
Software Quality,Software Process,and Software TestingDick HamletPortland State UniversityDepartment of Computer ScienceCenter for Software Quality ResearchPO Box 751Portland, OR 97207Internet: hamlet@cs.pdx.eduPhone: (503) 725-3216FAX: (503) 725-3211September 22, 1994
1



AbstractSoftware testing should play a major role in the de�nition and improvementof software development processes, because testing is the most precise, mosteasily measured and controlled part of the software lifecycle. However, unlesstesting goals are clearly related to true measurements of software quality, thetesting may appear to improve, but the software will not. Much of currenttesting theory and practice is built on wishful thinking. In this paper, thestate of the testing art, and the theory describing it, is critically examined. Itis suggested that only a probabilistic theory, similar to reliability theory, butwithout its de�ciencies, can describe the relationship between test measure-ments and product quality. The beginnings of a new theory of \dependability"are sketched.Keywords: software development process, assessing software quality, cover-age testing, �nding failures, reliability, dependability, trustworthiness



1 IntroductionRenewed interest in quality software in the 1990s stems from attention to the developmentprocess. In the United States, the Software Engineering Institute (SEI) has proposed amodel of organizational structure capable of producing good software. In Europe, the In-ternational Standards Organization ISO-9000 standards address similar concerns. Schemeslike \total quality management" (TQM) extend to the larger organization in which softwaredevelopment is embedded. Software development is often in a sorry state, certainly in needof attention to the procedures being used. However, the \process" movement inherits fromsoftware engineering an emphasis on subjective, management-oriented methods. The im-plication is that software development is a mysterious art, and only careful control of itspracticioners can avert disaster. Software engineering suggested ways to decompose devel-opment into manageable (literally!) stages; \process" focuses on the procedural details ofeach stage and how to de�ne, measure, and modify them.But a laudable interest in the development process per se has the unfortunate side e�ectof downplaying its technical aspects. Organization and systematic, carefully monitored pro-cedures are usually a part of successful engineering, but a relatively minor part. The essenceof engineering is scienti�c support for its methods. All the organization in the world will notsave a process based on an erroneous understanding of reality; in fact, excellent organizationcan have the pernicious e�ect of shoring up methods that should be scrapped. The only realmeasure of quality software is a \product" measure. It is the software that counts, not itspedigree. Of course, attention to the process can be helpful in producing a good product,but only if there are solid, demonstrable connections between what is done and what resultsfrom doing it. To carry out procedures for their own sake { for example, because they canbe easily monitored and adjusted { is to mistake form for substance.Proponents of the process viewpoint argue that the link with product is established byfeedback from failures. They say that a released software de�ciency will be traced to itsprocedural source, and an improved process will not again allow that particular problem tooccur. But this view ignores the complexity of the process. Consider the following example:An operating system crashes. Analysis of the failure reveals that two successivesystem calls are at fault: the �rst call established an internal system state inwhich the second call's normal operation brought the system down. Furtheranalysis shows that this combination was never imagined during development.It was not mentioned in the requirements, never speci�ed, not considered indesign or implementation, and although the two calls were successfully tested inisolation, the combination was not tested.The example is not far-fetched. How can the process that led to the release of the faultyoperating system be corrected? It is probably implicit in requirements for system calls thatthey may be used in any sequence, although not all sequences are useful. So there is nothingto correct in the requirements phase. The speci�cation for each call fails to mention theother, but there is nothing wrong with that if they are unrelated. Probably the fault is in3



design, where the strange internal state was invented, or in implementation, where there wastoo much freedom in representing the state. But it is not a process correction to say \don'tdo that!" { only hindsight identi�es what not to do. It won't do to ask the designers tosystematically consider system-call pairs; the next failure may be the result of a sequence ofthree calls, or hundreds of calls. We could ask for more extensive inspection of the designand implementation, but how much is enough to catch everything that was not imagined?Finally, what might have been done in testing? Functional testing would not expose theproblem, and neither would simple coverage testing. Def-use testing might have found it,and so might mutation testing, but there is no guarantee, if the peculiar state is not createdon most instances of the �rst call. Random testing has only a small chance of trying thefailing combination. (These methods will be considered in detail below.) More testing wouldimprove the chances of detection, but again, how much is enough?The example was invented to ridicule the simplistic idea that product failures always pro-duce meaningful feedback to the development process. But it also shows another importantpoint. In every phase except testing, the possible corrections are subjective and unsystem-atic. People could be advised to \do better" but it is not clear just what that means. In thetesting phase, the options were speci�c and technical. Some systematic methods are betterthan others in detecting the problem; using more tests should help; etc. Testing has lessneed of hindsight.The lesson that testing is a less subjective, more precise part of development than theother phases is not lost on \process" advocates, who may choose to begin work there. Cautionis still in order: in the example, a particular kind of failure might be prevented by testing.But how many kinds of failures are there, and how frequent is each kind? In developmentno one has the luxury of a particular situation to analyze { all �eld failures lie in the future.Might it not be that corrective feedback is always one step behind, and the supply of unique,new problems nearly inexhaustible? When precise techniques are available, it increases thedanger of confusing procedure with results.This paper is about the scienti�c, technical basis for software testing. It assesses thestate of the testing art in the context of improving quality through the development process.Research is beginning to ask the right questions, and there are promising new results. Butindications are that the fundamental role of testing must change from defect-discovery toassurance of quality.1.1 Software QualitySoftware quality is a many-faceted idea, and many attributes of \good" software are subjec-tive. It must be \user-friendly" and \maintainable," for example. From the developer's pointof view, perhaps its most important characteristic is rapid development { time to market isa critical factor in remaining in the software business. The fundamental measure of qualityis absence of defects. Quality software does not fail. Failure can take the form of a \crash"after which the software cannot be used without some kind of drastic restart (and often aloss of information or invested time); failure can be wrong answers delivered with all the4



trappings of computer authority (and thus the more dangerous); and failure can be in theperformance dimension { the software works, but too slowly to be useful.In this paper we identify software quality with the absence of failure. However, we wantan engineering measure, not the binary ideal of \correct"/\not correct." Whether or notone believes that it is possible to create \zero-defect" software, to demonstrate correctness isimpractical. Although proof methods might in principle demonstrate correctness, they havebeen unable to do so in practice. Part of the reason is that theorem provers are too ine�cientand too hard to use; a deeper reason is that the formal speci�cations required for veri�cationare at least as di�cult to create, and as error-prone, as programs. The alternative to formalveri�cation is testing, but tests are only samples of software's behavior, and the best we canhope for is that they establish some kind of statistical con�dence in quality.There is no standard term for good software in the sense of \unlikely to fail." \Reliable"has a related but di�erent technical meaning1 in engineering (see Section 4). Parnas hasused the term \trustworthy" [PvSK90], but he includes the severity of failure: trustworthysoftware is unlikely to have catastrophic failures. What is or is not a catastrophe is sometimessubjective, and may change over time. Furthermore, catastrophe is only easy to recognizeafter the fact. Here we will be concerned with prediction of unspeci�ed future events, whoseseverity is unknown. We will use the term \dependable" for the intuitive idea \unlikely tofail" (see Section 6).1.2 Software ProcessThe emphasis in this paper will be on software testing as the phase of development easiest totechnically relate to software dependability. When there is an objective, quantitative rela-tionship between product quality (here, dependability) and process activities (here, testingmethods), the feedback model of process improvement works. When the quality is inade-quate, the methods can be changed (for example by devoting more resources to testing) toimprove it. It cannot be emphasized too strongly that the feedback cycle must extend allthe way to actual measurements of quality in the �eld. It is all too easy to guess at what iscausing a problem, change something in the development process and measure the changein its own terms, and conclude that the process is improved. For example, suppose thatthe operating-system failure above is one of many, and that the testing plan includes onlyfunctional and basic structural coverage testing. To guess that more testing is needed, andto (say) double the time spent on testing (perhaps doubling the number of test cases), willprobably have no e�ect on these failures, because these methods do not address the prob-lem. But if measurement stops with counting test cases, the process is \improved" while theproduct is not.There is no reason why any proposed development method or technique cannot be heldto the same standard as testing methods. That is, one could demand that a quantitativerelationship be demonstrated between any proposal and product quality. For example, the1Two other senses of \reliable" occur in the testing literature in theoretical papers by Goodenough andGerhart [GG75] and Howden [How76]. Both notions have technical aws and are not in current use.5



introduction of formal speci�cations methods is thought by some to be a good idea. Thiscould be established by measuring dependability of software developed in this way. At �rst,the argument for any method has to be theoretical. It must be shown that the characteristicsof the method make a dependability improvement plausible. In unusual circumstances, itmay be possible to perform a real experiment to demonstrate the improvement. But in mostcases the theoretical arguments will be the only ones available. Once a method is in placein the software process, however, experiments are more easily carried out. It is not di�cultto measure software quality using �eld reports of failure. Any method can be improved bydevoting more time to it, providing better training or tools for its users, etc. If the methodimproves, but quality (dependability) does not, it is a strong indication that the theoreticalarguments supporting the method were wrong.1.3 Formal Methods and Veri�cationAdvocates of formal, mathematical methods in software development2 argue persuasivelythat the root cause of poor software quality is a loss of intellectual control. The remedysuggested is better mental tools such as precise notations and formal reasoning. Formalmethods are proposed for two distinct roles in software development:\Notation" role Abstraction and formal notation are powerful aids to precise thinking.By expressing a software speci�cation or design in a concise mathematical form, thehuman developer is led to be more precise and accurate, to think through issues anddecisions that might otherwise have gone unnoticed. The Z speci�cation language iscurrently a popular vehicle for the notation role. The formalism is viewed as an end initself. Even if the speci�cation were devised and then immediately discarded (this is notadvocated, although it has happened where a contract mandated formal speci�cation),the bene�ts of better understanding and clearer thinking about the software shouldaccrue.\Proof" role Formal systems based on symbolic logic may be used to go beyond the no-tation role to include formal reasoning. Once software properties have been capturedformally, the formal description can be used to derive properties that software meetingthe description necessarily will possess. The proof role corresponds to the classical pur-pose of mathematical formalism in the sciences, which is to model reality abstractly,so that abstract reasoning may derive its properties. The power of formalism in theproof role is that theorems proved about the formal abstraction may be di�cult andsurprising, expressing properties that were not suspected, and could not be establishedwithout abstraction. In establishing formal properties, a proof-oriented formalism oftenmakes use of a mechanical theorem prover.The distinction between the notation and proof roles lies in the extent to which themathematical notation is used to reason about software, and there is evidently a continuum2The Formal Methodists? 6



of possibilities ranging from no proofs at all to an e�ort in which proofs are dominant. Theformalism used may inuence where on this continuum the developer can move; for example,the Z language is not well adapted to proofs. The cleanroom methodology [CM90] has beenused mostly in the notation role, but its formalism is useful for intuitive (not mechanical)proofs. Although serious use of formalism is only beginning to be seen in practice, thenotational role is the more common [GCR93]. The proof role has been limited to applicationswith security constraints, usually in military systems.The arguments advanced for formal methods today are given largely in process terms. Itis claimed that these methods are obvious aids to human e�ort in an admittedly di�cult task.But to evaluate them in product terms requires a di�erent kind of argument. Granted thatformalism allows people to do a better job, is it possible to quantify the improvement that willresult, say in software dependability? Without this quanti�cation, it is impossible to comparedi�erent formal methods, or to compare use of a formal method with testing. It is not somuch that arguments for product quality resulting from the use of formal methods cannotbe given, as that they have not been attempted3. The subjective nature of developmentphases other than testing makes it much harder to produce and to evaluate theoreticalarguments for their e�cacy. But it is wishful thinking to employ these methods and ignoretheir quantitative e�ects (if any).1.4 Software TestingBecause testing is a precise4, quantitative activity, it must answer to more than the subjectivecriteria used to evaluate other phases of software development. However, its very precisionis a danger. In testing we know what we are doing, and we can measure it. But we do notnecessarily know { and we might not measure { what its e�ect will be.The common wisdom in testing (and it has become common wisdom largely because ofthe \process" movement) is usually credited to Glenford Myers [Mye79]:The purpose of testing is to �nd failures.Myers' insight is certainly a profound improvement on the earlier idea that the purposeof testing is to show that software does not fail. It is all too easy for a slapdash test tosucceed even on the worst software, and with the goal achieved, there is strong disincentiveto work harder.Myers' suggestion is in agreement with the testing goal for other engineered products,and certainly in line with the testing of computer hardware. However, the analogy betweenmass-produced physical objects (each slightly di�erent) subjected to environmental stress,and software (each copy truly identical) that does not wear or get brittle, etc., is a poor one.3An illustrative attempt at the kind of argument required has been given for the cleanroom methodology[HV93].4The importance of a development phase is unrelated to its precision. Without question, requirementsanalysis is the most important phase, and it will forever remain the most imprecise, since it must translateabstract ideas in the application domain to concrete ideas in the software domain.7



In hardware testing we know a good deal about the possible failure modes of the device, andtests are designed to expose them. When the tests fail, the part is awed and is discarded.When the tests succeed, we believe the part is up to spec (in manufacture { its design hasnot been considered) because we believe that the failure modes tested are an exhaustivelist. In software the failure modes are unlimited and unknown. When a test fails, we knowsomething is wrong { that is the basis of Myers' insight. But when all tests succeed, weknow only that some failures are precluded, not exactly what these failures are, and nothingabout other failure possibilities.Because no software testing method (or combination of methods) is e�ective at exposingall possible failures, a very unsatisfactory situation arises. Eventually, all the defects a testingmethod can �nd will have been found, so the method's usefulness (for exposing failure) isat an end. But the \tested" software is still of unknown quality. Some defects have beenremoved; but what defects remain? The analogy to �shing a lake is apt: when you catchno �sh, it doesn't necessarily mean there are none in the lake. A program's testing space isbigger than a lake, its defects are as elusive as �sh, and testing methods are no better than�shermen's schemes. The �shing analogy can be made quantitative. A deep lake 150 km indiameter (roughly the size of one of the Great Lakes) might contain 1011m3 of water, andtrolling it for a day, a �sherman might probe about 104m3 (assuming the lure is attractive ina 0.2 m2 crossection), or about fraction 10�7 of the space. A program with a pair of integerinputs running on a 32-bit machine has about 264 possible input values, and testing it for aday at one test/sec is about 3� 104 tests, or fraction 10�15 of the possibilities. It is as idealto imagine that each instant of �shing time covers a di�erent part of the lake, as to supposethat every test will be truly di�erent. Just as �sh do not always bite when the bait comesnear, so bugs do not always reveal themselves when tests encounter faulty code. All in all,it seems that a �sherman predicting no �sh in Lake Michigan after getting skunked is farmore likely to be right, than is a software tester predicting no bugs in a trivial program thattested without failure.Practical testing methods (like the notions of �shing guides) are based on experience inuncovering software failures (or �nding �sh). But it is fallacious to believe that these methodshave signi�cance when they do not do what they were designed to do. (That is, when they�nd nothing, it is fallacious to conclude that there is nothing to �nd.) For assessing thequality of software based on successful tests, di�erent methods are required. Everyone whohas done large-scale testing has an intuition that there is a connection between practicaltesting methods and software quality, but until that connection is supported by theoreticalarguments and empirical studies, it remains a \�sh story."There are reasons to test with the intent of �nding failures (see Section 3), althoughobtaining dependable software is not currently one of them. There is even some reason tohope that a connection can be established between failure-�nding and the quality of theresulting software. But for now, Myers' advice deals with the process, not the product.Failure detection is certainly a measure of the e�ort put into testing, and if there is anindependent control on defects { for example, a rigorous inspection process { test failurescan be a measure of how well that control is working. But since a reasonable development8



process corrects defects that are found, testing for failure applies not to the �nal releasedsoftware product, but to intermediate, discarded versions that are not released. As such,this testing does not meet the standard for true process quality.2 Testing Background and TerminologyA test is a single value of program input, which enables a single execution of the program. Atestset5 is a �nite collection of tests. These de�nitions implicitly assume a simple program-ming context, which is not very realistic, but which simpli�es the discussion. This contextis that of a \batch" program with a pure-function semantics: the program is given a singleinput, it computes a single result and terminates. The result on another input in no waydepends on prior calculations. Thus a testset puts this program through its paces, and theorder of the tests is immaterial.In reality, programs may have complex input tuples, and produce similar outputs. Butwe can imagine coding each of these into a single value, so that the simpli�cation is nota transgression in principle. Interactive programs that accept input a bit at a time andrespond to each bit, programs that read and write permanent data, and real-time programs,do not �t this simple model. However, it is possible to treat these more complex programsas if they used testsets, at the cost of some arti�ciality. For example, an interactive programcan be thought of as having testsets whose members (single tests) are sequences of inputs.Because testing theory often has negative results to state, these results can be presented inthe simple case, and can be expected to carry over to more complex cases.Each program has a speci�cation that is an input-output relation. That is, the speci�ca-tion S is a set of ordered input-output pairs describing allowed behavior. A program P meetsits speci�cation for input x i�: if x 2 dom(S) then on input x, P produces output y suchthat (x; y) 2 S. A program meets its speci�cation (everywhere) i� it meets it on all inputs.Note that where x 62 dom(S), that is, when an input does not occur as any �rst element inthe speci�cation, the program may do anything it likes, including fail to terminate, yet stillmeet the speci�cation. Thus S de�nes the required input domain as well as behavior on thatdomain.A program P with speci�cation S fails on input x i� P does not meet S at x. A programfails, if it fails on any input. When a program fails, the situation, and loosely the inputresponsible, is called a failure. The opposite of fails is succeeds; the opposite of a failure is asuccess.Programmers and testers are much concerned with \bugs" (or \defects," or \errors").The idea of \bug" in unlike the precise technical notion of \failure" because a bug intu-itively is a piece of erroneous program code, while a failure is an unwanted execution result.The technical term for \bug" etc., is fault, intuitively the textual program element that is5At a research conference, one of the speakers made substantial use of \testset." In the question periodfollowing, a member of the audience commented, \I've just realized that `testset' is a palindrome!" Thisinsight was applauded heartily. 9



responsible for one or more failures. However appealing and necessary this intuitive idea maybe, it has proved extremely di�cult to de�ne precisely. The di�culty is that faults have nounique characterization. In practice, software fails for some testset, and is changed so thatit succeeds on that testset. The assumption is made that the change does not introduce anynew failures (an assumption false in general). The \fault" is then de�ned by the \�x," andis characterized, e.g., \wrong expression in an assignment" by what was changed. But thechange is by no means unique. Literally an in�nity of other changes (including those thatdi�er only by extraneous statements) would have produced exactly the same e�ect. So \thefault" is not a precise idea. Nevertheless, the terminology is useful and solidly entrenched,and we will use it to refer (imprecisely) to textual elements that lead to failures.These de�nitions of failure and fault correspond to an IEEE glossary6.2.1 The Oracle ProblemEvidently the most important aspect of any testing situation is the determination of successor failure. But in practice, the process is decidedly error-prone. If a program fails to completeits calculation in an obvious way (for example, it is aborted with a message from the run-time system), then it will likely be seen to have failed. But for elaborate output displays,speci�ed only by an imprecise description in natural language (a very common real situation),a human being may well fail to notice a subtle failure. In one study, 40% of the test failureswent unnoticed [BS87]. To do better, the process of failure detection must be automated.An oracle for speci�cation S is a binary predicate J such that J(x; y) holds i�: eitherx 62 dom(S) or (x; y) 2 S. (That is, J is a natural extension of the characteristic function ofS.) If there is an algorithm for computing J then the oracle is called e�ective. Thus, givena program and a test point, an oracle can be used to decide if the result the program givesis or is not correct (the program does or does not meet its speci�cation at this point). Foran e�ective oracle this decision can be automated7.Testing theory, being concerned with the choice of tests and testing methods, usuallyignores the oracle problem. It is typically assumed that an oracle exists, and the theoreticianthen glibly talks about success and failure, while in practice there is no oracle but imperfecthuman judgement. The theoretician justi�es this lack of concern in two ways: (1) theproblem is one of speci�cation, not testing { proper speci�cations should have e�ectiveoracles; and, (2) all testing methods su�er equally from the absence of an oracle. Without6Error is also a standard IEEE term, referring to something that is wrong with a program's internal state{ a fault in the process of becoming a failure. Although this is an increasingly important concept in testing(see section 6.3), \error" will seldom be used here in its IEEE technical sense. The literature is littered withuses that almost always mean \fault," e.g., \error-based testing."7It is sometimes stated that an e�ective oracle requires (or is) an executable speci�cation. Certainlybeing able to execute the speci�cation (if the speci�cation domain is known and termination is guaranteed)does yield an e�ective oracle, since the speci�cation value can be compared with the program output. Butthere may be other ways to make the decision that do not involve executing the speci�cation. For example,it is possible to check the results of a division by multiplying quotient and dividend; one need not know howto divide to tell if division is correct. 10



an oracle, testing cannot be done, but whatever is available will work for any method equallywell (or equally badly). Point (1) is well taken, and speci�cation research has accepted theresponsibility in the strong sense that speci�cation methods seek e�ective oracles that canbe mechanically obtained for any example speci�cation [GHM81, AH92]. But justi�cation(2) contains a subtle aw: it assumes all testing involves the same size testsets. If method Xrequires far more tests than method Y, then with an ine�cient oracle, X may be intractablewhile Y is not. Of course, more tests always cost more in machine execution time, but peopletime is the more important in practice today, and today's oracles are usually people. Thesize of testsets is an issue in random testing (see section 4.2) and in mutation testing (seesection 3.2).2.2 Unit Testing vs. System TestThe de�nitions above are framed to apply to complete software systems, programs that canbe executed, that have input-output speci�cations. But testing a large piece of software isa formidable task: the number of possible behaviors may be very large, and it may not beeasy to select tests. The tester intuitively feels that the problem has no practical solution,and that whatever tests are conducted, they will barely scratch the surface, and leave muchuntried. It is natural to want to decompose the testing problem into more manageable,understandable units. Since software itself is composed of units (subroutines, modules, etc.),it is natural to think of testing these. The practical di�culty with \unit testing" is preciselythat small units are not directly executable, and they may have speci�cations even morevague than the typical poor one for the whole program.In principle, the speci�cation problem is also decomposed and simpli�ed by consideringmodules. But in practice, designers may be very slipshod about unit speci�cations, relegatingthem to a comment in the the code like, \update control block." Of course, the code couldnot have been written without knowledge of the detailed format of this \control block," andwithout a clear statement of what it means to \update" it. But this information is likely tobe distributed across many design documents, and to reside partly in the heads of designersand coders. The tester may be at a complete loss for a module oracle, without which testingis impossible.Executing a module that expects its inputs from other modules is not a problem in prin-ciple. It is solved by writing a \testing harness" { a main program that accepts inputs, sendsthem to the unit to be tested, and keeps track of the results returned. Such harnesses canbe automatically created from the unit's source syntax, using compiler techniques. Missingmodules needed by the unit under test are a more di�cult problem. If those modules arewritten and linked in, then a small \unit" is no longer being tested, but rather a \subsystem"of some kind, and its properties do not always reect properties of its parts. For example,a test may succeed despite a fault in one module, because it calls another compensatingmodule. On the other hand, if the called modules are replaced by \stubs" { dummy routinesthat do nothing themselves { the unit under test may not have the proper environment, andmay itself do nothing signi�cant. 11



Whatever the practical problems of unit testing, the idea harbors a much more seriousdi�culty in principle: when all unit tests succeed, and the units are linked together, it doesnot follow that overall system tests will succeed, or that properties tested for units will stillbe assured. This failure of unit testing to \compose" will be further discussed in section 3.3.3 Testing to Detect FailuresIf Myers' advice to test for failure was needed by some segment of the testing community,it certainly was not news to those who devise systematic testing methods. These methodslook for failures, and the mindset of their inventors is accurately described by the rhetoricalquestion: \How can a tester be prevented from thinking everything is OK, when it is not?"The idea behind systematic testing is coverage. A de�cient test, perhaps conducted bysomeone who really did not want to discover any problems with the software being tested,might succeed but only because it doesn't probe very deeply. Coverage measures this probing.A typical systematic testing method, applied with de�cient test data, might issue the genericmessage:\Testing succeeded, but it did not cover <list of elements missed>."Systematic testing methods di�er in the kind of coverage they require. The major divisionis between \functional" and \structural" methods.Functional testing is also called \blackbox" testing, or \speci�cation-based" testing. Thecoverage is by functions (cases) of what the software is supposed to do. In a command-driven system under test, di�erent commands could be taken to be functions; a test wouldnot achieve functional coverage unless it had used every command. Additional functionalclasses could be de�ned by considering command-parameter classes, e.g., \long" or \short"for a string, positive/negative/zero for an integer, 1st/2nd/3rd/4th quadrant for an angle,etc. A command with one argument that is an angle would then de�ne four functional classesto be covered, one for each quadrant.Functional testing is the primary systematic technique, at the heart of any reasonableplan for �nding software failures. Without it, the tester has no idea what software will doin the very cases that it is supposed to handle, cases that are going to be tried by its users.Structural testing is also called \program-based" or \code-based" testing, and also \clear-box" or \white-box" testing8. The coverage is by syntactic parts of the program begin tested.The most common kind of structural coverage is \statement testing," which requires thattest data force the execution of each and every program statement.Structural testing requires no knowledge of what a program is supposed to do (except indetermining success or failure of each test { see section 2.1), and thus its coverage requirementcan be automated. Tools for measuring structural coverage are often e�cient and easyto construct. For example, many operating systems have a \pro�le" utility that counts8\White-box" shows historical ignorance, because the opposite of a circuit that could not be examinedin a black crinkle box was a circuit visible through a plexiglass case. Thus \clear-box" is the better term.12



execution frequencies by statement, using instrumentation inserted in the source program.De�ciencies in statement coverage show up as pro�les containing statements executed zerotimes. Without statement-coverage testing, the tester has no idea what will happen whenthe statements that were not tested are executed, as they probably will be when the programis used.Functional and structural testing intuitively complement each other: structural testingexercises the code that is present, and functional testing covers what should be there. Thesemethods intuitively uncover failures because bugs have a functional and/or structural loca-tion, so by systematically exploring these locations, the bugs may be found. Most test plansuse a combination of methods. A particularly plausible scheme [Mar91] is to devise tests forfunctional coverage, and then measure the structural coverage of those same tests, to judgehow well they apply to the code being tested. When parts of the code are not covered, thetester should return to the functional cases to identify omitted functions, and repeat theprocess.Suppose that a test plan speci�es complete coverage (functional or structural, or both),and that it is successfully carried out. How could a program bug nevertheless escape de-tection? This question is central to understanding in detail why systematic testing cannotestablish that a program works. Actual test cases are �nite in number (and for practicaltesting, the number is severely limited by time and resource constraints). Any test cantherefore cover at most a �nite number of things. Thus the list of functions to be covered(for example), must have a coarse granularity. In the example of a command with an angleargument, it could happen that the program fails when the angle is 1 � 0:00001 radians.This is in the 1st quadrant, but the tester may not have chosen such points in \covering" the�rst quadrant. There are an in�nity of points (or at least impractically many in the digitalquantization) to consider, and it is impossible to try them all. The situation of \covering"an in�nity with a small �nite number of tests is general in systematic testing. For structuralstatement testing, there are but a �nite number of statements in any program. But eachstatement may be executed with varying values for the quantities it manipulates, and truecoverage would have to try all these values. Statement coverage does not do so, which is itsaw.3.1 Functional TestingThe bulk of the creative e�ort in functional testing goes into devising the tests, or putanother way, into de�ning the functional classes that are to be covered, and their represen-tatives. Functional testing �ts best at the system level, because software requirements andspeci�cations are most often at that level. User documentation (especially a user's manualwith examples) is a good source for a functional breakdown. With the test points in hand,the tasks of executing them, judging the answers, and keeping track of what has been done,are relatively straightforward. Tool support for the bookkeeping is helpful, indeed essentialfor a large system [BHO89].At the unit level, functional testing is also of value, but more di�cult to carry out,13



because unit speci�cations may be poor or non-existent, and there may be a dearth ofintuitive functional classes for a unit. It is common to rely on implicit understanding, orvolatile design knowledge that is not carefully recorded, in de�ning what code units mustdo. Furthermore, units may have their functionality so intertwined with other units that itis impossible to test them separately. Some units perform a function that does not have anyintuitive breakdown into cases; for example, a subroutine computing ex for argument valuex seems inadequately tested using the classes fxjx < 0g; f0g; and fxjx > 0g, but what otherclasses come to mind?9Although functional testing is de�ned to make no use of the program structure, in practicethere is good reason to add some design information to the speci�cation when de�ningfunctional classes. Every program has important internal data structures, and arbitraryrestrictions on its operation imposed by implementation limitations; these lead to naturalfunctional classes for testing. For example, a program that uses bu�ers should be probedwith the bu�er empty, just full, and over-full. What is being covered by such tests are reallydesign elements, which fall between the functional and the structural. Another example isa program that uses a hash table: the distinction of collision/no-collision de�nes a pseudo-functional class. Marick [Mar91] calls the kind of testing that includes boundary cases fromdesign \broken-box" testing; it has long been treated as an aspect of functional testing[GG75].3.2 Structural TestingStructural-testing methods are conveniently divided into three categories, based on imple-mentation techniques for tools, and the intuition behind the methods. These are: control-owmethods (easy to implement e�ciently, easy to understand); data-ow methods (somewhatmore di�cult to implement, sometimes di�cult to grasp); and, data-coverage methods (hardto implement e�ciently, hard to understand).Control-ow CoverageStatement-coverage testing is the prototype control-ow method. The places in the programthat might be reached (the statements), must be reached by an adequate testset. Becausestatement coverage is almost trivial to measure, most commercial testing tools provide thismeasurement. Branch testing is also widely supported by testing tools. A testset achievesbranch coverage if its tests force each program branch to take both TRUE and FALSEoutcomes10. Branch testing is commonly preferred to statement testing, but without muchjusti�cation (see section 5).9For scienti�c subroutines, asymptotic behavior and an investigation of the continuity of a computedfunction are functional test possibilities.10It is a pitfall of thinking about branch testing to imagine that two distinct test points are required tocover a single branch. It commonly happens that one test su�ces, because the branch is within a loop. Inparticular, the conditional branch that begins a WHILE loop is always covered by any successful test casethat enters the loop, since it must eventually return and take the exit direction.14



Conditional branches employing AND and OR operators contain \hidden" paths that arenot forced by branch- or statement-coverage testing, and in the presence of short-circuit eval-uation, it may be of some importance whether or not these paths were taken. Multi-conditioncoverage is a version of branch testing that requires tests to make each sub-expression takeboth TRUE and FALSE values. Loop coverage requires that tests cause the loop body to beexecuted at least once, and also cause the body to be skipped11.The state of the test-tool art is nicely exempli�ed by the public-domain tool GCT(Generic Coverage Tool) [Mar91] for the C language. GCT comes with impressive test-sets for testing GCT itself. It includes branch, multi-condition, and loop coverage measures(as well as weak mutation, described below).One structural testing method often spawns another when a de�ciency is recognized inthe �rst method. Branch testing and the other GCT control-ow methods could be saidto arise from statement testing because they intuitively seem to cover more. The ultimatein control-ow coverage is path testing, in which it is required that tests in a testset causethe execution of every path in the program. The rationale behind path testing is that eachpath represents a distinct case that the program may handle di�erently (insofar as somethingdi�erent happens along each path), and so these cases must be tried. Unfortunately, there area potential in�nity of paths through any loop, corresponding to 0; 1; 2; :::; n; ::: times throughthe body, and even nested IF statements quickly lead to too many paths, so complete pathtesting is usually not attempted in practice12.Testing tools that implement control-ow methods make use of exception reporting tominimize their reports. They identify not what was executed, but what was not. Tools arethus required to be able to identify the possibilities for coverage. This they necessarily doinaccurately, because determination of exactly which control ows can occur is in generalan unsolvable problem. Invariably, practical tools use a simple worst-case algorithm: theytreat a control ow as possible i� it forms a path in the uninterpreted program owgraph.That is, they ignore the logical condition needed to execute the path, and consider only theconnections of the graph. As a special case of this inaccuracy, a FOR loop appears to beable to execute its body any of 0; 1; 2; :::; n; ::: times; in reality, for constant bounds onlyone count is possible. When a testing tool reports that coverage has failed, and statements,branches, paths, etc., are uncovered, it may be falsely listing situations that actually cannotoccur. The tester is then faced with the infeasible path problem: to determine which of thereported coverage de�ciencies are real (requiring additional test points to cover), and whichare impossible to ful�ll (to be ignored). In practice, these decisions are not very di�cult forhuman beings to make [FW88].Testing tools also commonly report fractional coverages, for example, \87% of all branches11Again, this may not require more than one test point, if the loop in question is within another loop.12Some early testing standards called for attempting path coverage, with some fudging for loops. There isconfusion in the literature, exempli�ed by statements like \complete path testing is a perfect testing methodthat would �nd all possible failures, but it is impossible to carry it out because programs may have anin�nity of paths." The reasoning is bad: on each of that in�nity of paths, there is also a practical in�nity ofdi�erent data values possible, so that even if all the paths are covered, bugs could be missed [How76].15



were covered." Such messages are the basis for testing standards that specify a fraction tobe attained (80% is often suggested, but in practice, coverages may be much lower [RB85]).These summary numbers do measure testing e�ort, but their meaning is obscure, and it iseasy to be misled (see section 5.1).Data-ow CoverageComplete path testing is considered impractical because of the potential in�nity of pathsthrough loops. A heuristic method of loop coverage that requires executing the loop bodyat least once, and also skipping it entirely, is not satisfactory. Experience shows that manysubtle failures show up only on particular paths through loops, paths that are unlikely to beselected to satisfy a heuristic. Complete path testing really has something to o�er, becauseprogrammers do think in terms of paths as special cases, that should subsequently be tested.Data-ow testing is an attempt to prescribe coverage of some of these special paths.The central idea of data-ow coverage is the def-use or DU pair for a program variable.Variable V has a def13 at each place in the program where V acquires a value, e.g., atassignments to V . V has a use at any other place it occurs. Thus for example, in the Pascalstatementx := x + 1there is a use of x followed by a def of x. A DU path for V is a path in the program froma place where V has a def, to a place where V has a use, without any intervening def ofV . A DU pair for V is the pair of start-end locations of any DU path. Thus the intuitionbehind data-ow testing is that DU paths are the special paths that programmers thinkabout, paths on which values are stored, then later used. For example, in the Pascal code(with line numbers for identi�cation):1 x := 0;2 while x < 23 begin4 writelin("looping");5 x := x + 16 endthere are the following DU paths for the variable x: 1-2, 1-2-3-4-5, 5-6-2, 5-6-2-3-4-5. Al-though it is possible to have an in�nity of DU paths in a program (but not usual, as theexample shows { most such paths are interrupted by a def), the number of DU pairs is always�nite. This motivates the de�nition of the most common kind of data-ow test coverage:a testset achieves all-uses coverage if its data points cause the execution of each DU pairfor each variable. (When multiple DU paths, perhaps an in�nity of them, connect a DU13\Def" is a poor choice of terminology, since the idea is that V acquires a value, not that it is \de�ned"in the sense of being declared or allocated storage. \Set" would have been a better choice, but \def" is tooentrenched in the literature to change. 16



pair, only one such path need be covered in all-uses testing.) The technical de�nitions ofdata-ow testing are surprisingly di�cult to give precisely, and there are several versions inthe literature [RW85, FW88, PC90].Among many variations of data-ow ideas, we mention only the extension to dependencychains [Cam90, Nta88]. A dependency chain occurs when there is a series of DU paths laidend to end, DU paths on which the use ending one is passed to the def beginning another,perhaps with a change of variable. For example, in the Pascal:1 S := 0;2 x := 0;3 while x < 34 begin5 S := S + x;6 x := x + 17 end;8 writeln(S)there is a dependency chain beginning with the def of x at 6, and ending with the use of Sat 8, passing from x to S at 5, then from S to S again at �ve, on the path 6-7-3-4-5-6-7-3-4-5-6-7-3-8. This dependency chain captures the contribution of both the loop index and thepartial sum to the �nal sum, and it requires two iterations to observe it.Implementing data-ow test tools is not much more di�cult than implementing control-ow tools (indeed, some people do not distinguish data-ow as separate from control-ow).The instrumentation for observing what paths are executed is the same as for statementcoverage. However, to calculate which DU pairs/paths/chains exist in the program requiresconstruction of a dependency graph. This construction is static, based as usual on theuninterpreted ow graph, annotated with variable-usage information. Thus data-ow toolsare subject to the infeasible-path di�culties described above.Data CoverageThe defect in all control-ow and data-ow coverage methods is that each statement/-branch/path requires only a single set of internal data values to cover. That is, these testingmethods do force the execution of control patterns, but only for a single case out of a po-tential in�nity of cases that use the same pattern. Faults can remain hidden, if the failuresthey cause require the pattern to be traversed with special data values. The more complexthe control pattern, the more important the problem of data choice becomes, because in at-tempting to cover a di�cult control condition, a tester is likely to choose trivial data values,values that have little chance of exposing failure.So-called \special-values testing," or \boundary testing" suggests the use of extremevalues. Used in connection with a control- or data-ow method, boundary testing is veryvaluable in the hands of an experienced tester. For example, on a dependency chain thatmakes use of bu�er storage, a boundary test would require the chain to be covered with the17



bu�er empty, with it just full, and with overow. The applications of special-values testingare not systematic, but based on human insight into what values might cause things to gowrong. Ultimately, the \right" special values are the ones on which the program happens tofail, something that cannot be systematized.A brute-force kind of \data-coverage" measurement for a testset can be obtained by in-strumenting a program to record all of its internal states [Ham93]. The quality of the testsetat each point in the program is measured by the variety of values assumed by the variablesused there. Although neither the instrumentation nor the analysis of recorded data is dif-�cult, such a system is not storage-e�cient. The idea has a more fundamental de�ciencybecause a data-coverage tool cannot report its results by exception. The problem of stati-cally calculating the internal-state possibilities at an arbitrary program location is of courseunsolvable; worse, there are no known approximation or useful worst-case algorithms. Thusthe situation di�ers from that for control- and data-ow testing, in which the uninterpretedow graph allows easy worst-case calculation of the possible paths, including only a fewinfeasible ones by mistake.Mutation testing is a systematic method that approximates both boundary testing anddata-coverage testing [Ham77]. From the program under test (PuT), a collection of mutantprograms are created, each di�ering from the PuT by a small change in syntax. For example,in a conditional statement of the PuT, the relational operator \>" might be replaced with\ 6=" in a mutant. Other mutants would use other relational operators in turn, the set ofvariations being determined by the particular mutation system. Now the PuT and all mutantvariations are executed on a testset. The PuT must get correct results, and any mutant thatdoes not agree with the PuT (that is, the mutant does not succeed on the testset) is termedkilled. The testset achieves mutation coverage if it kills all mutants.The idea behind mutation14 is that mutant variations explore the quality of the datathat reaches each program location. Good testsets cannot be fooled by any mutant. In theexample of substituting \ 6=" for \>", these two operators agree on the whole range wherethe \>" expression is TRUE. So long as test data falls in that range it is not covering verywell. Mutation also systematizes the idea of \boundaries" in data; boundaries are literallyedges of regions on which mutants are killed.In principle, an extended kind of mutation, in which all possible variations of the PuTare considered, would constitute a perfect test method. Killing all the mutants would showthat no other program agrees with the PuT on a testset, hence the PuT must be correctif any program is. But even the very restricted mutants of the experimental systems aretoo many to make the technique easily practical. Another implementation di�culty is thatmutants may have termination di�culties the PuT did not have, for example, when loop-14Mutation analysis was developed independently (and named) by Lipton [DLS78], with a rather di�erentmotivation. For Lipton, mutants capture a range of possibilities among which a programmermight have madea mistaken choice. Killing mutants with test data is experimental veri�cation that the choice represented bythe dead mutant is not the correct one. The description of mutation given above corresponds to the way itwas implemented by Lipton's group; my implementation was built around a compiler, and was much moree�cient, if more di�cult to describe. 18



termination expressions are mutated. Technically, a mutant looping forever can never bekilled; in practice, systems impose an arbitrary limit and silently and incorrectly kill long-running mutants.There is a more di�cult practical problem with mutation testing than its implementation,unfortunately. Just as in control-ow testing there may be infeasible paths so that theexception reporting of (say) a DU testing tool requires human investigation, so mutationsets its users an even more di�cult task. Some mutants cannot be killed, because there isno test data on which they di�er from the PuT { such a mutant is a program equivalent tothe PuT. The problem of deciding mutant equivalence is unsolvable in principle, but alsointractable in practice, and is a major stumbling block to acceptance for mutation testing.A number of suggestions have been made to make mutation testing more practical. Themost promising is to use \weak mutation" [How82, Ham77]. Weak mutation considers amutant to be killed if it di�ers from the PuT in the state values immediately following thealtered statement in the mutant. The mutation described above (now \strong mutation")requires that the program results di�er. Of course, if a mutant is killed in the strong sense,it must also be killed in the weak sense by the same test data, but the converse is nottrue. It may happen that the mutation alters a state, but that subsequent actions ignore orcorrect this error. Weak mutation can be e�ciently implemented (it is a part of the GCT toolmentioned above), and in some important cases (notably mutants of the relational operators)it is possible to derive simple conditions that describe test data that will necessarily kill allmutants. The problem of equivalent mutants remains in the weak case, but its practicaldi�culty is mitigated by focusing on just one state following the mutation.3.3 What Should be Covered?Coverage testing, both functional and structural, is intended to expose failures by system-atically poking into the \corners" of software. It is reasonable to inquire into the principlesof coverage { why does it work, and what makes it work better? Such principles would beuseful in directing testing practice, because they would help a tester to decide which methodto use, and how to tailor a method to particular software. For example, using statementcoverage, should some statements receive more attention than others? A better understand-ing of coverage testing might also address the problem of composing test results from unittesting into conclusions for system testing. What coverage at the unit level would reducefailures when the units are combined into a system?Marick's suggestion that structural coverage be used to assess the quality of functionalcoverage is one way that methods might be used together15. Section 3.2 has suggested thatmutation was invented as a complement to control-ow testing. Each kind of coverage testinghas its own rationale, and particular failures it is good at �nding, so why not use them all?15The converse of Marick's suggestion has not been made, but it sounds almost as reasonable: devisetests to achieve (say) statement coverage, then divide these tests into functional categories and note whichfunctions have been omitted or neglected. One might hope that this would identify missing statements orpoint to code whose proper testing requires repeated executions.19



In short: because there isn't time. Testing using even a single method (or no method at all)is an open-ended activity. It is always possible to take more time and do more testing. Forexample, functional classes can always be re�ned into smaller functional classes, requiringlarger testsets to cover. Within each functional class, it is always possible to choose moretest points. If methods are to be combined, how much should each be used relative to theothers?In research that will be considered in detail in section 5.2, \partition testing" methodswere studied. Partition testing is an abstraction of coverage testing, which considers groupsof inputs that achieve particular parts of coverage. For example, in complete path testing,the input space is divided into equivalence classes by which path those inputs take. Theseclasses do not overlap (no input can take more than one path), and together they exhaust allinputs (every input must take some path16). The equivalence class for each path is the placefrom which tests must be drawn to cover that path. Other structural testing methods donot induce disjoint classes in this way (for example, the same input may cause execution ofmore than one statement, in statement testing), but their classes can be combined to createan arti�cial partition [HT90].When the failure-�nding ability of partition-testing methods was investigated [HT90,WJ91], an unsurprising result emerged: coverage works best at �nding failures where thereare more failures to �nd. That is, if the failure points are unequally distributed over theequivalence classes, then covering the classes of that partition will be more likely to �nderrors than using a partition in which the classes are uniform relative to failure. One wayof looking at this result is as useless advice to \look for failures where they are," uselessbecause if that information were available, testing would be unnecessary { we do not knowwhere the failures are. But the advice is not so useless in di�erent forms:(1) Coverage works better when the di�erent elements being covered have di�ering chancesof failing. For example, path testing will be better at �nding errors if some paths aremore buggy than others. A corollary of (1) is:(1a) Do not subdivide coverage classes unless there is reason to believe that the subdivisionconcentrates the chance of failure in some of the new subclasses. For example, it shouldhelp to break control-ow classes down by adding data boundary restrictions, but itwould not be useful to re�ne functional classes based on function-parameter values ifone parameter value is no more error-prone than another.(2) Devise new coverage-testing methods based on probable sources of trouble in the devel-opment process. For example, emphasize the coverage of parts of code that has changedlate in the development cycle, or code written by the least-experienced programmer,or code that has a history of failure, etc.Although coverage testing is an \obvious" method, its theory is poorly understood. Openquestions will be considered further in section 4.4.16A class must be added to include those inputs that cause the program to go into an unterminating loopor otherwise give no output. 20



3.4 Testing for Failure in the Software ProcessThe accepted role for testing in the best development processes today is the one given byMyers: to �nd failures17. But when the development process is considered as a feedbacksystem seeking to improve software quality, failure-�nding is a dangerous measure. Thetrouble is that one cannot tell the di�erence between good methods used on good software,and poor methods used on poor software. Testing cannot be evaluated in isolation, nor canit be used to monitor other parts of the process, unless an independent control on faults ispresent. If there is no such control, one never knows whether �nding more failures meansimproved testing, or merely worse software; �nding fewer failures mightmean better software,or it might mean only poorer testing.It is not impossible to make sensible use of a failure-�nding testing measure in the devel-opment process, but to do so requires better fundamental understanding of the interactionsbetween software creation and testing than we possess today.4 Testing for ReliabilityWhen software is embedded in a larger engineering artifact (and today it is hard to �nd aproduct that does not have a software component), it is natural to ask how the softwarecontributes to the reliability of the whole. Reliability is the fundamental statistical measureof engineering quality, expressing the probability that an artifact will fail in its operatingenvironment, within a given period of operation.4.1 Analogy to Physical SystemsThe software failure process is utterly unlike random physical phenomena (such as wear,fabrication uctuations, etc.) that underly statistical treatment of physical systems. Allsoftware failures are the result of discrete, explicit (if unintentional) design aws. If a programis executed on inputs where it is incorrect, failure invariably occurs; on inputs where it iscorrect, failure never occurs. This situation is poorly described as probabilistic. Nevertheless,a software reliability theory has been constructed by analogy to the mechanical one [Sho83].Suppose that a program fails on a fraction � of its possible inputs. It is true that � is ameasure of the program's quality, but not necessarily a statistical one that can be estimatedor predicted. The conventional statistical parameter corresponding to � is the instantaneoushazard rate or failure intensity z, measured in failures/sec. For physical systems that fail overtime, z itself is a function of time. For example, it is common to take z(t) as the \bathtubcurve" shown in �gure 1.17The competing technology of software inspection, particularly in the design phase, shows promise oftaking over the role of seeking faults. It is cheaper, and apparently e�ective. In the celebrated exampleof the space-shuttle software, spare-no-expense inspections simply made testing superuous: testing seldomfound failures in the the inspected software. In response to this, it has been suggested that inspection isjust a form of testing, but from a technical standpoint this seems far-fetched { inspection usually does not21



0 0z(t)hazardrate time twear in wear outFigure 1: `Bathtub' hazard rate functionWhen a physical system is new, it is more likely to fail because of fabrication aws. Thenit \wears in" and the failure intensity drops and remains nearly constant. Finally, near theend of its useful life, wear and tear makes the system increasingly likely to fail.What is the corresponding situation for software? Is there a sensible idea of a softwarefailure intensity? There are several complications that interfere with understanding. The�rst issue is time dependence of the failure intensity. A physical-system failure intensity is afunction of time because the physical system changes. Software changes only if it is changed.Hence a time-dependent failure intensity is appropriate for describing the development pro-cess, or maintenance activities. (The question of changing usage is considered in section 4.4below.) Only the simplest case, of an unchanging, \released" program is considered here.Thus we are not concerned with \reliability growth" during the debugging period [MIO87].Some programs are in continuous operation, and their failure data is naturally presentedas an event sequence. From recorded failure times t1, t2, ..., tn starting at 0, it is possible tocalculate a mean time to failure (MTTF)t1 +Pn�1i=1 (ti+1 � ti)n :which is the primary statistical quality parameter for such programs. MTTF is of ques-tionable statistical meaning for the same reasons that failure intensity is. It is a (usuallyunexamined) assumption of statistical theories for continuously operating programs that theinputs which drive the program's execution are \representative" of its use. The inputs sup-plied, and their representativeness are fundamental to the theory; the behavior in time ispeculiar to continuously operating programs. Exactly the same underlying questions arisefor the pure-function batch programs whose testing is being considered here. For such aprogram, the number of (assumed independent) runs replaces time, the failure intensity is\per run" (or sometimes, \per demand" if the system is thought of as awaiting an input).MTTF is then \mean runs to failure" (but we do not change the acronym).involve execution, which is the hallmark of testing. 22



4.2 Random TestingThe random testing method was not described in section 3, because it is seldom used for �nd-ing failures18. Random testing recognizes that a testset is a sample taken from a program'sinput space, and requires that sample to be taken without bias. This is in strong contrastto the methods of section 3, each of which made use of detailed program or speci�cationinformation. Random testing is intuitively useful for prediction. If an appropriate sample isused for the testset, results on that sample stand in for future program behavior, for whichthe inputs are unknown.Random testing cannot be used unless there is a means of generating inputs \at random."Pseudorandom number generation algorithms have long been studied [Knu81], although thestatistical properties of the typical generator supplied with a programming language are oftenpoor. Pseudorandom numbers from a uniform distribution can be used as test inputs if aprogram's range of input values is known. In actual applications, this range is determinedby hardware limitations such as word size, but it is better if the speci�cation restricts theinput domain. For example, a mathematical library routine might have adequate accuracyonly in a certain range given in its speci�cation. A uniform distribution, however, may notbe appropriate.Operational Pro�leStatistical predictions from sampling have no validity unless the sample is \representative,"which for software means that the testset must be drawn in the same way that futureinvocations will occur. An input probability density d(x) is needed, expressing the probabilitythat input x will actually occur in use. Given the function d, the operational distributionF (x) is the cumulative probability19 that an input will occur:F (x) = Z x�1 d(z)dz:To generate a testset \according to operational distribution F ," start with a collection ofpseudorandom reals r uniformly distributed over [0,1], and generate F�1(r). For a detailedpresentation, see [Ham94].The distribution function d should technically be given as a part a program's speci�ca-tion. In practice, the best that can be obtained is a very crude approximation to d called18Perhaps it should be used for failure detection, as discussed in section 5.2. In the cleanroommethodology,only random testing is used. Advocates say this is because the methodology produces near zero-defectsoftware, so failure-�nding is inappropriate. Critics might say that the advocates don't want to �nd anydefects. In fact, the random testing does �nd some failures in cleanroom-developed code, but these are \easybugs" that almost any test would uncover. Cleanroom testing is \betwixt and between" because it is notused to demonstrate that the code is bug-free (it would be interesting to see how the methods of section 3would do); nor does it establish that the code is particularly reliable, as described in section 4.3, because fartoo few test points are used.19The formula assumes that d is de�ned over the real numbers. The lower limit in the integral wouldchange for restricted ranges of reals, and the integral would become a sum for a discrete density.23



the operational pro�le. The program input space is broken down into a limited number ofcategories by function, and attempts are made to estimate the probability with which ex-pected inputs will come from each category. Random testing is then conducted by drawinginputs from each category of the pro�le (using a uniform distribution within the category),in proportion to the estimated usage frequency.4.3 Software Reliability TheoryIf a statistical view of software failures is appropriate, failure intensity (or MTTF) can bemeasured for a program using random testing. Inputs are supplied at random accordingto the operational pro�le, and the failure intensity should be the long-term average of theratio of failed runs to total runs. An exhaustive test might measure the failure intensityexactly. But whether or not failure intensity can be estimated with less than exhaustivetesting depends on the sample size, and on unknown characteristics of programs. Too smalla sample might inadvertently emphasize incorrect executions, and thus to estimate failureintensity that is falsely high. The more dangerous possibility is that failures will be unfairlyavoided, and the estimate will be too optimistic. When a release test exposes no failures, afailure-intensity estimate of zero is the only one possible. If subsequent �eld failures showthe estimate to be wrong, it demonstrates precisely the anti-statistical point of view. Amore subtle criticism questions whether MTTF is stable { is it possible to perform repeatedexperiments in which the measured values of MTTF obey the law of large numbers?In practice there is considerable di�culty with the operational pro�le:1. Usage information may be expensive to obtain, or simply not available. In the bestcases, the pro�le obtained is very coarse, having at most a few hundred usage proba-bilities for rough classes of inputs.2. Di�erent organizations (and di�erent individuals within one organization) may havequite di�erent pro�les, which may change over time.3. Testing with the wrong pro�le always gives overly optimistic results (because when nofailures are seen, it cannot be because failures have been overemphasized!).The concept of an operational pro�le does successfully explain changes observed over timein a program's (supposedly constant) failure intensity. It is common to experience a bathtubcurve like �gure 1. When a program is new to its users, they subject it to unorthodox inputs,following what might be called a \novice" operational pro�le, and experience a certain failureintensity. But as they learn to use the program, and what inputs to avoid, they graduallyshift to an \average" user pro�le, where the failure intensity is lower, because this pro�le iscloser to what the program's developer expected and tested. This transition corresponds tothe \wear in" period in �gure 1. Then, as the users become \expert," they again subject theprogram to unusual inputs, trying to stretch its capabilities to solve unexpected problems.Again the failure intensity rises, corresponding to the \wear out" part of �gure 1.24



0
1

0 1con�dence� failure intensity �
less tests Nmore tests N

hh0Figure 2: Con�dence in failure intensity based on testingPostulating an operational pro�le also allows us to derive the software-reliability theorydeveloped at TRW [TLN78], which is quantitative, but less successful than the qualitativeexplanation of the bathtub curve. Suppose that there is a meaningful constant failure in-tensity � (in failures/run) for a program, and hence a MTTF of 1=� runs, and a reliabilityof e��M over M runs [Sho83]. We wish to draw N random tests according to the opera-tional pro�le, to establish an upper con�dence bound � that � is below some level �. Thesequantities are related by 1 � FXj=0 Nj ! �j(1 � �)N�j � � (1)if the N tests uncover F failures.Some numerical values: for F = 0, N = 3000, � = :95, � = :001, the MTTF is 1000runs, and the reliability is 95% (for 50 runs), 61% (for 500 runs), and less than 1% (for 5000runs). For the important special case F = 0, the con�dence � is a family of curves indicatedin �gure 2. For any �xed value of N it is possible to trade higher con�dence in a failureintensity such as h for lower con�dence in a better intensity such as h0.Equation 1 predicts software behavior based on testing, even in the practical release-testing case that no failures are observed. The only question is whether or not the theory'sassumptions are valid for software. What is most striking about equation 1 is that it doesnot depend on any characteristics of the program being tested. Intuitively, we would expectthe con�dence in a given failure intensity to be lower for more complex software.Another way to derive the relationship between con�dence, testset size, and failure rate,25



is to treat the test as an experiment checking the hypothesis that the failure rate lies below agiven value. Butler and Finelli [BF91] obtain numerical values similar to those prediced by 1in this way. They de�ne the \ultra-reliable" region as failure rates in the range 10�8/demandand below, and present a very convincing case that it is impractical to gain information inthis region by testing. From equation 1, at the 90% con�dence level, to predict a MTTF ofMrequires a successful testset of size roughly 2M , so to predict ultrareliability by testing at onetest point each second around the clock would require three years. (And of course, one muststart over if the software is changed because a test fails.) Ultrareliability is appropriate forsafety-critical applications like commercial ight-control programs and medical applications;in addition, because of a large customer base, popular PC software can be expected to failwithin days of release unless it achieves ultrareliability.Thus software reliability theory provides a pessimistic view of what can be achieved bytesting. The de�ciencies of the theory compound this di�culty. If an inaccurate pro�le isused for testing the results are invalid, and they always err in the direction of predictingbetter reliability than actually exists.4.4 Pro�le IndependenceThe most dubious assumption made in conventional reliability theory is that there exists aconstant failure intensity over the input space. It is illuminating to consider subdividing theinput space, and applying the same theory to its parts.Suppose a partition of the input space creates k subdomains S1; S2; :::; Sk, and the proba-bility of failure in subdomain Si (the subdomain failure intensity) is constant at �i. Imaginean operational pro�le D such that points selected according to D fall into subdomain Siwith probability pi. Then the failure intensity � under D is� = kXi=1 pi�i: (2)However, for a di�erent pro�le D0, di�erent p0i may well lead to a di�erent �0 = Pki=1 p0i�i.For all pro�les, the failure intensity cannot exceed�max = max1 � i � k f�ig: (3)because at worst a pro�le can emphasize the worst subdomain to the exclusion of all others.By coverage testing in all subdomains without failure, a bound can be established on �max,and hence on the overall failure intensity for all distributions. Thus in one sense partitiontesting multiplies the reliability-testing problem by the number of subdomains. Instead ofhaving to bound � using N tests from an operational pro�le, we must bound �max usingN tests from a uniform distribution over the worst subdomain; but, since we don't knowwhich subdomain is worst, we must bound all k of the �i, which requires kN tests. However,the payback is a pro�le-independent result, that is, a reliability estimate based on partitiontesting applies to all pro�les. 26



The obvious aw in the above argument is that the chosen partion is unconstrained.All that is required is that its subdomains each have a constant failure intensity. (Thisrequirement is a generalization of the idea of \homogeneous" subdomains, ones in whichall inputs either fail; or, all the inputs there succeed.) But are there partitions with suchsubdomains? It seems intuitively clear that functional testing and path testing do not havesubdomains with constant failure rates. Indeed, it is the non-homogeneity of subdomains inthese methods that makes them less satisfactory for �nding failures, as described in section3. Of course, the failure intensity of a singleton subdomain is either 0 or 1 depending onwhether its point fails or succeeds, but these ultimate subdomains correspond to usuallyimpractical exhaustive testing.The intuition that coverage testing is a good idea is probably based on an informalversion of this argument that coverage gets around the operational pro�le to determine\usage independent" properties of the software. But making the intuitive argument preciseshows that the kind of coverage (as reected in the character of its subdomains) is crucial,and there is no research suggesting good candidate subdomains.5 Comparing Test MethodsWhat objective criteria could be used to decide questions about the value of testing methodsin general, or to compare the merits of di�erent testing procedures? Historically, methodswere evaluated either by unsupported theoretical discussion, or by \experiments" basedon circular reasoning. The inventor of a new method was expected to argue that it wassubjectively cleverer than its predecessors, and to compare it to other methods in termsde�ned only by themselves. For example, it was common to �nd a testset that satis�edthe new method for some program, then see what fraction of branch coverage that testsetattained; or, to �nd a testset for branch coverage and see how well it did with the newmethod. The new method was considered to be validated if its testset got high branchcoverage but not the other way around. Such studies are really investigating special cases(for a few programs and a few testsets) of the \subsumes" relation20.5.1 Comparison Using the Subsumes RelationControl- and data-ow methods can be compared based on which method is more \demand-ing." Intuitively, a method is \at least as demanding" as another if its testsets necessarilysatisfy the other's coverage. The usual name for this relationship is subsumes. If methodZ subsumes method X, then it is impossible to devise a method-Z test that is not also amethod-X test. The widespread interpretation of \Z subsumes X" was that method Z is20Mutation testing is the method most frequently used for comparison. Such studies take the viewpointof that mutations are like seeded faults, and hence a method's ability to kill mutants is related to its failure-detection ability. However, if mutation is treated as a coverage criterion as in section 3.2, then such acomparison is like assessing one method of unknown worth with another such method.27



superior to method X. (The most-used example is that branch testing is superior to state-ment testing, because branch coverage strictly subsumes statement coverage. However, itwas suggested [Ham89] that subsumption could be misleading in the real sense that natural(say) branch tests fail to detect a failure that (di�erent) natural statement tests �nd.For example, suppose that the Pascal subprogram Rprocedure rootabs(x: real): real;beginif x < 0 then x := -x;rootabs := sq(x)endhas speci�cation f(x;qjxj)jx realg, that is, that the output is to be the square root of theabsolute value of an input. It would be natural to branch-test R with the testset Tb =f�1; 0; 1g, while Ts = f�9g might be a statement-test testset, which does not achievebranch coverage. (This example shows why the subsumption of statement- by branch testingis strict.) Only Ts exposes a failure caused by the programmer mistaking Pascal's squarefunction for its square-root function. Concentrating on the predicates that determine controlow leads to neglect of the statements, which here takes the form of trivial data valuesreaching the faulty function.A continued exploration [WWH91] showed that the subsumes idea could be re�ned sothat it was less likely to be misleading, and that it could be precisely studied by introducinga probability that each method would detect a failure. The behavior of any method isexpressed by the probability that a testset satisfying that method, selected at random fromall such testsets, will expose a failure. An example was given in which statement testing wasmore likely to detect a failure than was branch testing; however, even the contrived examplewas unable to evidence much superiority for the \less demanding" method, indicating that\subsumes" is not so misleading after all.In a recent paper [FW93], the subsumes relationship is re�ned to \properly covers"and it is shown that the new relationship cannot be misleading in the probabilistic sense.Suppose two testing methods divide a program's input space into subdomains, one domainfor each \element" to be covered21. It is the relationship between these two collectionsof subdomains that determines the failure-detection probability of one method relative tothe other. Roughly, method Z properly covers method X if Z has a collection of subdomainsfrom which the subdomains of X can be constructed. In the simplest case of partitions whosesubdomains are disjoint, if each subdomain of X is a union of subdomains from Z, then Zproperly covers X. Intuitively, there is no way for X to have many \good" testsets withoutZ having equally many, because the X subdomains can be made up from Z subdomains.When the subdomains do not form partitions, one must be careful in using multiply-countedsubdomains of Z to make up subdomains of X { a single subdomain may not be used toooften.21For example, in all-uses testings, the elements are DU pairs executed; in mutation testing, the elementsare mutants killed, etc. 28



As an example, simple programs exist to show that branch testing does not properlycover statement testing { the misleading program R given above is one. On the other hand,Frankl and Weyuker have shown (for example) that some methods of their dataow-testinghierarchy are really better than others in the sense of properly covers.The subsumes relationship began as a generalization of how well test methods do in eachother's terms, that is, without any necessary reference to objectively desirable propertiesof the software being tested. A \more demanding" method Z that strictly subsumes X isactually better only if we assume that what Z demands is really useful beyond its merede�nition. The notion of \misleading" introduced an objective measure (failure-detectionability), and showed that for natural testing methods, \subsumes" does not necessarilycorrelate with the objective measure.It is easy to devise unnatural testing methods in which \subsumes" is more misleading.For example, the coverage measure (Z) \more than 70% of statements executed" strictlysubsumes (X) \more than 50% of statements executed," but if the statements executedusing Z happen to be all correct ones in some program, while those executed using X happento include its buggy code, then X is actually better than Z for this program. This exampledemonstrates why fractional coverage measures are particularly poor ones.5.2 Comparison for Reliability PredictionFailure-detection probability is currently enshrined as the accurate measure of test quality,replacing a circular use of \coverage" to assess the quality of \coverage." But while itis questionable whether failure-detection probability is the appropriate measure of testingquality, it remains the only one on which work has been done. If testing is to be usedto assess software quality, which we have argued is necessary for useful feedback in thesoftware development process, then testing methods must be compared for their ability topredict a quality parameter like MTTF. But here the operational pro�le enters to invalidatecomparisons. Only random testing can use the pro�le { other methods by their naturerequire testsets that distort usage frequencies.The theoretical comparisons between random testing and partition testing alluded to insection 3.3 [DN84, HT90, WJ91], are often cited as showing that random testing is superiorto coverage testing. Strictly speaking, these studies compare only failure-detection ability, ofrandom testing and the partition-testing abstraction of coverage methods, and they mostly�nd partition testing to have the edge. The seminal study [DN84] intended to suggestthat random testing was a reasonable alternative to the methods described in section 3.2.But because random testing's failure-detection probability is identical to the failure intensity(hazard rate) of reliability theory, it appears that these studies have an additional signi�cancebecause they make comparisons based on reliability.Unfortunately, even granting that the partition/random comparison applies to coveragetesting, and that failure-detection probability for random testing determinesMTTF, the onlyconclusion that can be reached is the negative one that coverage testing is at best no moresigni�cant than random testing, or at worst of no signi�cance. A random test can establish29



upper con�dence bound � that the failure intensity is not above � on the basis of N tests withF failures. Equation 1 connects these quantities according to the TRW software reliabilitytheory. If a coverage test is as good a statistical sample as a random test, it might realize asimilar or better bound on failure intensity. But the very intuitive factors that make coveragetesting desirable for �nding failures, make its failure-detection probability di�erent from afailure-intensity. Coverage testing achieves superior failure detection precisely by samplingnot the operational pro�le, but according to classes that emphasize failure. These classesbear no necessary relation to the operational pro�le, and hence the failure intensity may belarge even though the failure-detection probability for coverage is small, if coverage testingfound failures in low-pro�le-usage areas, and neglected high-pro�le-usage areas. The promiseof coverage testing is that it might explore all usage areas without requiring knowledge ofthat usage, but no one knows how to surely realize this promise.Thus the comparable or better failure-detection probabilities of coverage testing vis a visrandom testing are not failure-intensity predictions at all, and there is as yet no informationabout the relationship between coverage testing and reliability.6 DependabilityThe technical di�culties with the notion of software reliability make it inappropriate formeasuring software quality, except in the rare instances when a stable operational pro�leis available. Intuitively, a di�erent measure is needed, one that is pro�le independent, thusremoving the aspect of reliability that deals with the \operating environment." There aregood grounds for removing this aspect, because software is intuitively perfectible, so thatno \environment" (which after all is only an input collection that can be investigated aheadof time) can bring it down. The other aspect of reliability, its dependence on the period ofoperation, is also intuitively suspect for software. No matter how small the positive hazardrate, all physical systems eventually fail; that is, their long-term reliability is near zero. Butsoftware need not fail, if its designers' mistakes can be controlled.We seek a software quality parameter with the same probabilistic character as \reliabil-ity," but without its dependence on environment or on period of operation. And we hope toestimate such a parameter by sampling similar to testing. The name we choose is \depend-ability," and its intuitive meaning is a probability that expresses con�dence in the software,con�dence that is higher (closer to 1) when more samples of its behavior have been taken.But this \behavior" may di�er from that explored by the usual testing.6.1 Reliability-based DependabilityAttempts to use the Nelson TRW (input-domain) reliability of section 4.3 to de�ne depend-ability must �nd a way to handle the di�erent reliability values that result from assumingdi�erent operational pro�les, since dependability intuitively should not change with di�erentusers. It is the essence of dependability that the operating conditions cannot be controlled.Two ideas must be rejected: 30



U De�ne dependability as the Nelson reliability, but using a uniform distribution for thepro�le. This suggestion founders because some users with pro�les that emphasize thefailure regions of a program will experience lower reliability than the de�ned depend-ability. This is intuitively unacceptable.W De�ne dependability as the Nelson reliability, but in the worst (functional) subdomainof each user's pro�le. This suggestion solves the di�culty with de�nition U, butreintroduces a dependency on a particular pro�le. In light of the dubious existenceof constant failure intensities in subdomains (section 4.4) the idea may not be wellde�ned.A further di�culty with any suggestion basing dependability on reliability, is the impracti-cality of establishing ultrareliability. Other suggestions introduce essentially new ideas.6.2 Testing for Probable CorrectnessDijkstra's famous aphorism that testing can establish only the incorrectness of software hasnever been very palatable to practical software developers, who believe in their hearts thatextensive tests prove something about software quality. \Probable correctness" is a name forthat illusive \something." The TRW reliability theory of section 4.3 provides only half ofwhat is needed. Statistical testing supports statements like \In 95% of usage scenarios, thesoftware should fail on less than 1% of the runs." These statements clearly involve softwarequality, but it is not very plausible to equate the upper con�dence bound and the chance ofsuccess [Ham87], and turn the estimate \99.9% con�dence in failure intensity less than .1%"into \probable correctness of 99.9%."6.3 Testability AnalysisJe� Voas has proposed [VM92] that reliability be combined with testability analysis to dobetter. Testability is a lower bound probability of failure if software contains faults, basedon a model of the process by which faults become failures. A testability near 1 indicates aprogram that \wears its faults on its sleeve": if it can fail, it is very likely to fail under test.This idea captures the intuition that \almost any test" would �nd a bug, which is involvedin the belief that well tested software is probably correct.To de�ne testability as the conditional probability that a program will fail under test if ithas any faults, Voas models the failure process of a fault localized to one program location.For it to lead to failure, the fault must be executed, must produce an error in the local state,and that error must then persist to a�ect the result. The testability of a program locationcan then be estimated by executing the program as if it were being tested, but instead ofobserving the result, counting the execution, state-corruption, and propagation frequencies.Testability analysis thus employs a testset, but not an oracle.When the testability is high at a location, it means that the testset caused that locationto be executed frequently; these executions had a good chance of corrupting the local state;31



0
1

0 1chance of failure x
Pr[not correct =) failure less likely than x](from testability measurement)Pr[failure more likely than x](from equation 1)hd Figure 3: `Squeeze play' between testability and reliabilityand, an erroneous state was unlikely to be lost or corrected. The high testability does notmean that the program will fail; it means that if the location has a fault (but we do notknow if it does), then the testset is likely to expose it.Suppose that all the locations of a program are observed to have high testability, usinga testset that reects the operational pro�le. Then suppose that this same testset is used insuccessful random testing. (That is, the results are now observed, and no failures are seen.)The situation is then that (i) no failures were observed, but (ii) if there were faults, failureswould have been observed. The conclusion is that there are no faults. This \squeeze play"plays o� testability against reliability to gain con�dence in correctness.Figure 3 shows the quantitative analysis of the squeeze play between reliability andtestability [HV93]. In �gure 3, the falling curve is the con�dence from reliability testing (itis 1 � � from �gure 2); the step function comes from observing a testability h. Togetherthe curves make it unlikely that the chance of failure is large (testing), or that it is small(testability). The only other possibility is that the software is correct, for which 1 � d is acon�dence bound, where d is slightly more than the value of the falling curve at h. Con�dencethat the software is correct can be made close to 1 by forcing h to the right [HV93]. Forexample, with a testability of .001, a random testset of 20,000 points predicts the probabilitythat the tested program is not correct to be only about 2� 10�9.6.4 Self-checking ProgramsManuel Blum has proposed [BK89] a quite di�erent idea to replace reliability. He arguesthat many users of software are interested in a particular execution of a particular programonly { they want assurance that a single result can be trusted. Blum has found a way to32



sometimes exploit the low failure intensity of a \quality" program to gain this assurance.(Conventional reliability would presumably be used to estimate the program quality, butBlum has merely postulated that failure is unlikely.) Roughly, his idea is that a programshould check its output by performing redundant computations. Even if these make use ofthe same algorithm, if the program is \close to correct," it is very unlikely that a sequenceof checks could agree yet all be wrong.Blum's idea represents a new viewpoint quite di�erent from testing, because it is apointwise view of quality. Testing attempts to predict future behavior of a program uniformly,that is, for all possible inputs; Blum is satis�ed to make the prediction one point at atime (hence to be useful, the calculation must be made at runtime, when the point ofinterest is known). All of testing's problems with the user pro�le, test-point independence,constant failure intensity, etc., arise from the uniform viewpoint, and Blum solves them ata stroke. Testing to uniformly predict behavior su�ers from the di�culty that for a high-quality program, failures are \needles in a haystack" { very unlikely, hence di�cult to assess.Only impractically large samples have signi�cance. Blum turns this problem to advantage:since failures are unlikely, on a single input if the calculation can be checked using the sameprogram, the results will probably agree unless they are wrong { a wrong result is nearlyimpossible to replicate. The only danger is that the checking is really an exact repetition ofthe calculation { then agreement means nothing.6.5 De�ning DependabilityEither Voas's or Blum's idea could serve as a de�nition for dependability, since both capturea probabilistic con�dence in the correctness of a program, a con�dence based on sampling.Dependability might be de�ned as the con�dence in correctness given by Voas's squeezeplay. Even if conventional reliability is used for the testing part of the squeeze play, thedependability so de�ned depends in an intuitively correct way on program size and complex-ity, because even Voas's simple model of testability introduces these factors. His model alsointroduces an implicit dependence on the size of both input and internal state spaces, butthis part of the model has not yet been explored. Unfortunately, the dependability de�nedby the squeeze play is not independent of the operational pro�le.Dependability might also be de�ned for a Blum self-checking program as the complementof the probability that checks agree but their common value is wrong. This dependabilitymay be di�erent for di�erent inputs, and must be taken to be zero when the checks donot agree. Thus a de�nition based on Blum's idea must allow software to announce its ownuntrustworthiness (for some inputs). In some applications, software that is \self deprecating"(\Here's the result, but don't trust it!") would be acceptable, and preferred over a programthat reported the wrong answer without admitting failure. One example is in accountingsystems whose calculations are not time-critical; the program could be improved, or the resultchecked by some independent means. In other applications, notably real-time, safety-criticalones, reporting failure is not appropriate.The promise of both Voas's and Blum's ideas is that they extend reliability to depend-33



ability and at the same time substantially reduce the testing cost. Instead of requiringultrareliability that cannot be measured or checked in practice, their ideas add a modestcost to reliability estimates of about 10�4 failures/run, estimates which can be made today.Blum's idea accrues the extra cost at runtime, for each result computed; Voas's idea is morelike conventional testing in that it considers the whole input space, before release.7 ConclusionsA brief history of software testing and its relationship to software quality can be constructedfrom two famous aphorisms:Testing can only show the presence of errors [failures, hence the underlying faults],never their absence. (Paraphrasing Dijkstra [DDH72])The purpose of testing is to �nd errors [failures { in order to �x the faults re-sponsible]. (Paraphrasing Myers [Mye79])Myers' statement could be thought of as a response to Dijkstra's, but the goal thatDijkstra implicitly assumes, to establish that software will not fail, remains. Myers' realisticgoal was uncritically taken to be the same, but we have seen that it is not. Software reliabilityagain addresses Dijkstra's goal, but using an engineering model (of which he would surelynot approve!). The common wisdom about reliability is that (i) its theoretical assumptionsare dubious [Ham92], but this is unimportant, because (ii) high reliability is impossible tomeasure or predict in practice [BF91].To complete the picture, the emerging dependability theory answers Dijkstra directly,and may also respond to the question of practicality: it may be possible to measure acon�dence probability that software cannot fail, that is, that it contains no faults, usingmethods similar to testing. If this promise is realized, the answer to Dijkstra makes forgood engineering, if not for good mathematics: software developers will be able to predicttrade-o�s between their e�orts and software quality, and can build software that is \goodenough" for its purpose.We have considered only the question of measuring software quality through testing, andusing true quality measurements to direct the software development process. The importantquestion of how to attain the necessary quality has not been addressed. A variety of methods,ranging from the very straightforward (e.g., inspections that employ people's experiencewithout necessarily understanding just how they use it), to the very abstruse (e.g., completelyformal methods of speci�cation, and proof that speci�cations match intuitive requirements),are the subject of extensive research e�orts. I have a vision of the future:� Software quality will improve in fact, because development methods will be better.� Software testing for failure will cease to be practiced, because with the better devel-opment methods, failure testing will be ine�ective: it will �nd few failures.34



� Instead of seeking failures, testing will be done, in conjunction with dependabilityanalysis and measurement, for the purpose of assessing software quality, to determineif enough e�ort was put into development, and if that e�ort was e�ective.Will the new software be better? Yes, if it needs to be, and the main thing is that thedevelopers will know if the software is good enough. On the other hand, terrible software willcontinue to be produced (sometimes terrible is good enough!). What will become unusual issoftware that is not good enough, but whose developers honestly thought that it was.Will the new software be cheaper? Probably not. Testing for dependability will not saveover testing for failure, and the new up-front development methods will have an additionalcost. But costs will be more predictable, and the situation in which there is a softwaredisaster revealed only by �nal testing, will become rare.References[AH92] S. Antoy and R. Hamlet. Self-checking against formal speci�cations. In Interna-tional Conference on Computing and Information, pages 355{360, Toronto, 1992.[BF91] R. W. Butler and G. B. Finelli. The infeasibility of experimental quanti�cationof life-critical software reliability. In Software for Critical Systems, pages 66{76,New Orleans, LA, 1991.[BHO89] M. J. Balcer, W. M. Hasling, and T. J. Ostrand. Automatic generation of testscripts from formal test speci�cations. In Third Symposium on Software Testing,Analysis, and Veri�cation, pages 210{218, Key West, FL, 1989.[BK89] M. Blum and S. Kannan. Designing programs that check their work. In 21stACM Symposium of Theory of Computing, pages 86{96, 1989.[BS87] V. R. Basili and R. W. Selby. Comparing the e�ectiveness of software testingstrategies. IEEE Trans. on Soft. Eng., 13:1278{1296, 1987.[Cam90] J. Campbell. Data-ow analysis of software change. Master's thesis, OregonGraduate Center, Portland, OR, 1990.[CM90] R. H. Cobb and H. D. Mills. Engineering software under statistical quality control.IEEE Software, pages 44{54, November 1990.[DDH72] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming. Aca-demic Press, London, 1972.[DLS78] R. DeMillo, R. Lipton, and F. Sayward. Hints on test data selection: help for thepracticing programmer. Computer, 11:34{43, 1978.35



[DN84] J. Duran and S. Ntafos. An evaluation of random testing. IEEE Trans. onSoft. Eng., 10:438{444, 1984.[FW88] P. G. Frankl and E. J. Weyuker. An applicable famile of data ow testing criteria.IEEE Trans. on Soft. Eng., 14:1483{1498, 1988.[FW93] P. Frankl and E. Weyuker. A formal analysis of the fault-detecting ability oftesting methods. IEEE Trans. on Soft. Eng., 19:202{213, 1993.[GCR93] S. Gerhart, D. Craigen, and T. Ralston. Observations on industrial practice usingformal methods. In 15th International Conference on Software Engineering, pages24{33, Baltimore, MD, 1993.[GG75] J. Goodenough and S. Gerhart. Towards a theory of test data selection. IEEETrans. on Soft. Eng., 1975.[GHM81] J. Gannon, R. Hamlet, and P. McMullin. Data abstraction implementation,speci�cation, and testing. ACM Trans. Prog. Lang. and Systems, 3:211{223,1981.[Ham77] R. G. Hamlet. Testing programs with the aid of a compiler. IEEE Trans. onSoft. Eng., 3:279{290, 1977.[Ham87] R. G. Hamlet. Probable correctness theory. Info. Proc. Letters, 25:17{25, 1987.[Ham89] R. G. Hamlet. Theoretical comparison of testing methods. In Third Symposiumon Software Testing, Analysis, and Veri�cation, pages 28{37, Key West, FL,1989.[Ham92] D. Hamlet. Are we testing for true reliability? IEEE Software, pages 21{27, July1992.[Ham93] R. Hamlet. Prototype testing tools. Technical Report TR93-10, Portland StateUniversity, Portland OR, 1993. (To appear in Software { Practice and Experi-ence.).[Ham94] D. Hamlet. Random testing. In J. Marciniak, editor, Encyclopedia of SoftwareEngineering, pages 970{978. Wiley, New York, 1994.[How76] W. E. Howden. Reliability of the path analysis testing strategy. IEEE Trans. onSoft. Eng., 2:208{215, 1976.[How82] W. E. Howden. Weak mutation testing and completeness of test sets. IEEETrans. on Soft. Eng., 8:371{379, 1982.[HT90] D. Hamlet and R. Taylor. Partition testing does not inspire con�dence. IEEETrans. on Soft. Eng., 16:1402{1411, 1990.36



[HV93] D. Hamlet and J. Voas. Faults on its sleeve: amplifying software reliability. InInternational Symposium on Software Testing and Analysis, pages 89{98, Boston,MA, 1993.[Knu81] D. E. Knuth. The Art of Computer Programming, volume 2. Addison Wesley,Reading, MA, 1981.[Mar91] B. Marick. Experience with the cost of di�erent coverage goals for testing. InPaci�c Northwest Software Quality Conference, pages 147{164, Portland, OR,1991.[MIO87] J. D. Musa, A. Iannino, and K. Okumoto. Software Reliability: Measurement,Prediction, Application. McGraw-Hill, New York, NY, 1987.[Mye79] G. J. Myers. The Art of Software Testing. Wiley-Interscience, New York, NY,1979.[Nta88] S. Ntafos. A comparison of some structural testing strategies. IEEE Trans. onSoft. Eng., 14:250{256, 1988.[PC90] A. Podgurski and L. A. Clarke. A formal model of program dependences and itsimplication for software testing, debugging, and maintenance. tse, 16:965{979,1990.[PvSK90] D. L. Parnas, A. van Schouwen, and S. Kwan. Evaluation of safety-critical soft-ware. Comm. of the ACM, 33:638{648, 1990.[RB85] J. Ramsey and V. Basili. Analyzing the test process using structural coverage. In8th International Conference on Software Engineering, pages 306{312, London,1985.[RW85] S. Rapps and E. J. Weyuker. Selecting software test data using data ow infor-mation. IEEE Trans. on Soft. Eng., 11:367{375, 1985.[Sho83] M. L. Shooman. Software Engineering Design, Reliability, and Management.McGraw-Hill, New York, NY, 1983.[TLN78] R. Thayer, M. Lipow, and E. Nelson. Software Reliability. North-Holland, NewYork, NY, 1978.[VM92] J. M. Voas and K. W. Miller. Improving the software development process usingtestability research. In Third International Symposium on Software ReliabilityEngineering, pages 114{121, Research Triangle Park, NC, 1992.[WJ91] E. J.Weyuker and B. Jeng. Analyzing partition testing strategies. IEEE Trans. onSoft. Eng., 17:703{711, 1991. 37



[WWH91] E. J. Weyuker, S. N. Weiss, and R. G. Hamlet. Comparison of program testingstrategies. In Symposium on Testing, Analysis, and Veri�cation (TAV4), pages1{10, Victoria, BC, 1991.

38


