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Abstract

Software testing should play a major role in the definition and improvement
of software development processes, because testing is the most precise, most
easily measured and controlled part of the software lifecycle. However, unless
testing goals are clearly related to true measurements of software quality, the
testing may appear to improve, but the software will not. Much of current
testing theory and practice is built on wishful thinking. In this paper, the
state of the testing art, and the theory describing it, is critically examined. It
is suggested that only a probabilistic theory, similar to reliability theory, but
without its deficiencies, can describe the relationship between test measure-
ments and product quality. The beginnings of a new theory of “dependability”
are sketched.

Keywords: software development process, assessing software quality, cover-
age testing, finding failures, reliability, dependability, trustworthiness



1 Introduction

Renewed interest in quality software in the 1990s stems from attention to the development
process. In the United States, the Software Engineering Institute (SEI) has proposed a
model of organizational structure capable of producing good software. In Europe, the In-
ternational Standards Organization ISO-9000 standards address similar concerns. Schemes
like “total quality management” (TQM) extend to the larger organization in which software
development is embedded. Software development is often in a sorry state, certainly in need
of attention to the procedures being used. However, the “process” movement inherits from
software engineering an emphasis on subjective, management-oriented methods. The im-
plication is that software development is a mysterious art, and only careful control of its
practicioners can avert disaster. Software engineering suggested ways to decompose devel-
opment into manageable (literally!) stages; “process” focuses on the procedural details of
each stage and how to define, measure, and modity them.

But a laudable interest in the development process per se has the unfortunate side effect
of downplaying its technical aspects. Organization and systematic, carefully monitored pro-
cedures are usually a part of successful engineering, but a relatively minor part. The essence
of engineering is scientific support for its methods. All the organization in the world will not
save a process based on an erroneous understanding of reality; in fact, excellent organization
can have the pernicious effect of shoring up methods that should be scrapped. The only real
measure of quality software is a “product” measure. It is the software that counts, not its
pedigree. Of course, attention to the process can be helpful in producing a good product,
but only if there are solid, demonstrable connections between what is done and what results
from doing it. To carry out procedures for their own sake — for example, because they can
be easily monitored and adjusted — is to mistake form for substance.

Proponents of the process viewpoint argue that the link with product is established by
feedback from failures. They say that a released software deficiency will be traced to its
procedural source, and an improved process will not again allow that particular problem to
occur. But this view ignores the complexity of the process. Consider the following example:

An operating system crashes. Analysis of the failure reveals that two successive
system calls are at fault: the first call established an internal system state in
which the second call’s normal operation brought the system down. Further
analysis shows that this combination was never imagined during development.
It was not mentioned in the requirements, never specified, not considered in
design or implementation, and although the two calls were successfully tested in
isolation, the combination was not tested.

The example is not far-fetched. How can the process that led to the release of the faulty
operating system be corrected? It is probably implicit in requirements for system calls that
they may be used in any sequence, although not all sequences are useful. So there is nothing
to correct in the requirements phase. The specification for each call fails to mention the
other, but there is nothing wrong with that if they are unrelated. Probably the fault is in



design, where the strange internal state was invented, or in implementation, where there was
too much freedom in representing the state. But it is not a process correction to say “don’t
do that!” — only hindsight identifies what not to do. It won’t do to ask the designers to
systematically consider system-call pairs; the next failure may be the result of a sequence of
three calls, or hundreds of calls. We could ask for more extensive inspection of the design
and implementation, but how much is enough to catch everything that was not imagined?
Finally, what might have been done in testing? Functional testing would not expose the
problem, and neither would simple coverage testing. Def-use testing might have found it,
and so might mutation testing, but there is no guarantee, if the peculiar state is not created
on most instances of the first call. Random testing has only a small chance of trying the
failing combination. (These methods will be considered in detail below.) More testing would
improve the chances of detection, but again, how much is enough?

The example was invented to ridicule the simplistic idea that product failures always pro-
duce meaningful feedback to the development process. But it also shows another important
point. In every phase except testing, the possible corrections are subjective and unsystem-
atic. People could be advised to “do better” but it is not clear just what that means. In the
testing phase, the options were specific and technical. Some systematic methods are better
than others in detecting the problem; using more tests should help; etc. Testing has less
need of hindsight.

The lesson that testing is a less subjective, more precise part of development than the
other phases is not lost on “process” advocates, who may choose to begin work there. Caution
is still in order: in the example, a particular kind of failure might be prevented by testing.
But how many kinds of failures are there, and how frequent is each kind? In development
no one has the luxury of a particular situation to analyze — all field failures lie in the future.
Might it not be that corrective feedback is always one step behind, and the supply of unique,
new problems nearly inexhaustible? When precise techniques are available, it increases the
danger of confusing procedure with results.

This paper is about the scientific, technical basis for software testing. It assesses the
state of the testing art in the context of improving quality through the development process.
Research is beginning to ask the right questions, and there are promising new results. But
indications are that the fundamental role of testing must change from defect-discovery to
assurance of quality.

1.1 Software Quality

Software quality is a many-faceted idea, and many attributes of “good” software are subjec-
tive. It must be “user-friendly” and “maintainable,” for example. From the developer’s point
of view, perhaps its most important characteristic is rapid development — time to market is
a critical factor in remaining in the software business. The fundamental measure of quality
is absence of defects. Quality software does not fail. Failure can take the form of a “crash”
after which the software cannot be used without some kind of drastic restart (and often a
loss of information or invested time); failure can be wrong answers delivered with all the



trappings of computer authority (and thus the more dangerous); and failure can be in the
performance dimension — the software works, but too slowly to be useful.

In this paper we identify software quality with the absence of failure. However, we want
an engineering measure, not the binary ideal of “correct”/“not correct.” Whether or not
one believes that it is possible to create “zero-defect” software, to demonstrate correctness is
impractical. Although proof methods might in principle demonstrate correctness, they have
been unable to do so in practice. Part of the reason is that theorem provers are too inefficient
and too hard to use; a deeper reason is that the formal specifications required for verification
are at least as difficult to create, and as error-prone, as programs. The alternative to formal
verification is testing, but tests are only samples of software’s behavior, and the best we can
hope for is that they establish some kind of statistical confidence in quality.

There is no standard term for good software in the sense of “unlikely to fail.” “Reliable”
has a related but different technical meaning' in engineering (see Section 4). Parnas has
used the term “trustworthy” [PvSK90], but he includes the severity of failure: trustworthy
software is unlikely to have catastrophic failures. What is or is not a catastrophe is sometimes
subjective, and may change over time. Furthermore, catastrophe is only easy to recognize
after the fact. Here we will be concerned with prediction of unspecified future events, whose
severity is unknown. We will use the term “dependable” for the intuitive idea “unlikely to
fail” (see Section 6).

1.2 Software Process

The emphasis in this paper will be on software testing as the phase of development easiest to
technically relate to software dependability. When there is an objective, quantitative rela-
tionship between product quality (here, dependability) and process activities (here, testing
methods), the feedback model of process improvement works. When the quality is inade-
quate, the methods can be changed (for example by devoting more resources to testing) to
improve it. It cannot be emphasized too strongly that the feedback cycle must extend all
the way to actual measurements of quality in the field. It is all too easy to guess at what is
causing a problem, change something in the development process and measure the change
in its own terms, and conclude that the process is improved. For example, suppose that
the operating-system failure above is one of many, and that the testing plan includes only
functional and basic structural coverage testing. To guess that more testing is needed, and
to (say) double the time spent on testing (perhaps doubling the number of test cases), will
probably have no effect on these failures, because these methods do not address the prob-
lem. But if measurement stops with counting test cases, the process is “improved” while the
product is not.

There is no reason why any proposed development method or technique cannot be held
to the same standard as testing methods. That is, one could demand that a quantitative
relationship be demonstrated between any proposal and product quality. For example, the

!Two other senses of “reliable” occur in the testing literature in theoretical papers by Goodenough and
Gerhart [GG75] and Howden [How76]. Both notions have technical flaws and are not in current use.



introduction of formal specifications methods is thought by some to be a good idea. This
could be established by measuring dependability of software developed in this way. At first,
the argument for any method has to be theoretical. It must be shown that the characteristics
of the method make a dependability improvement plausible. In unusual circumstances, it
may be possible to perform a real experiment to demonstrate the improvement. But in most
cases the theoretical arguments will be the only ones available. Once a method is in place
in the software process, however, experiments are more easily carried out. It is not difficult
to measure software quality using field reports of failure. Any method can be improved by
devoting more time to it, providing better training or tools for its users, etc. If the method
improves, but quality (dependability) does not, it is a strong indication that the theoretical
arguments supporting the method were wrong.

1.3 Formal Methods and Verification

Advocates of formal, mathematical methods in software development? argue persuasively
that the root cause of poor software quality is a loss of intellectual control. The remedy
suggested is better mental tools such as precise notations and formal reasoning. Formal
methods are proposed for two distinct roles in software development:

“Notation” role Abstraction and formal notation are powerful aids to precise thinking.
By expressing a software specification or design in a concise mathematical form, the
human developer is led to be more precise and accurate, to think through issues and
decisions that might otherwise have gone unnoticed. The 7 specification language is
currently a popular vehicle for the notation role. The formalism is viewed as an end in
itself. Even if the specification were devised and then immediately discarded (this is not
advocated, although it has happened where a contract mandated formal specification),
the benefits of better understanding and clearer thinking about the software should
accrue.

“Proof” role Formal systems based on symbolic logic may be used to go beyond the no-
tation role to include formal reasoning. Once software properties have been captured
formally, the formal description can be used to derive properties that software meeting
the description necessarily will possess. The proof role corresponds to the classical pur-
pose of mathematical formalism in the sciences, which is to model reality abstractly,
so that abstract reasoning may derive its properties. The power of formalism in the
proof role is that theorems proved about the formal abstraction may be difficult and
surprising, expressing properties that were not suspected, and could not be established
without abstraction. In establishing formal properties, a proof-oriented formalism often
makes use of a mechanical theorem prover.

The distinction between the notation and proof roles lies in the extent to which the
mathematical notation is used to reason about software, and there is evidently a continuum

2The Formal Methodists?



of possibilities ranging from no proofs at all to an effort in which proofs are dominant. The
formalism used may influence where on this continuum the developer can move; for example,
the Z language is not well adapted to proofs. The cleanroom methodology [CM90] has been
used mostly in the notation role, but its formalism is useful for intuitive (not mechanical)
proofs. Although serious use of formalism is only beginning to be seen in practice, the
notational role is the more common [GCR93]. The proof role has been limited to applications
with security constraints, usually in military systems.

The arguments advanced for formal methods today are given largely in process terms. It
is claimed that these methods are obvious aids to human effort in an admittedly difficult task.
But to evaluate them in product terms requires a different kind of argument. Granted that
formalism allows people to do a better job, is it possible to quantify the improvement that will
result, say in software dependability? Without this quantification, it is impossible to compare
different formal methods, or to compare use of a formal method with testing. It is not so
much that arguments for product quality resulting from the use of formal methods cannot
be given, as that they have not been attempted®. The subjective nature of development
phases other than testing makes it much harder to produce and to evaluate theoretical
arguments for their efficacy. But it is wishful thinking to employ these methods and ignore
their quantitative effects (if any).

1.4 Software Testing

Because testing is a precise?, quantitative activity, it must answer to more than the subjective
criteria used to evaluate other phases of software development. However, its very precision
is a danger. In testing we know what we are doing, and we can measure it. But we do not
necessarily know — and we might not measure — what its effect will be.

The common wisdom in testing (and it has become common wisdom largely because of
the “process” movement) is usually credited to Glenford Myers [Mye79]:

The purpose of testing is to find failures.

Myers’ insight is certainly a profound improvement on the earlier idea that the purpose
of testing is to show that software does not fail. It is all too easy for a slapdash test to
succeed even on the worst software, and with the goal achieved, there is strong disincentive
to work harder.

Myers’” suggestion is in agreement with the testing goal for other engineered products,
and certainly in line with the testing of computer hardware. However, the analogy between
mass-produced physical objects (each slightly different) subjected to environmental stress,
and software (each copy truly identical) that does not wear or get brittle, etc., is a poor one.

3An illustrative attempt at the kind of argument required has been given for the cleanroom methodology
[HV93].

*The importance of a development phase is unrelated to its precision. Without question, requirements
analysis is the most important phase, and it will forever remain the most imprecise, since it must translate
abstract ideas in the application domain to concrete ideas in the software domain.



In hardware testing we know a good deal about the possible failure modes of the device, and
tests are designed to expose them. When the tests fail, the part is flawed and is discarded.
When the tests succeed, we believe the part is up to spec (in manufacture — its design has
not been considered) because we believe that the failure modes tested are an exhaustive
list. In software the failure modes are unlimited and unknown. When a test fails, we know
something is wrong — that is the basis of Myers’ insight. But when all tests succeed, we
know only that some failures are precluded, not exactly what these failures are, and nothing
about other failure possibilities.

Because no software testing method (or combination of methods) is effective at exposing
all possible failures, a very unsatisfactory situation arises. Eventually, all the defects a testing
method can find will have been found, so the method’s usefulness (for exposing failure) is
at an end. But the “tested” software is still of unknown quality. Some defects have been
removed; but what defects remain? The analogy to fishing a lake is apt: when you catch
no fish, it doesn’t necessarily mean there are none in the lake. A program’s testing space is
bigger than a lake, its defects are as elusive as fish, and testing methods are no better than
fishermen’s schemes. The fishing analogy can be made quantitative. A deep lake 150 km in
diameter (roughly the size of one of the Great Lakes) might contain 10''m® of water, and
trolling it for a day, a fisherman might probe about 10*m? (assuming the lure is attractive in
a 0.2 m? crossection), or about fraction 1077 of the space. A program with a pair of integer
inputs running on a 32-bit machine has about 2% possible input values, and testing it for a
day at one test/sec is about 3 x 10* tests, or fraction 107" of the possibilities. It is as ideal
to imagine that each instant of fishing time covers a different part of the lake, as to suppose
that every test will be truly different. Just as fish do not always bite when the bait comes
near, so bugs do not always reveal themselves when tests encounter faulty code. All in all,
it seems that a fisherman predicting no fish in Lake Michigan after getting skunked is far
more likely to be right, than is a software tester predicting no bugs in a trivial program that
tested without failure.

Practical testing methods (like the notions of fishing guides) are based on experience in
uncovering software failures (or finding fish). But it is fallacious to believe that these methods
have significance when they do not do what they were designed to do. (That is, when they
find nothing, it is fallacious to conclude that there is nothing to find.) For assessing the
quality of software based on successful tests, different methods are required. Everyone who
has done large-scale testing has an intuition that there is a connection between practical
testing methods and software quality, but until that connection is supported by theoretical
arguments and empirical studies, it remains a “fish story.”

There are reasons to test with the intent of finding failures (see Section 3), although
obtaining dependable software is not currently one of them. There is even some reason to
hope that a connection can be established between failure-finding and the quality of the
resulting software. But for now, Myers’ advice deals with the process, not the product.
Failure detection is certainly a measure of the effort put into testing, and if there is an
independent control on defects — for example, a rigorous inspection process — test failures
can be a measure of how well that control is working. But since a reasonable development



process corrects defects that are found, testing for failure applies not to the final released
software product, but to intermediate, discarded versions that are not released. As such,
this testing does not meet the standard for true process quality.

2 Testing Background and Terminology

A test is a single value of program input, which enables a single execution of the program. A
testset® is a finite collection of tests. These definitions implicitly assume a simple program-
ming context, which is not very realistic, but which simplifies the discussion. This context
is that of a “batch” program with a pure-function semantics: the program is given a single
input, it computes a single result and terminates. The result on another input in no way
depends on prior calculations. Thus a testset puts this program through its paces, and the
order of the tests is immaterial.

In reality, programs may have complex input tuples, and produce similar outputs. But
we can imagine coding each of these into a single value, so that the simplification is not
a transgression in principle. Interactive programs that accept input a bit at a time and
respond to each bit, programs that read and write permanent data, and real-time programs,
do not fit this simple model. However, it is possible to treat these more complex programs
as if they used testsets, at the cost of some artificiality. For example, an interactive program
can be thought of as having testsets whose members (single tests) are sequences of inputs.
Because testing theory often has negative results to state, these results can be presented in
the simple case, and can be expected to carry over to more complex cases.

Each program has a specification that is an input-output relation. That is, the specifica-
tion S is a set of ordered input-output pairs describing allowed behavior. A program P meets
its specification for input « iff: if # € dom(S) then on input x, P produces output y such
that (z,y) € S. A program meets its specification (everywhere) iff it meets it on all inputs.
Note that where © ¢ dom(S5), that is, when an input does not occur as any first element in
the specification, the program may do anything it likes, including fail to terminate, yet still
meet the specification. Thus S defines the required input domain as well as behavior on that
domain.

A program P with specification S fails on input x iff P does not meet S at . A program
fails, if it fails on any input. When a program fails, the situation, and loosely the input
responsible, is called a failure. The opposite of fails is succeeds; the opposite of a failure is a
success.

Programmers and testers are much concerned with “bugs” (or “defects,” or “errors”).
The idea of “bug” in unlike the precise technical notion of “failure” because a bug intu-
itively is a piece of erroneous program code, while a failure is an unwanted execution result.
The technical term for “bug” etc., is fault, intuitively the textual program element that is

> At a research conference, one of the speakers made substantial use of “testset.” In the question period
following, a member of the audience commented, “I’ve just realized that ‘testset’ is a palindrome!” This
insight was applauded heartily.



responsible for one or more failures. However appealing and necessary this intuitive idea may
be, it has proved extremely difficult to define precisely. The difficulty is that faults have no
unique characterization. In practice, software fails for some testset, and is changed so that
it succeeds on that testset. The assumption is made that the change does not introduce any
new failures (an assumption false in general). The “fault” is then defined by the “fix,” and
is characterized, e.g., “wrong expression in an assignment” by what was changed. But the
change is by no means unique. Literally an infinity of other changes (including those that
differ only by extraneous statements) would have produced exactly the same effect. So “the
fault” is not a precise idea. Nevertheless, the terminology is useful and solidly entrenched,
and we will use it to refer (imprecisely) to textual elements that lead to failures.
These definitions of failure and fault correspond to an IEEE glossary®.

2.1 The Oracle Problem

Evidently the most important aspect of any testing situation is the determination of success
or failure. But in practice, the process is decidedly error-prone. If a program fails to complete
its calculation in an obvious way (for example, it is aborted with a message from the run-
time system), then it will likely be seen to have failed. But for elaborate output displays,
specified only by an imprecise description in natural language (a very common real situation),
a human being may well fail to notice a subtle failure. In one study, 40% of the test failures
went unnoticed [BS87]. To do better, the process of failure detection must be automated.

An oracle for specification S is a binary predicate J such that J(x,y) holds iff: either
x & dom(S) or (z,y) € S. (That is, J is a natural extension of the characteristic function of
S.) If there is an algorithm for computing J then the oracle is called effective. Thus, given
a program and a test point, an oracle can be used to decide if the result the program gives
is or is not correct (the program does or does not meet its specification at this point). For
an effective oracle this decision can be automated”.

Testing theory, being concerned with the choice of tests and testing methods, usually
ignores the oracle problem. It is typically assumed that an oracle exists, and the theoretician
then glibly talks about success and failure, while in practice there is no oracle but imperfect
human judgement. The theoretician justifies this lack of concern in two ways: (1) the
problem is one of specification, not testing — proper specifications should have effective
oracles; and, (2) all testing methods suffer equally from the absence of an oracle. Without

6 Erroris also a standard IEEE term, referring to something that is wrong with a program’s internal state
— a fault in the process of becoming a failure. Although this is an increasingly important concept in testing
(see section 6.3), “error” will seldom be used here in its IEEE technical sense. The literature is littered with
uses that almost always mean “fault,” e.g., “error-based testing.”

It is sometimes stated that an effective oracle requires (or is) an executable specification. Certainly
being able to execute the specification (if the specification domain is known and termination is guaranteed)
does yield an effective oracle, since the specification value can be compared with the program output. But
there may be other ways to make the decision that do not involve executing the specification. For example,
it is possible to check the results of a division by multiplying quotient and dividend; one need not know how
to divide to tell if division is correct.
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an oracle, testing cannot be done, but whatever is available will work for any method equally
well (or equally badly). Point (1) is well taken, and specification research has accepted the
responsibility in the strong sense that specification methods seek effective oracles that can
be mechanically obtained for any example specification [GHM81, AH92]. But justification
(2) contains a subtle flaw: it assumes all testing involves the same size testsets. If method X
requires far more tests than method Y, then with an inefficient oracle, X may be intractable
while Y is not. Of course, more tests always cost more in machine execution time, but people
time is the more important in practice today, and today’s oracles are usually people. The
size of testsets is an issue in random testing (see section 4.2) and in mutation testing (see
section 3.2).

2.2 Unit Testing vs. System Test

The definitions above are framed to apply to complete software systems, programs that can
be executed, that have input-output specifications. But testing a large piece of software is
a formidable task: the number of possible behaviors may be very large, and it may not be
easy to select tests. The tester intuitively feels that the problem has no practical solution,
and that whatever tests are conducted, they will barely scratch the surface, and leave much
untried. It is natural to want to decompose the testing problem into more manageable,
understandable units. Since software itself is composed of units (subroutines, modules, etc.),
it is natural to think of testing these. The practical difficulty with “unit testing” is precisely
that small units are not directly executable, and they may have specifications even more
vague than the typical poor one for the whole program.

In principle, the specification problem is also decomposed and simplified by considering
modules. But in practice, designers may be very slipshod about unit specifications, relegating
them to a comment in the the code like, “update control block.” Of course, the code could
not have been written without knowledge of the detailed format of this “control block,” and
without a clear statement of what it means to “update” it. But this information is likely to
be distributed across many design documents, and to reside partly in the heads of designers
and coders. The tester may be at a complete loss for a module oracle, without which testing
is impossible.

Executing a module that expects its inputs from other modules is not a problem in prin-
ciple. It is solved by writing a “testing harness” — a main program that accepts inputs, sends
them to the unit to be tested, and keeps track of the results returned. Such harnesses can
be automatically created from the unit’s source syntax, using compiler techniques. Missing
modules needed by the unit under test are a more difficult problem. If those modules are
written and linked in, then a small “unit” is no longer being tested, but rather a “subsystem”
of some kind, and its properties do not always reflect properties of its parts. For example,
a test may succeed despite a fault in one module, because it calls another compensating
module. On the other hand, if the called modules are replaced by “stubs” — dummy routines
that do nothing themselves — the unit under test may not have the proper environment, and
may itself do nothing significant.

11



Whatever the practical problems of unit testing, the idea harbors a much more serious
difficulty in principle: when all unit tests succeed, and the units are linked together, it does
not follow that overall system tests will succeed, or that properties tested for units will still
be assured. This failure of unit testing to “compose” will be further discussed in section 3.3.

3 Testing to Detect Failures

It Myers” advice to test for failure was needed by some segment of the testing community,
it certainly was not news to those who devise systematic testing methods. These methods
look for failures, and the mindset of their inventors is accurately described by the rhetorical
question: “How can a tester be prevented from thinking everything is OK, when it is not?”
The idea behind systematic testing is coverage. A deficient test, perhaps conducted by
someone who really did not want to discover any problems with the software being tested,
might succeed but only because it doesn’t probe very deeply. Coverage measures this probing.
A typical systematic testing method, applied with deficient test data, might issue the generic
message:

“Testing succeeded, but it did not cover <list of elements missed>.”

Systematic testing methods differ in the kind of coverage they require. The major division
is between “functional” and “structural” methods.

Functional testing is also called “blackbox” testing, or “specification-based” testing. The
coverage is by functions (cases) of what the software is supposed to do. In a command-
driven system under test, different commands could be taken to be functions; a test would
not achieve functional coverage unless it had used every command. Additional functional
classes could be defined by considering command-parameter classes, e.g., “long” or “short”
for a string, positive/negative/zero for an integer, 1st/2nd/3rd/4th quadrant for an angle,
etc. A command with one argument that is an angle would then define four functional classes
to be covered, one for each quadrant.

Functional testing is the primary systematic technique, at the heart of any reasonable
plan for finding software failures. Without it, the tester has no idea what software will do
in the very cases that it is supposed to handle, cases that are going to be tried by its users.

Structural testing is also called “program-based” or “code-based” testing, and also “clear-
box” or “white-box” testing®. The coverage is by syntactic parts of the program begin tested.
The most common kind of structural coverage is “statement testing,” which requires that
test data force the execution of each and every program statement.

Structural testing requires no knowledge of what a program is supposed to do (except in
determining success or failure of each test — see section 2.1), and thus its coverage requirement
can be automated. Tools for measuring structural coverage are often efficient and easy
to construct. For example, many operating systems have a “profile” utility that counts

8 “White-box” shows historical ignorance, because the opposite of a circuit that could not be examined
in a black crinkle box was a circuit visible through a plexiglass case. Thus “clear-box” is the better term.
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execution frequencies by statement, using instrumentation inserted in the source program.
Deficiencies in statement coverage show up as profiles containing statements executed zero
times. Without statement-coverage testing, the tester has no idea what will happen when
the statements that were not tested are executed, as they probably will be when the program
is used.

Functional and structural testing intuitively complement each other: structural testing
exercises the code that is present, and functional testing covers what should be there. These
methods intuitively uncover failures because bugs have a functional and/or structural loca-
tion, so by systematically exploring these locations, the bugs may be found. Most test plans
use a combination of methods. A particularly plausible scheme [Mar91] is to devise tests for
functional coverage, and then measure the structural coverage of those same tests, to judge
how well they apply to the code being tested. When parts of the code are not covered, the
tester should return to the functional cases to identify omitted functions, and repeat the
process.

Suppose that a test plan specifies complete coverage (functional or structural, or both),
and that it is successfully carried out. How could a program bug nevertheless escape de-
tection? This question is central to understanding in detail why systematic testing cannot
establish that a program works. Actual test cases are finite in number (and for practical
testing, the number is severely limited by time and resource constraints). Any test can
therefore cover at most a finite number of things. Thus the list of functions to be covered
(for example), must have a coarse granularity. In the example of a command with an angle
argument, it could happen that the program fails when the angle is 1 4+ 0.00001 radians.
This is in the 1st quadrant, but the tester may not have chosen such points in “covering” the
first quadrant. There are an infinity of points (or at least impractically many in the digital
quantization) to consider, and it is impossible to try them all. The situation of “covering”
an infinity with a small finite number of tests is general in systematic testing. For structural
statement testing, there are but a finite number of statements in any program. But each
statement may be executed with varying values for the quantities it manipulates, and true
coverage would have to try all these values. Statement coverage does not do so, which is its
flaw.

3.1 Functional Testing

The bulk of the creative effort in functional testing goes into devising the tests, or put
another way, into defining the functional classes that are to be covered, and their represen-
tatives. Functional testing fits best at the system level, because software requirements and
specifications are most often at that level. User documentation (especially a user’s manual
with examples) is a good source for a functional breakdown. With the test points in hand,
the tasks of executing them, judging the answers, and keeping track of what has been done,
are relatively straightforward. Tool support for the bookkeeping is helpful, indeed essential
for a large system [BHO89].

At the unit level, functional testing is also of value, but more difficult to carry out,
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because unit specifications may be poor or non-existent, and there may be a dearth of
intuitive functional classes for a unit. It is common to rely on implicit understanding, or
volatile design knowledge that is not carefully recorded, in defining what code units must
do. Furthermore, units may have their functionality so intertwined with other units that it
is impossible to test them separately. Some units perform a function that does not have any
intuitive breakdown into cases; for example, a subroutine computing e” for argument value
x seems inadequately tested using the classes {x|x < 0}, {0}, and {z|x > 0}, but what other
classes come to mind??

Although functional testing is defined to make no use of the program structure, in practice
there is good reason to add some design information to the specification when defining
functional classes. Every program has important internal data structures, and arbitrary
restrictions on its operation imposed by implementation limitations; these lead to natural
functional classes for testing. For example, a program that uses buffers should be probed
with the buffer empty, just full, and over-full. What is being covered by such tests are really
design elements, which fall between the functional and the structural. Another example is
a program that uses a hash table: the distinction of collision /no-collision defines a pseudo-
functional class. Marick [Mar91] calls the kind of testing that includes boundary cases from
design “broken-box” testing: it has long been treated as an aspect of functional testing

[GGT5).

3.2 Structural Testing

Structural-testing methods are conveniently divided into three categories, based on imple-
mentation techniques for tools, and the intuition behind the methods. These are: control-flow
methods (easy to implement efficiently, easy to understand); data-flow methods (somewhat
more difficult to implement, sometimes difficult to grasp); and, data-coverage methods (hard
to implement efficiently, hard to understand).

Control-flow Coverage

Statement-coverage testing is the prototype control-flow method. The places in the program
that might be reached (the statements), must be reached by an adequate testset. Because
statement coverage is almost trivial to measure, most commercial testing tools provide this
measurement. Branch testing is also widely supported by testing tools. A testset achieves
branch coverage if its tests force each program branch to take both TRUE and FALSE
outcomes!®, Branch testing is commonly preferred to statement testing, but without much
justification (see section 5).

9For scientific subroutines, asymptotic behavior and an investigation of the continuity of a computed
function are functional test possibilities.

10Tt is a pitfall of thinking about branch testing to imagine that two distinct test points are required to
cover a single branch. It commonly happens that one test suffices, because the branch is within a loop. In
particular, the conditional branch that begins a WHILE loop is always covered by any successful test case
that enters the loop, since it must eventually return and take the exit direction.
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Conditional branches employing AND and OR operators contain “hidden” paths that are
not forced by branch- or statement-coverage testing, and in the presence of short-circuit eval-
uation, it may be of some importance whether or not these paths were taken. Multi-condition
coverage is a version of branch testing that requires tests to make each sub-expression take
both TRUE and FALSE values. Loop coverage requires that tests cause the loop body to be
executed at least once, and also cause the body to be skipped!!.

The state of the test-tool art is nicely exemplified by the public-domain tool GCT
(Generic Coverage Tool) [Mar91] for the C language. GCT comes with impressive test-
sets for testing GCT itself. It includes branch, multi-condition, and loop coverage measures
(as well as weak mutation, described below).

One structural testing method often spawns another when a deficiency is recognized in
the first method. Branch testing and the other GCT control-flow methods could be said
to arise from statement testing because they intuitively seem to cover more. The ultimate
in control-flow coverage is path testing, in which it is required that tests in a testset cause
the execution of every path in the program. The rationale behind path testing is that each
path represents a distinct case that the program may handle differently (insofar as something
different happens along each path), and so these cases must be tried. Unfortunately, there are
a potential infinity of paths through any loop, corresponding to 0, 1,2, ..., n, ... times through
the body, and even nested IF statements quickly lead to too many paths, so complete path
testing is usually not attempted in practice!?.

Testing tools that implement control-flow methods make use of exception reporting to
minimize their reports. They identify not what was executed, but what was not. Tools are
thus required to be able to identify the possibilities for coverage. This they necessarily do
inaccurately, because determination of exactly which control flows can occur is in general
an unsolvable problem. Invariably, practical tools use a simple worst-case algorithm: they
treat a control flow as possible iff it forms a path in the uninterpreted program flowgraph.
That is, they ignore the logical condition needed to execute the path, and consider only the
connections of the graph. As a special case of this inaccuracy, a FOR loop appears to be
able to execute its body any of 0,1,2,...,n,... times; in reality, for constant bounds only
one count is possible. When a testing tool reports that coverage has failed, and statements,
branches, paths, etc., are uncovered, it may be falsely listing situations that actually cannot
occur. The tester is then faced with the infeasible path problem: to determine which of the
reported coverage deficiencies are real (requiring additional test points to cover), and which
are impossible to fulfill (to be ignored). In practice, these decisions are not very difficult for
human beings to make [FW88].

Testing tools also commonly report fractional coverages, for example, “87% of all branches

11 Again, this may not require more than one test point, if the loop in question is within another loop.

12Gome early testing standards called for attempting path coverage, with some fudging for loops. There is
confusion in the literature, exemplified by statements like “complete path testing is a perfect testing method
that would find all possible failures, but it is impossible to carry it out because programs may have an
infinity of paths.” The reasoning is bad: on each of that infinity of paths, there is also a practical infinity of
different data values possible, so that even if all the paths are covered, bugs could be missed [How76].
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were covered.” Such messages are the basis for testing standards that specify a fraction to
be attained (80% is often suggested, but in practice, coverages may be much lower [RB85]).
These summary numbers do measure testing effort, but their meaning is obscure, and it is
easy to be misled (see section 5.1).

Data-flow Coverage

Complete path testing is considered impractical because of the potential infinity of paths
through loops. A heuristic method of loop coverage that requires executing the loop body
at least once, and also skipping it entirely, is not satisfactory. Experience shows that many
subtle failures show up only on particular paths through loops, paths that are unlikely to be
selected to satisty a heuristic. Complete path testing really has something to offer, because
programmers do think in terms of paths as special cases, that should subsequently be tested.
Data-flow testing is an attempt to prescribe coverage of some of these special paths.

The central idea of data-flow coverage is the def-use or DU pair for a program variable.
Variable V has a def'? at each place in the program where V acquires a value, e.g., at
assignments to V. V' has a use at any other place it occurs. Thus for example, in the Pascal
statement

there is a use of x followed by a def of x. A DU path for V' is a path in the program from
a place where V has a def, to a place where V has a use, without any intervening deft of
V. A DU pair for V is the pair of start-end locations of any DU path. Thus the intuition
behind data-flow testing is that DU paths are the special paths that programmers think
about, paths on which values are stored, then later used. For example, in the Pascal code
(with line numbers for identification):

1 x :=0;
2 while x < 2
3 begin

4 writelin("looping");
5 x :=x +1
6 end

there are the following DU paths for the variable x: 1-2, 1-2-3-4-5, 5-6-2, 5-6-2-3-4-5. Al-
though it is possible to have an infinity of DU paths in a program (but not usual, as the
example shows — most such paths are interrupted by a def), the number of DU pairs is always
finite. This motivates the definition of the most common kind of data-flow test coverage:
a testset achieves all-uses coverage if its data points cause the execution of each DU pair
for each variable. (When multiple DU paths, perhaps an infinity of them, connect a DU

13«“Def” is a poor choice of terminology, since the idea is that V acquires a value, not that it is “defined”
in the sense of being declared or allocated storage. “Set” would have been a better choice, but “def” is too
entrenched in the literature to change.
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pair, only one such path need be covered in all-uses testing.) The technical definitions of
data-flow testing are surprisingly difficult to give precisely, and there are several versions in
the literature [RW85, FW88, PC90].

Among many variations of data-flow ideas, we mention only the extension to dependency
chains [Cam90, Nta88]. A dependency chain occurs when there is a series of DU paths laid
end to end, DU paths on which the use ending one is passed to the def beginning another,
perhaps with a change of variable. For example, in the Pascal:

1S :=0;

2 x :=0;

3 while x < 3

4 begin

5 S =S5 + x;
6 x :=x +1
7 end;

8 writeln(s)

there is a dependency chain beginning with the def of x at 6, and ending with the use of S
at 8, passing from x to S at 5, then from S to S again at five, on the path 6-7-3-4-5-6-7-3-4-
5-6-7-3-8. This dependency chain captures the contribution of both the loop index and the
partial sum to the final sum, and it requires two iterations to observe it.

Implementing data-flow test tools is not much more difficult than implementing control-
flow tools (indeed, some people do not distinguish data-flow as separate from control-flow).
The instrumentation for observing what paths are executed is the same as for statement
coverage. However, to calculate which DU pairs/paths/chains exist in the program requires
construction of a dependency graph. This construction is static, based as usual on the
uninterpreted flow graph, annotated with variable-usage information. Thus data-flow tools
are subject to the infeasible-path difficulties described above.

Data Coverage

The defect in all control-flow and data-flow coverage methods is that each statement/-
branch/path requires only a single set of internal data values to cover. That is, these testing
methods do force the execution of control patterns, but only for a single case out of a po-
tential infinity of cases that use the same pattern. Faults can remain hidden, if the failures
they cause require the pattern to be traversed with special data values. The more complex
the control pattern, the more important the problem of data choice becomes, because in at-
tempting to cover a difficult control condition, a tester is likely to choose trivial data values,
values that have little chance of exposing failure.

So-called “special-values testing,” or “boundary testing” suggests the use of extreme
values. Used in connection with a control- or data-flow method, boundary testing is very
valuable in the hands of an experienced tester. For example, on a dependency chain that
makes use of buffer storage, a boundary test would require the chain to be covered with the
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buffer empty, with it just full, and with overflow. The applications of special-values testing
are not systematic, but based on human insight into what values might cause things to go
wrong. Ultimately, the “right” special values are the ones on which the program happens to
fail, something that cannot be systematized.

A brute-force kind of “data-coverage” measurement for a testset can be obtained by in-
strumenting a program to record all of its internal states [Ham93]. The quality of the testset
at each point in the program is measured by the variety of values assumed by the variables
used there. Although neither the instrumentation nor the analysis of recorded data is dif-
ficult, such a system is not storage-efficient. The idea has a more fundamental deficiency
because a data-coverage tool cannot report its results by exception. The problem of stati-
cally calculating the internal-state possibilities at an arbitrary program location is of course
unsolvable; worse, there are no known approximation or useful worst-case algorithms. Thus
the situation differs from that for control- and data-flow testing, in which the uninterpreted
flow graph allows easy worst-case calculation of the possible paths, including only a few
infeasible ones by mistake.

Mutation testing is a systematic method that approximates both boundary testing and
data-coverage testing [Ham77]. From the program under test (PuT), a collection of mutant
programs are created, each differing from the PuT by a small change in syntax. For example,
in a conditional statement of the PuT, the relational operator “>" might be replaced with
“#£” in a mutant. Other mutants would use other relational operators in turn, the set of
variations being determined by the particular mutation system. Now the PuT and all mutant
variations are executed on a testset. The PuT must get correct results, and any mutant that
does not agree with the PuT (that is, the mutant does not succeed on the testset) is termed
killed. The testset achieves mutation coverage if it kills all mutants.

The idea behind mutation!* is that mutant variations explore the quality of the data
that reaches each program location. Good testsets cannot be fooled by any mutant. In the
example of substituting “#” for “>”, these two operators agree on the whole range where
the “>" expression is TRUE. So long as test data falls in that range it is not covering very
well. Mutation also systematizes the idea of “boundaries” in data; boundaries are literally
edges of regions on which mutants are killed.

In principle, an extended kind of mutation, in which all possible variations of the PuT
are considered, would constitute a perfect test method. Killing all the mutants would show
that no other program agrees with the PuT on a testset, hence the PuT must be correct
if any program is. But even the very restricted mutants of the experimental systems are
too many to make the technique easily practical. Another implementation difficulty is that
mutants may have termination difficulties the PuT did not have, for example, when loop-

MMutation analysis was developed independently (and named) by Lipton [DLS78], with a rather different
motivation. For Lipton, mutants capture a range of possibilities among which a programmer might have made
a mistaken choice. Killing mutants with test data is experimental verification that the choice represented by
the dead mutant is not the correct one. The description of mutation given above corresponds to the way it
was implemented by Lipton’s group; my implementation was built around a compiler, and was much more
efficient, if more difficult to describe.
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termination expressions are mutated. Technically, a mutant looping forever can never be
killed; in practice, systems impose an arbitrary limit and silently and incorrectly kill long-
running mutants.

There is a more difficult practical problem with mutation testing than its implementation,
unfortunately. Just as in control-flow testing there may be infeasible paths so that the
exception reporting of (say) a DU testing tool requires human investigation, so mutation
sets its users an even more difficult task. Some mutants cannot be killed, because there is
no test data on which they differ from the PuT — such a mutant is a program equivalent to
the PuT. The problem of deciding mutant equivalence is unsolvable in principle, but also
intractable in practice, and is a major stumbling block to acceptance for mutation testing.

A number of suggestions have been made to make mutation testing more practical. The
most promising is to use “weak mutation” [How82, Ham77]. Weak mutation considers a
mutant to be killed if it differs from the PuT in the state values immediately following the
altered statement in the mutant. The mutation described above (now “strong mutation”)
requires that the program results differ. Of course, if a mutant is killed in the strong sense,
it must also be killed in the weak sense by the same test data, but the converse is not
true. It may happen that the mutation alters a state, but that subsequent actions ignore or
correct this error. Weak mutation can be efficiently implemented (it is a part of the GCT tool
mentioned above), and in some important cases (notably mutants of the relational operators)
it is possible to derive simple conditions that describe test data that will necessarily kill all
mutants. The problem of equivalent mutants remains in the weak case, but its practical
difficulty is mitigated by focusing on just one state following the mutation.

3.3 What Should be Covered?

Coverage testing, both functional and structural, is intended to expose failures by system-
atically poking into the “corners” of software. It is reasonable to inquire into the principles
of coverage — why does it work, and what makes it work better? Such principles would be
useful in directing testing practice, because they would help a tester to decide which method
to use, and how to tailor a method to particular software. For example, using statement
coverage, should some statements receive more attention than others? A better understand-
ing of coverage testing might also address the problem of composing test results from unit
testing into conclusions for system testing. What coverage at the unit level would reduce
failures when the units are combined into a system?

Marick’s suggestion that structural coverage be used to assess the quality of functional
coverage is one way that methods might be used together!®. Section 3.2 has suggested that
mutation was invented as a complement to control-flow testing. Each kind of coverage testing
has its own rationale, and particular failures it is good at finding, so why not use them all?

15The converse of Marick’s suggestion has not been made, but it sounds almost as reasonable: devise
tests to achieve (say) statement coverage, then divide these tests into functional categories and note which
functions have been omitted or neglected. One might hope that this would identify missing statements or
point to code whose proper testing requires repeated executions.
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In short: because there isn’t time. Testing using even a single method (or no method at all)
is an open-ended activity. It is always possible to take more time and do more testing. For
example, functional classes can always be refined into smaller functional classes, requiring
larger testsets to cover. Within each functional class, it is always possible to choose more
test points. If methods are to be combined, how much should each be used relative to the
others?

In research that will be considered in detail in section 5.2, “partition testing” methods
were studied. Partition testing is an abstraction of coverage testing, which considers groups
of inputs that achieve particular parts of coverage. For example, in complete path testing,
the input space is divided into equivalence classes by which path those inputs take. These
classes do not overlap (no input can take more than one path), and together they exhaust all
inputs (every input must take some path'®). The equivalence class for each path is the place
from which tests must be drawn to cover that path. Other structural testing methods do
not induce disjoint classes in this way (for example, the same input may cause execution of
more than one statement, in statement testing), but their classes can be combined to create
an artificial partition [HT90].

When the failure-finding ability of partition-testing methods was investigated [HT90,
WJ91], an unsurprising result emerged: coverage works best at finding failures where there
are more failures to find. That is, if the failure points are unequally distributed over the
equivalence classes, then covering the classes of that partition will be more likely to find
errors than using a partition in which the classes are uniform relative to failure. One way
of looking at this result is as useless advice to “look for failures where they are,” useless
because if that information were available, testing would be unnecessary — we do not know
where the failures are. But the advice is not so useless in different forms:

(1) Coverage works better when the different elements being covered have differing chances
of failing. For example, path testing will be better at finding errors if some paths are
more buggy than others. A corollary of (1) is:

(1a) Do not subdivide coverage classes unless there is reason to believe that the subdivision
concentrates the chance of failure in some of the new subclasses. For example, it should
help to break control-flow classes down by adding data boundary restrictions, but it
would not be useful to refine functional classes based on function-parameter values if
one parameter value is no more error-prone than another.

(2) Devise new coverage-testing methods based on probable sources of trouble in the devel-
opment process. For example, emphasize the coverage of parts of code that has changed
late in the development cycle, or code written by the least-experienced programmer,
or code that has a history of failure, etc.

Although coverage testing is an “obvious” method, its theory is poorly understood. Open
questions will be considered further in section 4.4.

16 A class must be added to include those inputs that cause the program to go into an unterminating loop
or otherwise give no output.
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3.4 Testing for Failure in the Software Process

The accepted role for testing in the best development processes today is the one given by
Myers: to find failures!”. But when the development process is considered as a feedback
system seeking to improve software quality, failure-finding is a dangerous measure. The
trouble is that one cannot tell the difference between good methods used on good software,
and poor methods used on poor software. Testing cannot be evaluated in isolation, nor can
it be used to monitor other parts of the process, unless an independent control on faults is
present. If there is no such control, one never knows whether finding more failures means
improved testing, or merely worse software; finding fewer failures might mean better software,
or it might mean only poorer testing.

It is not impossible to make sensible use of a failure-finding testing measure in the devel-
opment process, but to do so requires better fundamental understanding of the interactions

between software creation and testing than we possess today.

4 Testing for Reliability

When software is embedded in a larger engineering artifact (and today it is hard to find a
product that does not have a software component), it is natural to ask how the software
contributes to the reliability of the whole. Reliability is the fundamental statistical measure
of engineering quality, expressing the probability that an artifact will fail in its operating
environment, within a given period of operation.

4.1 Analogy to Physical Systems

The software failure process is utterly unlike random physical phenomena (such as wear,
fabrication fluctuations, etc.) that underly statistical treatment of physical systems. All
software failures are the result of discrete, explicit (if unintentional) design flaws. If a program
is executed on inputs where it is incorrect, failure invariably occurs; on inputs where it is
correct, failure never occurs. This situation is poorly described as probabilistic. Nevertheless,
a software reliability theory has been constructed by analogy to the mechanical one [Sho83].

Suppose that a program fails on a fraction © of its possible inputs. It is true that © is a
measure of the program’s quality, but not necessarily a statistical one that can be estimated
or predicted. The conventional statistical parameter corresponding to O is the instantaneous
hazard rate or failure intensity z, measured in failures/sec. For physical systems that fail over
time, z itself is a function of time. For example, it is common to take z(?) as the “bathtub
curve” shown in figure 1.

1"The competing technology of software inspection, particularly in the design phase, shows promise of
taking over the role of seeking faults. It is cheaper, and apparently effective. In the celebrated example
of the space-shuttle software, spare-no-expense inspections simply made testing superfluous: testing seldom
found failures in the the inspected software. In response to this, it has been suggested that inspection is
just a form of testing, but from a technical standpoint this seems far-fetched — inspection usually does not
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Figure 1: ‘Bathtub’ hazard rate function

When a physical system is new, it is more likely to fail because of fabrication flaws. Then
it “wears in” and the failure intensity drops and remains nearly constant. Finally, near the
end of its useful life, wear and tear makes the system increasingly likely to fail.

What is the corresponding situation for software? Is there a sensible idea of a software
failure intensity? There are several complications that interfere with understanding. The
first issue is time dependence of the failure intensity. A physical-system failure intensity is a
function of time because the physical system changes. Software changes only if it is changed.
Hence a time-dependent failure intensity is appropriate for describing the development pro-
cess, or maintenance activities. (The question of changing usage is considered in section 4.4
below.) Only the simplest case, of an unchanging, “released” program is considered here.
Thus we are not concerned with “reliability growth” during the debugging period [MIO8T].

Some programs are in continuous operation, and their failure data is naturally presented
as an event sequence. From recorded failure times ¢y, t5, ..., ¢, starting at 0, it is possible to
calculate a mean time to failure (MTTF)

t + Z?:_ll (tig1 — 1)
n

which is the primary statistical quality parameter for such programs. MTTF is of ques-
tionable statistical meaning for the same reasons that failure intensity is. It is a (usually
unexamined) assumption of statistical theories for continuously operating programs that the
inputs which drive the program’s execution are “representative” of its use. The inputs sup-
plied, and their representativeness are fundamental to the theory; the behavior in time is
peculiar to continuously operating programs. Exactly the same underlying questions arise
for the pure-function batch programs whose testing is being considered here. For such a
program, the number of (assumed independent) runs replaces time, the failure intensity is
“per run” (or sometimes, “per demand” if the system is thought of as awaiting an input).
MTTF is then “mean runs to failure” (but we do not change the acronym).

involve execution, which 1s the hallmark of testing.
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4.2 Random Testing

The random testing method was not described in section 3, because it is seldom used for find-
ing failures'®. Random testing recognizes that a testset is a sample taken from a program’s
input space, and requires that sample to be taken without bias. This is in strong contrast
to the methods of section 3, each of which made use of detailed program or specification
information. Random testing is intuitively useful for prediction. If an appropriate sample is
used for the testset, results on that sample stand in for future program behavior, for which
the inputs are unknown.

Random testing cannot be used unless there is a means of generating inputs “at random.”
Pseudorandom number generation algorithms have long been studied [Knu81], although the
statistical properties of the typical generator supplied with a programming language are often
poor. Pseudorandom numbers from a uniform distribution can be used as test inputs if a
program’s range of input values is known. In actual applications, this range is determined
by hardware limitations such as word size, but it is better if the specification restricts the
input domain. For example, a mathematical library routine might have adequate accuracy
only in a certain range given in its specification. A uniform distribution, however, may not
be appropriate.

Operational Profile

Statistical predictions from sampling have no validity unless the sample is “representative,”
which for software means that the testset must be drawn in the same way that future
invocations will occur. An input probability density d(x) is needed, expressing the probability
that input x will actually occur in use. Given the function d, the operational distribution
F(z) is the cumulative probability'? that an input will occur:

F(z) = / d(z)dz.
To generate a testset “according to operational distribution F')” start with a collection of
pseudorandom reals r uniformly distributed over [0,1], and generate F~'(r). For a detailed
presentation, see [Ham94].
The distribution function d should technically be given as a part a program’s specifica-
tion. In practice, the best that can be obtained is a very crude approximation to d called

18Perhaps it should be used for failure detection, as discussed in section 5.2. In the cleanroom methodology,
only random testing is used. Advocates say this is because the methodology produces near zero-defect
software, so failure-finding is inappropriate. Critics might say that the advocates don’t want to find any
defects. In fact, the random testing does find some failures in cleanroom-developed code, but these are “easy
bugs” that almost any test would uncover. Cleanroom testing is “betwixt and between” because it is not
used to demonstrate that the code is bug-free (it would be interesting to see how the methods of section 3
would do); nor does it establish that the code is particularly reliable, as described in section 4.3, because far
too few test points are used.

19The formula assumes that d is defined over the real numbers. The lower limit in the integral would
change for restricted ranges of reals, and the integral would become a sum for a discrete density.
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the operational profile. The program input space is broken down into a limited number of
categories by function, and attempts are made to estimate the probability with which ex-
pected inputs will come from each category. Random testing is then conducted by drawing
inputs from each category of the profile (using a uniform distribution within the category),
in proportion to the estimated usage frequency.

4.3 Software Reliability Theory

If a statistical view of software failures is appropriate, failure intensity (or MTTF) can be
measured for a program using random testing. Inputs are supplied at random according
to the operational profile, and the failure intensity should be the long-term average of the
ratio of failed runs to total runs. An exhaustive test might measure the failure intensity
exactly. But whether or not failure intensity can be estimated with less than exhaustive
testing depends on the sample size, and on unknown characteristics of programs. Too small
a sample might inadvertently emphasize incorrect executions, and thus to estimate failure
intensity that is falsely high. The more dangerous possibility is that failures will be unfairly
avoided, and the estimate will be too optimistic. When a release test exposes no failures, a
failure-intensity estimate of zero is the only one possible. If subsequent field failures show
the estimate to be wrong, it demonstrates precisely the anti-statistical point of view. A
more subtle criticism questions whether MTTF is stable — is it possible to perform repeated
experiments in which the measured values of MTTF obey the law of large numbers?
In practice there is considerable difficulty with the operational profile:

1. Usage information may be expensive to obtain, or simply not available. In the best
cases, the profile obtained is very coarse, having at most a few hundred usage proba-
bilities for rough classes of inputs.

2. Different organizations (and different individuals within one organization) may have
quite different profiles, which may change over time.

3. Testing with the wrong profile always gives overly optimistic results (because when no
failures are seen, it cannot be because failures have been overemphasized!).

The concept of an operational profile does successfully explain changes observed over time
in a program’s (supposedly constant) failure intensity. It is common to experience a bathtub
curve like figure 1. When a program is new to its users, they subject it to unorthodox inputs,
following what might be called a “novice” operational profile, and experience a certain failure
intensity. But as they learn to use the program, and what inputs to avoid, they gradually
shift to an “average” user profile, where the failure intensity is lower, because this profile is
closer to what the program’s developer expected and tested. This transition corresponds to
the “wear in” period in figure 1. Then, as the users become “expert,” they again subject the
program to unusual inputs, trying to stretch its capabilities to solve unexpected problems.
Again the failure intensity rises, corresponding to the “wear out” part of figure 1.
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Figure 2: Confidence in failure intensity based on testing

Postulating an operational profile also allows us to derive the software-reliability theory
developed at TRW [TLNT8], which is quantitative, but less successful than the qualitative
explanation of the bathtub curve. Suppose that there is a meaningful constant failure in-
tensity O (in failures/run) for a program, and hence a MTTF of 1/0 runs, and a reliability
~OM over M runs [Sho83]. We wish to draw N random tests according to the opera-
tional profile, to establish an upper confidence bound « that © is below some level §. These
quantities are related by

of e

1—Z(N)0j(1—0)N_jZoz (1)
J=0 J
if the N tests uncover F' failures.

Some numerical values: for F' = 0, N = 3000, « = .95, § = .001, the MTTF is 1000
runs, and the reliability is 95% (for 50 runs), 61% (for 500 runs), and less than 1% (for 5000
runs). For the important special case F' = 0, the confidence « is a family of curves indicated
in figure 2. For any fixed value of N it is possible to trade higher confidence in a failure
intensity such as h for lower confidence in a better intensity such as A'.

Equation 1 predicts software behavior based on testing, even in the practical release-
testing case that no failures are observed. The only question is whether or not the theory’s
assumptions are valid for software. What is most striking about equation 1 is that it does
not depend on any characteristics of the program being tested. Intuitively, we would expect
the confidence in a given failure intensity to be lower for more complex software.

Another way to derive the relationship between confidence, testset size, and failure rate,
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is to treat the test as an experiment checking the hypothesis that the failure rate lies below a
given value. Butler and Finelli [BF91] obtain numerical values similar to those prediced by 1
in this way. They define the “ultra-reliable” region as failure rates in the range 107® /demand
and below, and present a very convincing case that it is impractical to gain information in
this region by testing. From equation 1, at the 90% confidence level, to predict a MTTF of M
requires a successful testset of size roughly 2M, so to predict ultrareliability by testing at one
test point each second around the clock would require three years. (And of course, one must
start over if the software is changed because a test fails.) Ultrareliability is appropriate for
safety-critical applications like commercial flight-control programs and medical applications;
in addition, because of a large customer base, popular PC software can be expected to fail
within days of release unless it achieves ultrareliability.

Thus software reliability theory provides a pessimistic view of what can be achieved by
testing. The deficiencies of the theory compound this difficulty. If an inaccurate profile is
used for testing the results are invalid, and they always err in the direction of predicting
better reliability than actually exists.

4.4 Profile Independence

The most dubious assumption made in conventional reliability theory is that there exists a
constant failure intensity over the input space. It is illuminating to consider subdividing the
input space, and applying the same theory to its parts.

Suppose a partition of the input space creates k subdomains Sy, Sy, ..., Si, and the proba-
bility of failure in subdomain S; (the subdomain failure intensity) is constant at ©;. Imagine
an operational profile D such that points selected according to D fall into subdomain S
with probability p;. Then the failure intensity @ under D is

k
0= ZPiGi- (2)
=1

However, for a different profile D', different p! may well lead to a different @’ = % pl0,.
For all profiles, the failure intensity cannot exceed

max

R Ch (3)

because at worst a profile can emphasize the worst subdomain to the exclusion of all others.
By coverage testing in all subdomains without failure, a bound can be established on Oy,
and hence on the overall failure intensity for all distributions. Thus in one sense partition
testing multiplies the reliability-testing problem by the number of subdomains. Instead of
having to bound © using N tests from an operational profile, we must bound O,y using
N tests from a uniform distribution over the worst subdomain; but, since we don’t know
which subdomain is worst, we must bound all £ of the O;, which requires kN tests. However,
the payback is a profile-independent result, that is, a reliability estimate based on partition
testing applies to all profiles.
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The obvious flaw in the above argument is that the chosen partion is unconstrained.
All that is required is that its subdomains each have a constant failure intensity. (This
requirement is a generalization of the idea of “homogeneous” subdomains, ones in which
all inputs either fail; or, all the inputs there succeed.) But are there partitions with such
subdomains? It seems intuitively clear that functional testing and path testing do not have
subdomains with constant failure rates. Indeed, it is the non-homogeneity of subdomains in
these methods that makes them less satisfactory for finding failures, as described in section
3. Of course, the failure intensity of a singleton subdomain is either 0 or 1 depending on
whether its point fails or succeeds, but these ultimate subdomains correspond to usually
impractical exhaustive testing.

The intuition that coverage testing is a good idea is probably based on an informal
version of this argument that coverage gets around the operational profile to determine
“usage independent” properties of the software. But making the intuitive argument precise
shows that the kind of coverage (as reflected in the character of its subdomains) is crucial,
and there is no research suggesting good candidate subdomains.

5 Comparing Test Methods

What objective criteria could be used to decide questions about the value of testing methods
in general, or to compare the merits of different testing procedures? Historically, methods
were evaluated either by unsupported theoretical discussion, or by “experiments” based
on circular reasoning. The inventor of a new method was expected to argue that it was
subjectively cleverer than its predecessors, and to compare it to other methods in terms
defined only by themselves. For example, it was common to find a testset that satisfied
the new method for some program, then see what fraction of branch coverage that testset
attained; or, to find a testset for branch coverage and see how well it did with the new
method. The new method was considered to be validated if its testset got high branch
coverage but not the other way around. Such studies are really investigating special cases

(for a few programs and a few testsets) of the “subsumes” relation®".

5.1 Comparison Using the Subsumes Relation

Control- and data-flow methods can be compared based on which method is more “demand-
ing.” Intuitively, a method is “at least as demanding” as another if its testsets necessarily
satisfy the other’s coverage. The usual name for this relationship is subsumes. If method
7, subsumes method X, then it is impossible to devise a method-Z test that is not also a
method-X test. The widespread interpretation of “Z subsumes X” was that method 7 is

Z0Mutation testing is the method most frequently used for comparison. Such studies take the viewpoint
of that mutations are like seeded faults, and hence a method’s ability to kill mutants is related to its failure-
detection ability. However, if mutation is treated as a coverage criterion as in section 3.2, then such a
comparison is like assessing one method of unknown worth with another such method.
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superior to method X. (The most-used example is that branch testing is superior to state-
ment testing, because branch coverage strictly subsumes statement coverage. However, it
was suggested [Ham89] that subsumption could be misleading in the real sense that natural
(say) branch tests fail to detect a failure that (different) natural statement tests find.

For example, suppose that the Pascal subprogram R

procedure rootabs(x: real): real;
begin

if x € 0 then x := -x;

rootabs := sq(x)

end

has specification {(z, \/M)L'Jc real}, that is, that the output is to be the square root of the
absolute value of an input. It would be natural to branch-test R with the testset T, =
{=1,0,1}, while Ty, = {—9} might be a statement-test testset, which does not achieve
branch coverage. (This example shows why the subsumption of statement- by branch testing
is strict.) Only T exposes a failure caused by the programmer mistaking Pascal’s square
function for its square-root function. Concentrating on the predicates that determine control
flow leads to neglect of the statements, which here takes the form of trivial data values
reaching the faulty function.

A continued exploration [WWHO91] showed that the subsumes idea could be refined so
that it was less likely to be misleading, and that it could be precisely studied by introducing
a probability that each method would detect a failure. The behavior of any method is
expressed by the probability that a testset satisfying that method, selected at random from
all such testsets, will expose a failure. An example was given in which statement testing was
more likely to detect a failure than was branch testing; however, even the contrived example
was unable to evidence much superiority for the “less demanding” method, indicating that
“subsumes” is not so misleading after all.

In a recent paper [FW93], the subsumes relationship is refined to “properly covers”
and it is shown that the new relationship cannot be misleading in the probabilistic sense.
Suppose two testing methods divide a program’s input space into subdomains, one domain
for each “element” to be covered?!. It is the relationship between these two collections
of subdomains that determines the failure-detection probability of one method relative to
the other. Roughly, method Z properly covers method X if Z has a collection of subdomains
from which the subdomains of X can be constructed. In the simplest case of partitions whose
subdomains are disjoint, if each subdomain of X is a union of subdomains from 7, then 7
properly covers X. Intuitively, there is no way for X to have many “good” testsets without
7 having equally many, because the X subdomains can be made up from 7 subdomains.
When the subdomains do not form partitions, one must be careful in using multiply-counted
subdomains of 7 to make up subdomains of X — a single subdomain may not be used too
often.

Z1'For example, in all-uses testings, the elements are DU pairs executed; in mutation testing, the elements
are mutants killed, etc.
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As an example, simple programs exist to show that branch testing does not properly
cover statement testing — the misleading program R given above is one. On the other hand,
Frankl and Weyuker have shown (for example) that some methods of their dataflow-testing
hierarchy are really better than others in the sense of properly covers.

The subsumes relationship began as a generalization of how well test methods do in each
other’s terms, that is, without any necessary reference to objectively desirable properties
of the software being tested. A “more demanding” method 7 that strictly subsumes X is
actually better only if we assume that what 7 demands is really useful beyond its mere
definition. The notion of “misleading” introduced an objective measure (failure-detection
ability), and showed that for natural testing methods, “subsumes” does not necessarily
correlate with the objective measure.

It is easy to devise unnatural testing methods in which “subsumes” is more misleading.
For example, the coverage measure (Z) “more than 70% of statements executed” strictly
subsumes (X) “more than 50% of statements executed,” but if the statements executed
using 7 happen to be all correct ones in some program, while those executed using X happen
to include its buggy code, then X is actually better than Z for this program. This example
demonstrates why fractional coverage measures are particularly poor ones.

5.2 Comparison for Reliability Prediction

Failure-detection probability is currently enshrined as the accurate measure of test quality,
replacing a circular use of “coverage” to assess the quality of “coverage.” But while it
is questionable whether failure-detection probability is the appropriate measure of testing
quality, it remains the only one on which work has been done. If testing is to be used
to assess software quality, which we have argued is necessary for useful feedback in the
software development process, then testing methods must be compared for their ability to
predict a quality parameter like MTTF. But here the operational profile enters to invalidate
comparisons. Only random testing can use the profile — other methods by their nature
require testsets that distort usage frequencies.

The theoretical comparisons between random testing and partition testing alluded to in
section 3.3 [DN84, HT90, WJ91], are often cited as showing that random testing is superior
to coverage testing. Strictly speaking, these studies compare only failure-detection ability, of
random testing and the partition-testing abstraction of coverage methods, and they mostly
find partition testing to have the edge. The seminal study [DN84] intended to suggest
that random testing was a reasonable alternative to the methods described in section 3.2.
But because random testing’s failure-detection probability is identical to the failure intensity
(hazard rate) of reliability theory, it appears that these studies have an additional significance
because they make comparisons based on reliability.

Unfortunately, even granting that the partition/random comparison applies to coverage
testing, and that failure-detection probability for random testing determines MTTF, the only
conclusion that can be reached is the negative one that coverage testing is at best no more
significant than random testing, or at worst of no significance. A random test can establish

29



upper confidence bound « that the failure intensity is not above # on the basis of IV tests with
F failures. Equation 1 connects these quantities according to the TRW software reliability
theory. If a coverage test is as good a statistical sample as a random test, it might realize a
similar or better bound on failure intensity. But the very intuitive factors that make coverage
testing desirable for finding failures, make its failure-detection probability different from a
failure-intensity. Coverage testing achieves superior failure detection precisely by sampling
not the operational profile, but according to classes that emphasize failure. These classes
bear no necessary relation to the operational profile, and hence the failure intensity may be
large even though the failure-detection probability for coverage is small, if coverage testing
found failures in low-profile-usage areas, and neglected high-profile-usage areas. The promise
of coverage testing is that it might explore all usage areas without requiring knowledge of
that usage, but no one knows how to surely realize this promise.

Thus the comparable or better failure-detection probabilities of coverage testing vis a vis
random testing are not failure-intensity predictions at all, and there is as yet no information
about the relationship between coverage testing and reliability.

6 Dependability

The technical difficulties with the notion of software reliability make it inappropriate for
measuring software quality, except in the rare instances when a stable operational profile
is available. Intuitively, a different measure is needed, one that is profile independent, thus
removing the aspect of reliability that deals with the “operating environment.” There are
good grounds for removing this aspect, because software is intuitively perfectible, so that
no “environment” (which after all is only an input collection that can be investigated ahead
of time) can bring it down. The other aspect of reliability, its dependence on the period of
operation, is also intuitively suspect for software. No matter how small the positive hazard
rate, all physical systems eventually fail; that is, their long-term reliability is near zero. But
software need not fail, if its designers’ mistakes can be controlled.

We seek a software quality parameter with the same probabilistic character as “reliabil-
ity,” but without its dependence on environment or on period of operation. And we hope to
estimate such a parameter by sampling similar to testing. The name we choose is “depend-
ability,” and its intuitive meaning is a probability that expresses confidence in the software,
confidence that is higher (closer to 1) when more samples of its behavior have been taken.
But this “behavior” may differ from that explored by the usual testing.

6.1 Reliability-based Dependability

Attempts to use the Nelson TRW (input-domain) reliability of section 4.3 to define depend-
ability must find a way to handle the different reliability values that result from assuming
different operational profiles, since dependability intuitively should not change with different
users. It is the essence of dependability that the operating conditions cannot be controlled.
Two ideas must be rejected:
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U Define dependability as the Nelson reliability, but using a uniform distribution for the
profile. This suggestion founders because some users with profiles that emphasize the
failure regions of a program will experience lower reliability than the defined depend-
ability. This is intuitively unacceptable.

W Define dependability as the Nelson reliability, but in the worst (functional) subdomain
of each user’s profile. This suggestion solves the difficulty with definition U, but
reintroduces a dependency on a particular profile. In light of the dubious existence
of constant failure intensities in subdomains (section 4.4) the idea may not be well

defined.

A further difficulty with any suggestion basing dependability on reliability, is the impracti-
cality of establishing ultrareliability. Other suggestions introduce essentially new ideas.

6.2 Testing for Probable Correctness

Dijkstra’s famous aphorism that testing can establish only the incorrectness of software has
never been very palatable to practical software developers, who believe in their hearts that
extensive tests prove something about software quality. “Probable correctness” is a name for
that illusive “something.” The TRW reliability theory of section 4.3 provides only half of
what is needed. Statistical testing supports statements like “In 95% of usage scenarios, the
software should fail on less than 1% of the runs.” These statements clearly involve software
quality, but it is not very plausible to equate the upper confidence bound and the chance of
success [Ham87], and turn the estimate “99.9% confidence in failure intensity less than .1%”
into “probable correctness of 99.9%.”

6.3 Testability Analysis

Jeff Voas has proposed [VM92] that reliability be combined with testability analysis to do
better. Testability is a lower bound probability of failure if software contains faults, based
on a model of the process by which faults become failures. A testability near 1 indicates a
program that “wears its faults on its sleeve”: if it can fail, it is very likely to fail under test.
This idea captures the intuition that “almost any test” would find a bug, which is involved
in the belief that well tested software is probably correct.

To define testability as the conditional probability that a program will fail under test if it
has any faults, Voas models the failure process of a fault localized to one program location.
For it to lead to failure, the fault must be executed, must produce an error in the local state,
and that error must then persist to affect the result. The testability of a program location
can then be estimated by executing the program as if it were being tested, but instead of
observing the result, counting the execution, state-corruption, and propagation frequencies.
Testability analysis thus employs a testset, but not an oracle.

When the testability is high at a location, it means that the testset caused that location
to be executed frequently; these executions had a good chance of corrupting the local state;
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)

Pr[not correct = failure less likely than z]
(from testability measurement)

Pr[failure more likely than x]
(from equation 1)

chance of failure
Figure 3: ‘Squeeze play’ between testability and reliability

and, an erroneous state was unlikely to be lost or corrected. The high testability does not
mean that the program will fail; it means that if the location has a fault (but we do not
know if it does), then the testset is likely to expose it.

Suppose that all the locations of a program are observed to have high testability, using
a testset that reflects the operational profile. Then suppose that this same testset is used in
successful random testing. (That is, the results are now observed, and no failures are seen.)
The situation is then that (i) no failures were observed, but (ii) if there were faults, failures
would have been observed. The conclusion is that there are no faults. This “squeeze play”
plays off testability against reliability to gain confidence in correctness.

Figure 3 shows the quantitative analysis of the squeeze play between reliability and
testability [HV93]. In figure 3, the falling curve is the confidence from reliability testing (it
is 1 — « from figure 2); the step function comes from observing a testability h. Together
the curves make it unlikely that the chance of failure is large (testing), or that it is small
(testability). The only other possibility is that the software is correct, for which 1 — d is a
confidence bound, where d is slightly more than the value of the falling curve at h. Confidence
that the software is correct can be made close to 1 by forcing h to the right [HV93]. For
example, with a testability of .001, a random testset of 20,000 points predicts the probability
that the tested program is not correct to be only about 2 x 1072,

6.4 Self-checking Programs

Manuel Blum has proposed [BK89] a quite different idea to replace reliability. He argues
that many users of software are interested in a particular execution of a particular program
only — they want assurance that a single result can be trusted. Blum has found a way to
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sometimes exploit the low failure intensity of a “quality” program to gain this assurance.
(Conventional reliability would presumably be used to estimate the program quality, but
Blum has merely postulated that failure is unlikely.) Roughly, his idea is that a program
should check its output by performing redundant computations. Fven if these make use of
the same algorithm, if the program is “close to correct,” it is very unlikely that a sequence
of checks could agree yet all be wrong.

Blum’s idea represents a new viewpoint quite different from testing, because it is a
pointwise view of quality. Testing attempts to predict future behavior of a program uniformly,
that is, for all possible inputs; Blum is satisfied to make the prediction one point at a
time (hence to be useful, the calculation must be made at runtime, when the point of
interest is known). All of testing’s problems with the user profile, test-point independence,
constant failure intensity, etc., arise from the uniform viewpoint, and Blum solves them at
a stroke. Testing to uniformly predict behavior suffers from the difficulty that for a high-
quality program, failures are “needles in a haystack” — very unlikely, hence difficult to assess.
Only impractically large samples have significance. Blum turns this problem to advantage:
since failures are unlikely, on a single input if the calculation can be checked using the same
program, the results will probably agree wunless they are wrong — a wrong result is nearly
impossible to replicate. The only danger is that the checking is really an exact repetition of
the calculation — then agreement means nothing.

6.5 Defining Dependability

Either Voas’s or Blum’s idea could serve as a definition for dependability, since both capture
a probabilistic confidence in the correctness of a program, a confidence based on sampling.

Dependability might be defined as the confidence in correctness given by Voas’s squeeze
play. Even if conventional reliability is used for the testing part of the squeeze play, the
dependability so defined depends in an intuitively correct way on program size and complex-
ity, because even Voas’s simple model of testability introduces these factors. His model also
introduces an implicit dependence on the size of both input and internal state spaces, but
this part of the model has not yet been explored. Unfortunately, the dependability defined
by the squeeze play is not independent of the operational profile.

Dependability might also be defined for a Blum self-checking program as the complement
of the probability that checks agree but their common value is wrong. This dependability
may be different for different inputs, and must be taken to be zero when the checks do
not agree. Thus a definition based on Blum’s idea must allow software to announce its own
untrustworthiness (for some inputs). In some applications, software that is “self deprecating”
(“Here’s the result, but don’t trust it!”) would be acceptable, and preferred over a program
that reported the wrong answer without admitting failure. One example is in accounting
systems whose calculations are not time-critical; the program could be improved, or the result
checked by some independent means. In other applications, notably real-time, safety-critical
ones, reporting failure is not appropriate.

The promise of both Voas’s and Blum’s ideas is that they extend reliability to depend-
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ability and at the same time substantially reduce the testing cost. Instead of requiring
ultrareliability that cannot be measured or checked in practice, their ideas add a modest
cost to reliability estimates of about 107* failures/run, estimates which can be made today.
Blum’s idea accrues the extra cost at runtime, for each result computed; Voas’s idea is more
like conventional testing in that it considers the whole input space, before release.

7 Conclusions

A brief history of software testing and its relationship to software quality can be constructed
from two famous aphorisms:

Testing can only show the presence of errors [failures, hence the underlying faults],
never their absence. (Paraphrasing Dijkstra [DDHT72])

The purpose of testing is to find errors [failures — in order to fix the faults re-
sponsible]. (Paraphrasing Myers [Mye79])

Myers’ statement could be thought of as a response to Dijkstra’s, but the goal that
Dijkstra implicitly assumes, to establish that software will not fail, remains. Myers’ realistic
goal was uncritically taken to be the same, but we have seen that it is not. Software reliability
again addresses Dijkstra’s goal, but using an engineering model (of which he would surely
not approve!). The common wisdom about reliability is that (i) its theoretical assumptions
are dubious [Ham92], but this is unimportant, because (ii) high reliability is impossible to
measure or predict in practice [BF91].

To complete the picture, the emerging dependability theory answers Dijkstra directly,
and may also respond to the question of practicality: it may be possible to measure a
confidence probability that software cannot fail, that is, that it contains no faults, using
methods similar to testing. If this promise is realized, the answer to Dijkstra makes for
good engineering, if not for good mathematics: software developers will be able to predict
trade-offs between their efforts and software quality, and can build software that is “good
enough” for its purpose.

We have considered only the question of measuring software quality through testing, and
using true quality measurements to direct the software development process. The important
question of how to attain the necessary quality has not been addressed. A variety of methods,
ranging from the very straightforward (e.g., inspections that employ people’s experience
without necessarily understanding just how they use it), to the very abstruse (e.g., completely
formal methods of specification, and proof that specifications match intuitive requirements),
are the subject of extensive research efforts. I have a vision of the future:

e Software quality will improve in fact, because development methods will be better.

e Software testing for failure will cease to be practiced, because with the better devel-
opment methods, failure testing will be ineffective: it will find few failures.
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o Instead of seeking failures, testing will be done, in conjunction with dependability
analysis and measurement, for the purpose of assessing software quality, to determine
if enough effort was put into development, and if that effort was effective.

Will the new software be better? Yes, if it needs to be, and the main thing is that the
developers will know if the software is good enough. On the other hand, terrible software will
continue to be produced (sometimes terrible is good enough!). What will become unusual is
software that is not good enough, but whose developers honestly thought that it was.

Will the new software be cheaper? Probably not. Testing for dependability will not save
over testing for failure, and the new up-front development methods will have an additional
cost. But costs will be more predictable, and the situation in which there is a software
disaster revealed only by final testing, will become rare.
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