot only many test cases, but information from the program
specification, information about the program structure, and details of the execution history.
For a typical technique, the bookkeeping tasks are so extensive that hand simulationis liter-
ally impossible, and to gain understanding of the method’s strengths and weaknesses requires
experiments with a working test tool. Unfortunately, the difficulty of understanding a new
method means that such atool will need to change as the experiments suggest modifications.

It is common practice to implement research prototypes in a conventional programming
languagelike Pascal (cf. ASSET?, STAD?) or C (cf. TACTIC3, ATAC?). No matter how “quick

Work supported by National Science Foundation grants CCR-8822869 and CCR-9110111

0038-0644/88/010001-04$7.00 Received 1 March 1988
©1988 by John Wiley & Sons, Ltd. Revised 25 March 1988

2 DICK HAMLET

and dirty” the implementationis, the prototype takes monthsto write, and is as hard to debug
or modify as any medium-sized program. An aternative to conventional programming isthe
use of a self-contained language/environment within which the test method is defined and
implemented®. We propose a scheme with many of the advantages of the special-purpose
environment, but using only three established computing technologies:

(1) Sef-instrumented programs. Instead of monitoring test executions of the program under
an interpreter, it is usualy possible to outfit the program with monitoring statements
in its own language, interspersed with the origina program statements in such a way
that when the program executes, the added statements collect needed information. The
instrumented program may anayze the information at the conclusion of execution, or
analysismay be performed off-line. Thistechnique hasbeeninusefor at least 15 years’.

(2) Table-driven parser generators. Compiler compilers are widely available that construct
a parser for a programming language from the language grammar. (The UNIX system
compiler compiler used hereisacombination of thetoolscalled |ex” and yacc®.) Compiler
compilers usually alow some form of context-sensitive syntax-directed translation, so
that as the constructed parser identifies the input source program, arbitrary actions can
be performed. In a compiler, these actions may build a symbol table; when a parser
is used to create self-instrumented programs, extra actions create the instrumentation
statements.

(3) A logic-programming language. Languages like Prolog have several important advan-
tages in creating prototype analyzers. Prolog can express facts about programs and
executionsin a database fashion, and can be used to query those factsinteractively. The
declarative Prolog programming style lends itself to describing software anaysis such
as testing methods. Prolog has been used in thisway for a static FORTRAN analyzer®.

We have combined these technol ogies to achieve very rapid generation of program-anaysis
tools, which are easy to change. The timefrom conception to running prototypeis an order of
magnitude less than for conventiona development in a high-level language. Changes in the
language analyzed by thetool are not forbidding, and many changesin the anaysisagorithms
aretrivia to implement.

In brief, the analysis paradigm is the following:

(8 The program to be analyzed is parsed using a parser automatically generated from a
grammar. During the parse, syntax-directed transl ation techniques are used to output a
collection of Prolog facts, expressing the information needed for later static anaysis.

(b) Alsoduring the parse and using syntax-directed transl ation, self-instrumentationis gen-
erated for the program being analyzed. Theinstrumentationtakestheform of statements
that when executed at run-time, generate Prol og facts about the behavior of the program.

(c) Theprogram isexecuted ontest data, and the combined facts of (a) and (b) form aProlog
database describing program and test.

(d) Prologfragmentsplacedinalibrary describetheanalysisto beperformed onthecollected
facts (c).

(e) The user interface to the analysis system is the Prolog query mechanism, in which the
library (d) isan aid to investigation of the database of (c).

Theresearch tools described here are at the opposite pole from those currently under devel -
opment within language compilers. The contrasting technique is called “ compiler-integrated
testing (CIT)°”; init, acompiler ismodified to create the testing tool. For research prototypes,

IMPLEMENTING PROTOTYPE TESTING TOOLS 3

success of thismethod depends on acompiler that already containsmost of theroutinesneeded
for analysis. The author developed such a tool for mutation testing in 1975, based on the
sound software-engineering in the SIMPL-T compiler2. The DAISTS testing tool for data
abstractionswas a so constructed in thisway*. These toolswere builtinto SIMPL-T compiler
variants because we believed that was the quickest, easiest way to obtain aresearch prototype.
SIMPL-T attempted very little flow analysis, so we did not seriously consider incorporating
data-flow. With the release of the GNU C compiler!4, which does include flow andysis, CIT
prototype tools for data flow can be constructed'®. CIT tools can be efficient, and they are
easier to make at “industrial strength,” if the compiler isitself robust. And, asinthe SIMPL-T
examples of the 1970s, CIT may be the best software engineering solution to the problem
of prototyping a tool. However, a CIT tool is even harder to modify than stand-alone tools.
Even asmall change to the analysis method means redesign and i mplementation, and depends
critically on the quality of the original compiler modification and its documentation. The CIT
tool isalso at the mercy of the original compiler writers; should they decide to make changes
or fix bugs, the CIT tool must follow along. Thus athough CIT isthe better choice for atool
that isto be used in practice, our method is superior for research into tools themsel ves.

PROTOTYPING METHOD

We first experimented with the prototyping method using a subset of the C language, standard
UNIX compiler-compiler tools, and Prol og. I n this section weexpl ain themethod by describing
the construction of aprototype analyzer for one kind of dataflow test coverage.

Dataflow testing—DU pairs and paths

Structural testing criteria in which control-flow points of a program must be “covered” by
tests are as old as programming. The most common of these are statement coverage, and
branch coverage, in which testsare required to force execution of all program statements, and
all branches, respectively. Recent interest has centered on so-called “dataflow” criteria, which
requirethe testing of program paths defined by the usage of program variables'®. For example,
a DU path (“DU” abbreviates “Definition-Use”) for a variable X is a path that starts where
X is given a value, and ends where X is used, without X being set again along the path. In
the“all-uses’ dataflow coverage criterion, test data must force execution of some DU path (if
thereis one or more) between each definition-use pair, for al program variables. Technicaly,
weconsider a“pessimistic” all-uses, ignoring theinfeasible-path problem. That is, weidentify
potential DU pairs and paths solely from the static connectivity of the program statements.
It may happen that the meaning of the actua conditional statements in the program makes
it impossibleto execute some of these potential DU paths. (The alternative of defining away
infeasible paths'’ is not available to the tool builder, since identifying them in general is an
unsolvable problem.)

The all-uses criterion will be used to illustrate the construction of a prototype testing tool.

Prolog factsand queries

Logic programming, particularly in the widely-available language Prolog®®, is ideal for
writing software-analysis programs. Because Prolog may be relatively unfamiliar to those
who usually work with imperative languages, here and in a following section we describe
the features we use. Thistreatment is neither complete nor precise, and should be skipped by

4 DICK HAMLET

those familiar with Prolog.

Prolog is a declarative language, and its simplest construction is the “fact.” A fact has the
appearance of a conventional procedure call with constant actual parameters (integers, certain
strings, and lists of these are available types), followed by a period. For example,

sampl e fact(1,aaa, [1,2]).

is a fact. Intuitively, it is thought of as naming a relationship (sanpl e_f act) that holds
among the parameters (integer 1, string “aaa’ and alist with integer elements 1 and 2 in this
case). The fact nameiscalled a predicate.

A collection of factsis sometimescalled aProlog “database,” expressing the conjunction of
thesefacts. Prolog queriescan beused tointeractively inquireabout adatabase. Theinteractive
prompt is“?- ", usually written in a narrative to identify queries. The form is similar to that
of afact, but “variable” parameter values are used to obtain output (they begin with a capital
letter). For example:

?- sanplefact(X aaa,[1,2]).
isaquery, and given the fact above, it will produce the result:
X=1

If thereareother sanpl e _f act s, thisquery might alsoyield other values of X. Theinteractive
user requests these by typing a semicolon.
All of the arguments may be specified, e.g.:

?- sanplefact(1l,aaa, [1,2]).
withtheresultyes. Or:
?- sanplefact(2,aaa, [1,2]).

with the result no (if the database contained just the single fact above). Or, more arguments
may be variables, so that

?- samplefact(XY,?Z2).
will give

X 1
Y aaa
Z [1, 2]

as one result.

Analyzing a sample program

It is easiest to describe the prototype al-uses analyzer using a simple program shown in
Figure 1. Theprogramisintended to solve quadratic equationsgiven their coefficients, printing
either theroots, or amessage identifying them asreal or complex, depending on an input flag.
Three coefficients and aflag value are read repeatedly until an end of fileis encountered. Line
numbers have been added to the program for reference convenience. Hereafter this program
will be called “the quadratic program.”

IMPLEMENTING PROTOTYPE TESTING TOOLS 5

1 rmain()
2
3 /*Sol ve quadratic a*x"2 + b*x + ¢ = 0 for x.
4 If qual is nonzero, identify the roots
5 as real or not; otherwise, print the roots */
6 float a,b,c,rl1,r2,imj,d,t;
7 int qual;
8 while (scanf("% % % %", &a, &b, &c, &qual)>0) {
9 d = b*b - 4*a*c;
10 t = 0;
11 im= 0;
12 i f(d<0)
13 im= sqrt(-d);
14 el se
15 t = sqrt(d);
16 rli = (-b+t)/2*sq;
17 r2 = (-b-t)/2*s;
18 j = inl2*a;
19 i f(qual)
20 if(j==
21 printf("Real root(s).\n");
22 el se
23 printf("Conplex roots.\n");
24 el se
25 printf("%+i% and %-i%\n", rl,j,r2,j);
26
27 }
Figure 1. Sample program‘ quadratic’
Static facts

When the parser identifies grammatical rules deriving a program, it can perform actions
to record static information about the program’s construction. For example, whenever a
statement is recognized, it can be numbered and the possible flow of control recorded. The
Prolog predicate edge(A, B) isdefined to hold when it is possible for control to pass from
statement A to statement B. Similarly, when variable V acquires a value in statement D, or
isused in statement U, the predicatesdef (V, D) and use(V, U) hold respectively*. In the

* For technical reasons, Rapps and We'yuker16 distinguish a “c-use” (computation use) from a “p-use” (predicate use). The
latter occursin conditional expressionsthat influence control flow. A p-useis defined as extending to both alternatives of the
conditional, technically by connecting the p-use with the edgesleading from the conditional. Thusin the code fragment

31 if (X>0)
32 printf("positive")
33 else

34 printf("not")
the p-use of X istakento be on the edges 31-32 and 31-34, not at statement 31 asintuition indicates. We have chosen not to use
this somewhat peculiar definition of p-use, becauseit seems counterintuitivein anumber of ways, and the technical advantages

6 DICK HAMLET

guadratic program, the facts generated when lines 18 and 19 are parsed are:

def (j,18).
use(im18).
use(a, 18).

edge(18, 19).
use(qual , 19).

The actions that generate these facts are easy to place in the parser; for example, adef fact
is created when an assignment is recogni zed.

This static information is adequate to calcul ate the possible DU paths in the program. For
example, 9-10-11-12-15 is one such path for d.

Instrumented program segment

The parser echoes the input program, but with instrumentation modifications. Most instru-
mentation can be placed between the original statements, and the actionsto placeit occur when
astatement is parsed. A few constructionsrequire amore el aborate treatment. In thefollowing
instrumented portion of the sample program, the lighter type indicates added instrumentation:

20 if ((!fprintf(fileptr,"step(%l, %, 20).\n",
xseq++, xstnt)) && (xstnmt=20) && (j==0)) |
21 printf("Real root(s).\n");
fprintf(fileptr,"step(%l, %, 21).\n", xseq++, xstnt);
xstm =21;
}

Thevariablesintroduced in theinstrumentati on are assumed not to occur in theinput program;
their added declarations and initializations are not shown. The instrumentation code shown
was designed by anovice; abetter design is described below. When theinstrumentation code
isexecuted, it keepstrack of control flow by printing Prolog facts to afile. The complication
inthei f statement is necessitated by the short-circuit evaluation many C compilers perform;
if the instrumentation were not embedded in this way it might be missed.

Run-time facts

The facts generated when the instrumented program runs depend on the input data. For
example, theinput data at the left bel ow produces results as shown at theright:

1210 -1. 000000+i 0. 000000 and -1.000000-i 0. 000000

(That is, the equation 22 + 22 + 1=0 has two real roots 2=—1.) The instrumentation generates
the following facts from the above input data:

step(0,0,8).
step(1,8,9).
step(2,9, 10).
step(3,10,11).

are seldom of practical importance. This choiceis further discussed below in the section on dependency-chain coverage.

IMPLEMENTING PROTOTYPE TESTING TOOLS 7

step(4, 11,12).
step(5, 12, 15).
step(6, 15, 16).
step(7,16,17).
step(8,17,18).
step(9, 18,19).
step(10, 19, 25).
step(11, 25, 8).
step(12, 8, 26) .
step(13, 26, 27) .

(The first parameter of the st ep predicate is an execution sequence counter, which will be
explained in the section on analysis to follow.)

It is easy to see from these dynamic facts that the DU path 9-10-11-12-15 for d has been
executed. To decide if enough DU paths have been executed to satisfy the al-uses criterion,
however, requires more bookkeeping than is easy to do by hand. What's needed is a way to
search the database for patterns, which Prolog provides.

Prologrules

Inadditiontofacts, Prolog allowsthedefinition of general rel ationshi psamong itspredicates.
However, only onerestricted form of logical assertionisallowed: “1F there are valuesto make
some predicate(s) hold, THEN another predicate holds.” The syntax isabbreviated and written
backwards; for example:

predl(X) :- pred2(X 3), pred3(aaa, X).

This has the intuitive meaning: “For each X, IF pr ed2 holdsof X and 3, AND pr ed3 holds
of "aaa and X, THEN pr ed1 holds of X.” Facts are the specia case of arule in which the
right sideismissing, e.g.,

pred(5).
could beread, “(IF no conditions, i.e.,, TRUE, THEN) pr ed holdsof 5”

Analysisof test coverage
Prolog rules can be used to automate the testing anaysis. For example, the definition:

pos_path(X Y,[X, Y]) :- edge(XY).
pos_pat h(Beg, End, [Beg| T]) :- pos_path(Md, End, T),
edge(Beg, M d).

defines the existence of a path in a program from statement Beg to statement End. (The
list] Beg| T] has head Beg and tail the list T.) These rules define pos_pat h to hold in
two cases: each edge establishes a path between its two statements; and, any sequence of
connected edgesisa path. Thisform of inductive definition is very common in Prolog, and is
used to calculate the path list (third argument) given the end points (first two arguments).

For example, consider the program fragment:

8 DICK HAMLET

45 printf("Entering |oop");
46 for (Count=1; Count<=10; Count++) {

47 i f (Count==1)

48 X = 0;

49 el se

50 X =Clclt(X);
51 }

Analysisof thisfragment would yield (among others):

?- pos_pat h(45, 50, P).
P = [45, 46, 47, 50]

A similar predicate cannot be used with the st ep facts, because it would find false paths. If
the fragment above is executed, a similar predicate with st ep in place of edge would aso
list 45-46-47-50. However, 45-46-47-50 has not been executed; it results from connecting the
execution of statement 50 following 47 the second time through the loop with the execution
of statement 47 following 46 following 45 the first time through the loop. (In fact, the path
45-46-47-50 is infeasible and can never be executed.) The sequence parameter of st ep was
added to address just this difficulty of false paths. A predicate that uses it to define paths
actually executed is:

xpath(S X Y,[X Y]) :- step(S X Y).
x_pat h(Seq, Beg, End, [Beg| T]) :- step(Seq, Beg, M d),
Next Seq i s Seq+l,
x_pat h(Next Seq, M d, End, T) .

(The built-ini s operator is the Prolog way of expressing a numerical relationship between
variables.) The predicate expresses the information that an executed path is onein which the
seguence numbers are consecutive.

Thex _pat h definition, along with the static and dynamic facts generated by the parser and
the instrumented program respectively, constitutes a very simple prototype test tool, one that
can help a programmer with the bookkeeping of seeing which paths have been executed by
a set of test data. Along with pos _pat h, the programmer can ask about path coverage, for
example, in the quadratic program with the data given above:

?- pos_path(12, 25, P), not(x_path(_ 12,25,P)).

isaquery that asksif any path starting at the test on d and ending with printing the roots has
not been executed, and the response

P =1[12,13, 16,17, 18, 19, 25]

identifies one such path, for the case of complex roots. (Prolog includes a built-in *“unsafe
negation;” it is unsafe because it does not aways agree with true logical negation. In rules
likethe above, not issafe. Using “_” for the sequence parameter in x_pat h prevents Prolog
from printing that value which is uninteresting for this query.)

Even in thistrivial case, the advantages of the Prolog component can be seen: (1) no data
structures need be implemented to store information from either parse- or run-time, and (2)
the analysis code is straightforward and extremely simple.

IMPLEMENTING PROTOTYPE TESTING TOOLS 9

A dataflow anayzer for DU pathsisnot much more difficult to construct. A DU path begins
with a def and ends with a use, no other defs intervening. The Prolog below first defines a
path containing no defs (except perhaps at the very end), then a potential DU path as one of
these following a def and ending with a use:

def clear(Var, X, X, [X]).

def _cl ear (Var, Beg, End, [Beg| T]) :- Beg=/=End, edge(Beg, M d),
not (def (vVar, Beg)),
def clear(Var,Md, End, T).

pos_DUpat h(V, Def, Use, [Def | T]) :- def(V,Def), use(V, Use),
Def =/ =Use, edge(Def, Sec),
def cl ear(V, Sec, Use, T).

Finally, let

not x DY(Vvar,T) :- pos_DUpath(Var, Beg, End, T),
not x_path(_, Beg, End, T).

The not _x_DU predicate finds al potential DU paths that have not been executed. For very
simple programs (without multiple paths for asingle DU pair), it aso constitutes an all-uses
analysis. However, all-uses requires covering only some path for a DU pair, not all paths.
To more correctly report a coverage failure, only the def and use locations should be given,
since the analyzer cannot know which (if any) of the potentia infinity of paths between these
locations should be singled out for attention by the tester.

All-uses analysis can be accomplished by finding each def-use pair, deciding if thereis at
least one potentia def-clear path between them (but not by finding all such paths), and then
finding if any def-clear path was executed between them (not necessarily the potentia path
that was identified). The Prolog for thisis:

all usemssed(V,S,E) :- def(V,S), use(V,E,
pos DUpath(V, S E,),
not xdcpath(_,V,SE _).

where

x_dcpath(S,V, X, Y,[X, Y],NS) :- step(S, X, Y), not(def(V,Y)),
NS is S+l1.

x_dcpath(S,V,B,E[B|T],LS) :- step(S,B,M, not(def(V,M),
NS is S+1,

x_dcpat h(NS,V,M E, T, LS).
For the quadratic program with the singleinput (as above)
1210
the all-uses analysis produces:

?- all _use_m ssed(Var, Beg, End) .
Var = d
Beg = 9

10 DICK HAMLET

End = 13 ;
Var =t
Beg = 10
End = 16 ;
Var =t
Beg = 10
End = 17 ;
Var = im
Beg = 13
End = 18 ;
Var = j
Beg = 18
End = 20

These uncovered DU pairs show that the singletest case does not involve a complex root, nor
doesit try both possibilitiesfor qual . If thetester needs moreinformation, it can be obtained
from some of the Prolog already written. For example, to investigate what isrequired to cover
the def-10,use-16 pair for t :

?- pos_DUpath(t, 10, 16, Pat h) .
Path = [10, 11, 12, 13, 16]

and retry shows this to be the only possibility. The tester then knows that an additiona test
must make d negative (to force execution of statement 13). The test set

1210 - 1. 000000+i 0. 000000 and -1.000000-i 0. 000000
1011 Conpl ex roots.

(which includesthe earlier test and shows output to the right), should suffice, and indeed when
the analysisis repeated with this data:

?- all _.use_m ssed(V, B, E).
no

The test data has attained all-uses coverage.

In this section we have displayed the entire implementation of an all-uses test anayzer,
which amounts to less than one page of Prolog code. Figure 2 shows the organization of the
prototypetool.

Assessing a prototype tool

The prototype all-uses anaysis tool described in the previous section was constructed as a
proof-of-concept. Most of it was written by two undergraduates'® working full-time for about
two months, including the time to learn about parser generation and logic programming (a
C-subset grammar was available).

The parser actionsthat generate static facts and create the instrumented program amounted
toabout 1000 C statements. (About 200 were devoted to reconstructing theinput program from
the parsed version.) Thiscodeisvery straightforward, sinceit islocated at pointsidentified by

by hand
automatic

results

IMPLEMENTING PROTOTYPE TESTING TOOLS

data obj

ects

© programs

Test
Data

Instrumented
Program

Y

Source
Program
/
Preprocessor
Static
Facts
Anaysis

_ Executable
'!Zode

Program
Output

Dynamic
Facts

11

Analyst
Queries

PROLOG
Interpreter

Test
Anaysis

Figure 2. Block diagram of a prototype tool

12 DICK HAMLET

the grammar. Thus for example, when an assignment statement is recognized, the actions are
to reproduce the statement using the tokens and strings on the yacc stack, to generate static
edge and def facts, and to produce instrumentation output that later generates ast ep fact.
Similarly, recognizing an expression triggers generating one or more use facts.

DU-path anaysisrequired only a handful of Prolog predicates to support querieslisting un-
covered DU pairs, and to further aid thetester in attai ning coverage. Even the most complicated
of these predicates has a simpleinductive form using only afew terms.

The programming tasks separate nicely. Since the interface from the parser to Prolog is
readable text, and the instrumented program and its output are also readable, samples of
these can be created by hand to test the Prolog analysis routines. Thus the yacc and Prolog
programming can be carried out in parallel.

These statistics show that judged against prototyping standards, the method is a success.
Similar conventional implementation efforts in Pascal or C have required severa times as
long using experienced programmers, and produced an order of magnitude more code. The
simplicity of our analysistoolsis even more advantageous when modifications are considered,
as discussed bel ow.

The prototypetoolsare very fragile, however. The Prolog query interface requiresitsuser to
useaprecise syntax correctly, and hasonly the"Nancy Reagan error message'": when anything
iswrongitjust says, "no". For example, if theuser forgetsan argumenttoal | _.use_m ssed
or misspellsthe predicate name, theno error responsewill appear tomean that al the DU pairs
have been covered. In addition, even correct queries may not be useful. The path predicates
likepos_DU_pat h construct their results using linear search of the static and dynamic facts,
backtracking to recover from poor choices. Since the number of paths may grow exponentially
in the program size, these computations may use far too much time and storage, even when
analyzing only modest programs. We later argue that even the most fragile of prototypesis
useful, and that the trade-offs that give away efficiency for prototyping ease are the right ones
in aresearch or education setting.

A more robust implementation

We successfully used the prototype described above, and a number of variants constructed
in the same way?. Its quick and dirty implementation does not seriously interfere with
application by its designers. However, its implementation, which was begun as a learning
experience for students, has deficiencies beyond those inherent in the approach, which make
the system difficult for an outsider to use:

1) Only asubset of C was considered, and that subset grew in ahaphazard way in response
to the needs of experimentation. Analysis of even toy programs might encounter a hole
in the subset, requiring awork-around or changes to the preprocessor.

2) The action code in the parser was not modular; actions taken for entirely different
purposeswere all scrambled together in one place. When changes were required, it was
necessary to understand all of the code before anything could be successfully modified.

3) The system was awkward to run, requiring its user to remember and correctly namefile
collections to successive processors, and to repeat the entire run when only achangein
test data was made.

We therefore designed and constructed an improved tool-generation system to address these
deficiencies. The subset of C analyzed islarge, and every attempt has been madeto alow for
maodification by users, without requiring much understanding of the existing code.

IMPLEMENTING PROTOTYPE TESTING TOOLS 13

Theimproved system was used to replicate the DU-path analyzer of Section 2. Thisanalyzer
handles full ANSI C, except:

a) Itisblindto array and pointer usage. That is, it treatsthese entitiesasif they were simple
variables, which is quite wrong for dataflow analysis. Other much more ambitious
systems are also deficient in treating aggregates (e.g., ATAC?). Aggregates are an open
research topic®, which we are investigating using our prototyping technique®.

b) Unionsare not supported.

¢) Although routines may be separately compiled, and library or other external routines
may be included with a program to be analyzed, only the portion comprising a main
program is analyzed.

d) Some cases of the pre/postfix operators like“++" are not correctly instrumented.

In alowing more of the C language we do not imply that the tools created can scale up to
handle“rea” software. The limitationson required space and time are still present. However,
if an experimenter devises a clever (but limited) example program, we want the generated
toolsto handle the exampl e without modifications to work around missing features of C.

Compiler-generator tools like yacc are awvkward to use for preprocessing as we are doing.
Thereisno explicit provision for echoing the source program, and no way to cleanly separate
different aspectsof the processing so that they can beincrementally incorporated. The newyacc
parser generator?! is designed to address these deficiencies. It has the ability to repeatedly
process a parse tree, performing distinct actions on each traversal, and to echo the source at
any level.

The prototype-construction system was made available in June, 1994, under a Nationa
Science Foundation software-capitalization grant. The distribution is directed at researchers
who would make their own enhancements following our example. For information, contact
the author by e-mail.

In the sequel, we use the more robust i mplementation. However, two detail s are suppressed:

(1) SomeC constructionsallow asinglestatement to perform multipleactions (often through
use of the assignment operator “=" in expressions). Thusline numbers are not adequate
to represent control points. A “logical statement number” was defined, and used in
all facts, dong with new facts giving the correspondence between logica and actual
line numbers. Since this complication does not occur in examples here, we continue to
pretend that the line numbers themsel ves are used.

(2) Even the limited block structure of C allows syntactically similar variable values to
actually refer to distinct values. “Logical variable names’ were created and used in al
facts, along with a new fact giving the line number and syntactic form corresponding to
these created names. We continue to pretend that the variable namesin the program are
actually used, and avoid confusion by choosing simple examples.

The actual complications introduced in the Prolog code by using program quantities in
gueries, but computing in “logica” terms, isvery small.

CHANGING A PROTOTYPE TESTING TOOL

Although it is advantageous to be able to construct prototypes rapidly, it is even more im-
portant to be able to make rapid changes, particularly for testing tools. Because the extensive
bookkeeping of execution monitoring is nearly impossible to do by hand, it is not until a

14 DICK HAMLET

prototypeis available that a researcher discovers the most obvious flaws in a new technique.
Then changes are required, and larger changes when basic concepts have to be altered. A
second issueis portability of thetool. Its eval uation may require adifferent computer platform
than that used for devel opment; however, a far more difficult “portability” problem arises if
the analyzed source language changes.

Our prototyping technique addresses issues of change as follows:

Platform. All components of the system are written in C. The programming tools
themselves are usualy available without porting.

Source language analyzed. When it makes sense to analyze two different source lan-
guages, it is because they are not too dissimilar in structure. They may then have similar
grammars. Most existing test technology is wedded to conventional languages with ex-
pressions, assignments, explicit control flow, etc. A pair of these languages, say Pasca
and C, are different in many details, but similar enough that the majority of the parser
action code may be straightforwardly converted from one to the other. It is estimated
that about 20% of the actions creating static facts and instrumentation for the DU-path
analysis of Section 2 would have to change if the analyzed language were changed to
Pascal, for example. No changes would be required in the Prolog analysis code.

Analysis method. A change in the testing technique being analyzed can involve two
kindsof changein the prototype. First, the Prolog anaysis code will change. The second
kind of change can be more difficult: the parser actions may need to changeif additional
static or dynamic facts are needed to support a changed analysis. We can minimize
parser changes by creating an adequate basis of facts. For example, the complete control
structure of a program does not require more information than indicated above. The
newyacc preprocessor generator makes it easy to change static facts in a modular way;
dynamic facts are more difficult to separate within the preprocessor. The next sections
describe particular changes in analysis methods, and report on the difficulty of making
them.

Dependency-chain coverage

Recent descriptions®*? have been given for a kind of dataflow coverage that has been in
informal use without tool support since the 1960s. The technique extends all-uses coverage
to handle the situation in which DU paths connect to convey information, perhaps through
more than one variable. Imagine a DU path for variable X in which the final use occursin
a statement assigning a vaue to Y, connected to a Y-DU path where the final Y-use is a
Z-def, and so on. The composite path composed of DU sections joined by a shared variable,
which Campbell? calls a dependency chain, should be tested just as DU pairs should be
tested, since the dependency chain represents a programmer’s use (at the end of the chain) of
information established at the beginning and passed aong. An important special case occurs
when information is passed from avariable to itself. An assignment like

X += 1,

alwaysinterrupts a DU path for X and begins another; viewed as part of a dependency chain,
the old value use of X ispassed to the new value def of X.

Campbell considered only dependencies that occur in assignments, where the transfer
of information is obvious. We first thought to extend to dependency chains the somewhat

IMPLEMENTING PROTOTYPE TESTING TOOLS 15

peculiar definitions of Rapps and Weyuker!® involving “p-uses’ in conditional expressions.
However, except in the simplest cases, such a definition is difficult to frame, and of dubious
intuitive value. We therefore decided to continue no chains from a p-use to subsequent
defs. In most cases, the point is moot, because the conditiona variable(s) are aso used in
explicit assignments, thus establishing chains beyond aconditional . Our decisionissometimes
intuitively incorrect; we view these as atradeoff for the casesin which the Rapps and Weyuker
definitions create infeasible DU paths (and similar dependency chains) that intuitively should
not be considered’. The choice between the definition of Rapps and Weyuker and the one we
choseis not a clear one. Our prototyping scheme could be used to investigate the difference.
Only small changes in the Prolog analysis predicates are required. A high school student
familiar with the Prolog code was assigned to start over with the definition of Rapps and
Weyuker, keeping careful track of the timerequired to redo the “all-uses’ anaysis predicates.
He reported 25 minutesfor coding and debugging.

For dependency chains, acoverage criterion similar to all-usesfor DU paths can be defined.
We will call it all-chains. To satisfy the all-chains criterion, test data must force execution
of some chain for each pair consisting of a def (of one variable) and a subsequent use (of a
perhaps different variable), where some chain does connect the pair.

In the hierarchy of path-testing methods that includes DU paths'®, dependency-chain cov-
erage lies between al-paths and al-uses (it is incomparable to “al-DU-paths’). (We ignore
changes in the hierarchy below all-uses created by the choice of how to treat p-uses.) All-
chains is related to data-context ideas? and to program slices?, but is narrower, closer to
all-uses coverage than either of these ideas.

Altering an all-uses coverage tool to one that measures dependency-chain coverage is not
difficult. No new static or dynamic facts are needed, and the analysis predicates for DU paths
can be used to define a predicate for dependency chains. The tester can almost construct
the new tool while analyzing a particular program. Although the following scenario is too
pat to be rea, it could happen that dependency-chain analysis was reinvented in response to
deficiences of all-uses analysis for some particular case, the new analysis predicate written,
and the analysis performed on the spot, using the same instrumented run that suggested the
idea

A dependency chain is an appropriately joined sequence of DU paths, expressed in Prolog
as.

pos_dep(V1, V1, S1, S2, Ch) :- pos_DUpath(Vl, S1,S2,L),
append([V1| L], [V1], Ch).

pos_dep(V1, V2, S1, S2,Ch) :- pos_DUpath(Vi, S1,SM P),
def (VM SM,

t The Rapps and Weyuker definitions can create intuitively incorrect DU paths when a condition is repeated. For example, in
37 if(X<0)
38 neg = X*X;
39 printf("Ready.");

52 i f(X<0)

53 printf("nmodulus: %", sqrt(neg));

the infeasible path 37-39-...-52-53 is not intuitively a DU path for X, since the programmer has designed it to be impossible;
Rapps and Weyuker would classify it asa DU path. Our definition, on the other hand, does not correctly handle

i f(X==0) found = 1;

el se found = 0;

because the flag f ound is dependent on the conditional variable X, and a chain should continue from X through f ound to
subsequent uses of f ound, but does not.

16 DICK HAMLET

pos_dep(VM V2, SM S2, [WVWM [SM Y] 1),
append([V1| P],[VWM Y], Ch).

Thispredicate (pos _dep) displaysdependency chainswith embedded variables. For example,
in the quadratic program:

?- pos_dep(b,j, 8, 25, Chain).
Chain = [b,8,9,d, 10,11, 12,13,im 16, 17,18,j, 19, 25,j]

shows a chain running through the whol e program.

The pos _dep predicate is more complicated than any of those presented so far. It works
by pasting together DU pathsin the fina argument. (append placesits second-parameter list
at the end of itsfirst-parameter list to create the third-parameter value.)

The analysis predicate for al-chains coverage is constructed in the same way as the similar
al | _use_m ssed:

all chain.m ssed(V1,V2,S,E) :- def(VL,S), use(V2 E),
not x.dep(. V1,V2, S E _,),
pos_dep(V1, V2, S, E,).
x_dep(Sel, V1, V1, S E C, SeL) :- xDUpath(Sel, V1, S E L, Sel),
append([V1| L],[V1],0O.
x_dep(Sel, V1, V2, S E C, SeL) :- x DUpath(Sel, VL, S, SM P, SeM ,
def (VM SV,
x_dep(SeM VM V2, SM E,
[WM[SM Y]], SelL),
append([V1| P, [WMY],O.
x_DUpath(S,V,B, E P,LS) :- def(V,B), use(V,E,
x_dcpath(S, V, B, E, P, LS).

It isin general more difficult to attain all-chains coverage than al-uses coverage. For the
quadratic program of Section 2.3, the test data of Section 2.8 that attains all-uses coverage
does not attain all-chains coverage because seven chain pairs are missed, thefirst being:

?- all chain_m ssed(V1, V2, Start, Stop).

Vli=>0
V2 = |
Start = 8
Stop = 25

All seven chains are best displayed using another built-in Prolog predicate set of to collect
theresults:

?- setof ([V1, B, E V2], all _chain.mssed(Vl, V2, B E),S).

S=1[b,8,25,j],[c,8,25,j],[d,9,25,j],[im11,20,j],
[im13,25,j],[t,10,25,r1],[t, 10, 25,r2]]

In the course of investigating these deficiencies in all-chains coverage, the predicate
pos_dep isuseful, asin Section 2.8 thesimilar pos _pat h was useful. The path we used for
illustration:

IMPLEMENTING PROTOTYPE TESTING TOOLS 17

?- pos_dep(b,j, 8, 25, Chain).
Chain = [b,8,9,d, 10,11, 12,13,im 16, 17,18,j, 19, 25,j]

cannot have been executed, since doing so would have eliminated the first missed chain. The
tester might notice that there isasimilar chain beginning with a:

?- pos_dep(a,j, 8, 25, Chain).
Chain = [4a,8,9,d,10,11,12,13,im 16,17,18,j, 19, 25,j]

Because the same path is involved (8-9-10-11-12-13-16-17-18-19-25), this a-chain has aso
not been covered. Why didn’'t it show upintheresponsetotheal | _chai n_m ssed query?
The user of production software asks questions like this to understand a program and its
testing; the developer of a research prototype asks them because an anomaly suggests that
there may be a problem with the tool under development. There is a problem, but in the
concept of “al chains’ rather than its implementation. There are two intuitively appealing
waysto define al-chains coverage by analogy to all-uses coverage, and they are the sameonly
in simple cases. Here the research prototype tool is doing its job of informing its devel oper
when an idea has not been thought through. The possible definitions for all-chains are:

1) A def at M and a use at N (where some path connects M to N) is covered if any chain
between M and N is executed. (Thisisthe“obvious’ definition we implemented.)

2) Two chains between M and N are distinct if they involve a different sequence of inter-
mediate variables (including those at M and N). A def-use pair is covered iff al distinct
chains between them are covered.

The definition 2) may be less obvious, but it has a claim to be intuitively correct, because
different variables are considered to constitute distinct DU pairs, even for the same path.

In the case of the a-chain anomaly that was encountered while trying the prototype, we can
confirm that definitions 1) and 2) differ by asking for more information on a-chains between
8 and 25:

?- pos_dep(a, _, 8, 25, Chain).

Chain = [a,8,9,d, 10,11, 12,13,im 16, 17, 18, j, 19, 25,]] ;
Chain = [a 8,09, 10,11, 12, 13, 16, 17, 18, , 19, 25,] ;

Chain = [a8,09,10,11, 12,13, 16, 17, r2, 18, 19, 25,12] ;
Chain = [a8,09,10,11, 12,13, 16,r1, 17, 18, 19, 25, r1] ;
Chain = [a 8,09, 10,11, 12, 15, 16, 17, 18, , 19, 25,] ;

Chain = [a 8,09, 10,11, 12, 15, 16, 17, r2, 18, 19, 25,12] ;
Chain = [a 8,09, 10,11, 12, 15,16, r1, 17, 18, 19, 25, r1] ;
Chain = [a,8,09,d, 10,11, 12, 15, t, 16, 17,r2, 18, 19, 25,r2] ;
Chain = [a,8,09,d, 10,11, 12, 15,t, 16,r1, 17, 18, 19, 25, r 1]

These chains are dl distinct, but only two paths are involved: 8-9-10-11-12-13-16-17-18-19-
25 and 8-9-10-11-12-15-16-17-18-19-25. In the test cases, one path was taken and the other
was not:

?- xpath(_ 8,25 P).
P=18,9 10,11, 12, 15, 16, 17, 18, 19, 25]

18 DICK HAMLET

(the only possibility). Hence according to definition 2), the chains passing through line 13
(thefirst four listed above), with the variable sequencesa-i mj , a-j , a-r 2, and a-r 1 have
not been covered.

Thedevel oper needsto decidewhich definition isappropriate. To change theimplementation
to capture 2) instead of 1) is very easy, so experiments can be conducted if necessary. We
decided to stick with definition 1).

Returning to the seven uncovered chain pairs that were listed above for definition 1), it can
be seen that to cover these chains requires at least displaying a solution to an equation with
roots that are not real, and printing the “Red root(s)” message. The last two inputs in the
cumul ative data set:

1210 - 1. 000000+i 0. 000000 and -1.000000-i 0. 000000
1011 Conpl ex roots.

1020 0. 000000+i 1. 414214 and 0. 000000-i 1. 414214
1-1-61 Real root(s).

do these two things, and with this data, all-chains coverage is achieved:

?- all chain_m ssed(V1, V2, Start, Stop).
no

(In this case there is no difference between definition 1) and definition 2); hence the situation
that will expose a difference is very fragile, and might not be noticed at al in “production”
use of atool.)

In these examples, we have used test tools as naive testers in practica situations often use
them. First, we made haphazard choices of data, then when coverage was inadequate, we
followed the tool’s analysis to find new test points that would satisfy it. This usage pattern
illustrates the abilities of our prototypes, but it is probably not a wise use of a coverage-
analysistool. An apt analogy would be a novice programmer responding to compiler syntax-
error messages by making haphazard changes in the program, trying to silence the compiler.
The result would be a program that compiles without warnings, but is unlikely to execute as
required. A better response to syntax messages is to examine the specification and alter the
program to do what is intended, with attention to the part flagged by the compiler. The same
can be said for practical testing. A coverage failure should prompt study of the specification,
to find a test case that will improve the coverage, but only by testing some neglected aspect
of the program’s functionality. Coverage is no more related to the real adequacy of tests than
asyntax error isto aprogram’s meaning. Brian Marick? has convincingly described the wise
use of test analyzers.

There are many variants of dataflow coverage, and any new one can be tried with the same
ease as dependency chains. Lest thereader think that adapting an existing tool is easy no matter
how it is constructed, we suggest problemsthat might arise in a conventional implementation.
Data structures, introduced in conventional tool implementations by necessity, would cause
most of the trouble. A DU-path tool needsto cal culate and store DU paths, but it probably will
not have provided for storing sequences of such paths as dependency chainsrequire. (And if
the alternate definition 2) above is used, these paths will aso have to be compared.) Even if
the main data structure has been implemented as an abstract data type, making change as easy
as possible, the effort required to modify it would not be trivia. Another level of iteration
must al so be added to the analysis code to cal cul ate the path chains. Successfully making such
changes in a medium-sized program is a process requiring great care and a measure of good

IMPLEMENTING PROTOTYPE TESTING TOOLS 19

luck; in any caseit is not done on the fly when the tester has a new idea. Yet that is precisely
what our prototyping scheme allows.

Data-cover age testing

M ost systematic, program-based testing techniques are based on control-flow coverage. Itis
apparent to anyone using these methods that their flaw liesin alack of “data coverage” Thus
in (say) al-usestesting, atestset does causeall DU pairsto be exercised, and therefore satisfies
the requirements of the method; but, when the necessary paths are taken, program variables
do not assume crucial vaues, and so some bug slips by the test. The trouble with control -flow
methods is that too often they explore the control possibilitieswith trivia data, and thus the
“coverage” is spurious. It can even happen that a more demanding control criterion (e.g.,
all-uses coverage as opposed to branch coverage) isless effective in exposing bugs because a
person preoccupied with forcing execution of a difficult path is led to choose trivial data on
that path.

Mutation testing was originally an attempt to fill the data-coverage gap in statement testing,
by forcing “expression coverage” at each control pointl. Intuitively, it is harder to hide
defects from mutation than from control-flow techniques. If infact thisistrue, it supportsdata
coverage as ameasure of atest’s quality.

A plausible theory of test quality can be based on data-coverage®. At each control point
in a program, there is a range of possible interna states, i.e., the sets of values all interna
variables can assume at that point during any possible execution. Any program defect must
manifest itself in an erroneous program state of this kind. That is, if a program contains a
defect, then on some possible execution, at some control point, some variable vaue will be
wrong. A testset is“good” according to this theory if its coverage of program states is high.
The problem with such atheory liesin determining the possibl e state valueswithin aprogram;
the determination is usually difficult, and in genera an unsolvable problem. Thus we cannot
hope to mimic other structural testing tools that report deficienciesin coverage.

We can, however, measure state coverage for a given testset. A person may then decide
that the reported coverage is inadequate, and try to improve it, ideally in the way suggested
by Marick?. The differences between using state coverage and control-flow coverage tech-
niques are: (1) Thereis no easily computed standard of 100% coverage to be attained; but in
compensation, (2) State coverage is plausibly connected to the detection of defects.

To create a prototype data-coverage anayzer, dynamic information must be captured to
allow the calculation of execution states. Thisrequires adding program instrumentationin the
parser of our tool-building system. The new dynamic facts generated require new anaysis
predicates, not closely related to the existing ones. Thus the change from all-uses anaysisto
datastate analysisislesstrivial than the one to al-chains described above. In a conventional
tool implementation, a good case could be made for starting over from scratch, perhaps
reusi ng some componentsfrom the existing analyzer. In our prototypetool, the parser changes
amounted to a few hours work (less than 5% of the code was changed), and the Prolog
predicates displayed below took about a day to write and test.

The new facts needed are the values of program variables at each control point during
execution. Thisinformation is captured in the Prolog fact

val ue(Seq, Var, Val ue, Li ne)

that holds when Var takes on Val ue at Li ne. The counter Seq is used to tie each value
into a particular execution chain defined by st ep facts, avoiding erroneous use of a value

20 DICK HAMLET

from another path, as described previously. To collect theval ue facts at runtime, the parser
inserts extrainstrumentation very similar to that generating the st ep facts, but only for those
statementsthat give valuesto variables.

In this section we use the example of the quadratic program with the test data that covers
all-chains:

1210 - 1. 000000+i 0. 000000 and -1.000000-i 0. 000000
1011 Conpl ex roots.

1020 0. 000000+i 1. 414214 and 0. 000000-i 1. 414214
1-1-61 Real root(s).

Itsfirst few statements:

8 while (scanf("% % % %", &a, &b, &c, &qual)>0) {
9 d = b*b - 4*a*c;
10 t =0;

when executed with this data generate:

step(0,0,8).

val ue(0,a,1.0,8).
val ue(0, b, 2.0, 8).
val ue(0,c,1.0,8).
val ue(0, qual , 0.0, 8).
step(1,8,9).
value(1,d,0.0,9).
step(2,9, 10).

val ue(2,t, 0.0, 10).

Direct queriesof the dynamic database can now yield informati on about some program runtime
states. For example,

?- val ue(_ d, Val ue, Li ne).

has one response:
Line =9
Value = 0.0

Or, adirect query could show that some particular states do not occur:

2- value(_ d, N, 9), N>50.
no

In the interest of minimizing the number of facts generated, val ue instrumentation was
added only on statements that change a value, and only for the value changed. A technique
similar to that used to calculate execution paths in Section 2.8 can be used to establish state
values throughout the program. To calcul ate the state value at any control point, we search
along an execution path in reverse until the assignments are found that establish that state.
The Prolog rules are:

IMPLEMENTING PROTOTYPE TESTING TOOLS 21

xval ue(T,Var, N, Stnmt) :- value(T,Var,N Stnt), step(T,B,Stnt).
xval ue(T,Var, N, Stnmt) :- step(T,B,Stnt), Tl is T-1,

xval ue(T1, Var, N, B),

not def(Var, Stnt).

val ues(Var, Stnt, Vs) :- bagof (X xvalue(T, Var, X, Stnt), Vs).

The xval ue predicate agrees with val ue at the point of assignment, but at other control
pointsthe execution trace provided by st ep isusedtowork back totheimmediately preceding
assignment. Theval ues predicate accumul ates the state set for asinglevariable at a control
point as alist (using a built-in predicate bagof). For example, in the quadratic program, the
query:

?- values(d, 12,Sd 12).
givestheresult:
Sdi12 =[0.0,-4.0,-8.0,25.0]

To measure state coverage without displaying every value requires summarizing the datain
some way. For example, the following predicate cal culates the range of avariable:

range(Var,Stnt,[]) :- values(Var,Stnt,[]).
range(Var, Stnt,[Lo,H]) :- values(Var, Stnt,T),
mn(T,Lo), max(T,H).

(wherem n and max computethelargest and smallest el ementsin alist). Applied to the data
above:

?- range(d, 12, R).
R =1[-8.0,25.0]

Similarly, we can calcul ate other statistical parameters for the set of state points, to measure
test quality in terms of state coverage. The code for standard deviation is:

stdev([], undefi ned).

stdev([X],0).

stdev(L, Sig) :- nean(L,M, devsgs(L,ML2), sun(L2,SN),
N>1, Sigis sqrt(S/(N1)).

The predicates mean, devsqs, and sumcompute the average of alist, alist of squares, and
the sum and cardinality of alist, respectively.
A predicate that combines range and standard deviation calculationsin asinglelistis:

datacov(Var, Stnt,[Num R, Sg]) :- values(Var, Stnt,S),
l engt h('S, Num,
range(Var, Stnt, R),
stdev(S, Sg) .

where| engt h findsthe length of alist. For example,

22 DICK HAMLET

?- datacov(d, 12, State).
State = [4,[-8.0,25.0], 14. 8633]

That is, four d valuesreached statement 12, in the range [-8,25], with ¢ = 14.9.

The test data above achieves al-chains coverage, the most complex of the dataflow tech-
niques described above. To illustrate the point that data coverage under such techniques may
be trivial, consider the variable a being used to compute a real root (line 17). The anaysis
predicate reved s that the coverage thereis poor:

?- datacov(a, 17, R .
R=1[4,[1.0,1.0],0.0]

That is, athough four a values reach statement 17, they are all 1, so thereisno variation (o =
0). Similar queries might find other statementswith trivial coverage. In fact, itiseasy to write
apredicate to find them all:

notested(Var,L) :- values(Var,L,[]).
not ested(Var, L) :- values(Var,L,S), stdev(S, 0.0).

Predicate not est ed finds statementswhere the datastate for avariableincludesO or 1 value.
Itisnot surprising that in the example, not est ed(a, L) listsevery statement L. After some
experimentation to find a query that is well related to a deficiency in datastate testing, the
following emerged:

?- pos_dep(V, , S, 25,), notested(V,S).

That is, we look for a variable whose value doesn’t vary at the beginning of a dependency
chain, the chain ending with the statement that printsthe roots. Theresult identifiesthree such
variables: a atline 8, t at line 10, and i mat line 11. The reader can possibly think of other,
sharper queries. Here the prototype tool is being used to define a new kind of testing, which
might be called “initialized-variation coverage.”

If the tester attempts to gain better initialized-variation coverage for a, for example by
adding the data point (with expected output):

2420 - 1. 000000+i 0. 000000 and -1.000000-i 0. 000000
indeed initialized-variation for a is attained, but theresult is atest failure:
2420 - 4. 000000+i 0. 000000 and -4.000000-i 0. 000000

Conventiona debugging techniques quickly show that the fault isin lines 16 and 17, where
the programmer has mistaken the precedence for the “/ ” and “*” operators, and multiplied
by a instead of dividing by it. The example is contrived, but it illustrates the danger of using
trivial values (here, quadratic coefficients of only 1) in testing driven by control -flow methods,
and the efficacy of a new coverage method, which the prototype tool supports.

IMPLEMENTING PROTOTYPE TESTING TOOLS 23

SUMMARY AND SUGGESTIONS FOR FUTURE WORK

The combination of technologies we have described achieves rapid generation of program-
analysistools, which are easy to change.

Much information of interest for program analysis can be obtained directly from the static
and run-timefactsgenerated by the system. However, should significantly different analysisbe
required, performingitin Prologisalarge saving over conventional-languageimplementation.
It is easy to write queries on the fly, to investigate issues that arise while an experiment is
being conducted. Theseissues may arise from mistakesin the a gorithms being implemented,
or from more subtle, ill-considered definitions; or, they may involve new methods suggested
by properties of a particular example.

This paper has been limited to a description of the prototyping technique. To make the
ideas clear we used a very simple sample program and minimized discussion of the testing
techniquesimplemented. We emphasi zed the ease of creating and modifyingtest tools, and did
not examine their performance. The new techniques of dependency-chain and state-coverage
testing were introduced as applications of the prototyping method.

Performance of toolsisawaysan issue, but lessso for exploratory research and inthe class-
room. Poor performance (or worse, inability to handlelarge programsat all) isrightly blamed
for the failure of good ideas to move from research labs into industrial use. Certainly Prolog
facts seem a poor medium for storing and searching a large volume of information efficiently.
But because analysis is performed interactively and incrementally by the human tester, and
when mistakes are found that person often restarts the analysis, the time saved by creating
unstructured data may balance time wasted in linear searches. For some testing methods
constraint logic programming?®’ may achieve performance comparabl e to imperative-language
implementations. Some |ogic programs lend themselves to automatic parallel decomposition,
which would solve a difficult problem with high payoff?.

ACKNOWLEDGEMENTS

A number of people made important contributions to this project. Andy Babbitt and Shari
Powell did most of the “proof of concept” implementation, and responded to many requests
for changes as severa research projects pulled in different directions on the software. Bruce
Gifford was involved from the start of the project, answering questions, helping with cod-
ing difficulties in yacc and Prolog, and devising examples. Loren Brown, Andy Bass, Tim
McCormick, and Quinton Tormanen helped to clean up the mess that a research prototype
becomes. Alex Schonfeld converted most of the original troff document to IATEX.

REFERENCES

1. P G. Frankl and E. J. Weyuker, ‘A data flow testing tool’, Proceedings SoftFairll, Software Development
Tools, Techniques, and Alter natives, San Francisco, 1987, pp. 46-53.

2. J. Laski, ‘Dataflow testing in stad’, J. Systems Software, 12, 3-14, (January 1990).

3. T.J Ostrand and E. J. Weyuker, ‘ Data flow-based test adequacy analysis for languageswith pointers’, Proc.
Symposiumon Software Testing, Analysis, and Verification (TAV4), Victoria, BC, October 1991, pp. 74-86.

4. J.R.Horganand S. London, ‘ Data flow coverage and the ¢ language’, Proc. Symposiumon Software Testing,
Analysis, and \erification (TAV4), Victoria, BC, October 1991, pp. 87-97.

5. G. Kotik and L. Markosian, ‘Automating software analysis and testing using a program transformation
system’, Proc. Symposiumon Software Testing, Analysis, and Verification (TAV3), Key West, December 1989,
pp. 75-85.

24

© N

10.

11.

12.

13.

14.
15.

16.

17.

18.

20.

21.

22.

23.

24.
25.

26.

28.

DICK HAMLET

L. G. Stucki, ‘Automatic generation of self-metric software’, Proceedings IEEE Symposium on Computer
Software Reliability, New York, 1973.

M. E. Lesk and E. Schmidt, Lex - a lexical analyzer generator, UNIX Programmer’s Manual, v. 2, 1983.

S. C. Johnson, Yacc: yet another compiler compiler, UNIX Programmer’'s Manual, v. 2, 1983.

W. Harrison, ‘ Pdss: aprogrammer’s decision support system’, Data and Knowledge Engineering, 4, 115-123,
(January 1989).

R. A. DeMillo, E. W. Krauser, and A. P. Mathur, ‘ Compiler-integrated program mutation’, Proc. Computer
Software and Applications Conf. (COMPSAC), Tokyo, September 1991, pp. 351-356.

R. G. Hamlet, ‘ Testing programs with the aid of acompiler’, IEEE Trans. on Software Eng., 3, 279-290, (July
1977).

V. R. Basili and A. J. Turner, ‘Iterative enhancement: a practical technique for software development’, IEEE
Trans. on Software Eng, 1, 390-396, (December 1975).

J.D. Gannon, P.R. McMullin, and R. G. Hamlet, ‘ Data abstraction implementation, specification, and testing’,
TOPLAS, 3, 211-223, (July 1981).

R. M. Stallman, Using and porting GNU CC, Free Software Foundation, Inc., Cambridge, MA, 1990.

M. J. Harrold, B. Malloy, and G. Rothermel, ‘Efficient construction of program dependence graphs’, Proc.
Int. Symposiumon Software Testing and Analysis (1SSTA), Cambridge, MA, June 1993, pp. 160-170.

S. Rapps and E.Weyuker, ‘ Selecting software test data using data flow information’, IEEE Trans. Software
Eng, 11, 367-375, (April 1985).

P. G. Frankl and E. J. Weyuker, ‘An applicable family of dataflow testing criteria’, IEEE Trans. on Software
Eng, 14, 1483-1498, (October 1988).

W. Clocksin and C. Mellish, Programming in Prolog, Springer, New York, 1984.

A. Babbitt and S. T. Powell, ‘Building prototype testing tools’, Proc. Eighth Pacific Northwest Software
Quality Conference, Portland, OR, October 1990, pp. 264—280.

D. Hamlet, B. Gifford, and B. Nikolik, ‘Exploring dataflow testing of arrays', Proc. Int. Conf. on Software
Engineering (ICSE), Baltimore, MD, May 1993, pp. 118-129.

J. M. Purtilo and E. L. White, ‘ Using program adaptation techniquesfor test coveragein adaprograms’, Proc.
Eighth Pacific Northwest Software Quality Conference, Portland, OR, October 1990, pp. 281-294.

J. N. Campbell, Data-flow Analysis of Software Change, Master’sthesis, Oregon Graduate | nstitute, Beaverton,
OR, November 1990.

S. Ntafos, ‘An evaluation of required element testing strategies’, Proc. Int. Conf. on Software Engineering
(ICSE), Orlando, FL, March 1984, pp. 250-256.

M. Weiser, ‘ Program slicing’, |EEE Trans. Software. Eng., 10, 352-357, (July 1984).

B. Marick, ‘Experience with the cost of different coverage goals for testing’, Proc. Ninth Pacific Northwest
Software Quality Conference, Portland, OR, October 1991, pp. 147-164.

R. G. Hamlet, ‘ Probable correctnesstheory’, Info. Proc. Letters, 25, 17-25, (April 1987).

. J. Jaffar and J-L. Lassez, ‘ Constraint logic programming’, POPL, Munich, January 1987.

B. Choi, A. Mathur, and B. Pattison, ‘Pmothra: scheduling mutants for execution on a hypercube’, Proc.
Symposiumon Software Testing, Analysis, and Verification (TAV3), Key West, December 1989, pp. 58—65.

