Goals

Introduce flow charts
❖ A tool for developing algorithms
❖ A tool for documenting algorithms
❖ A visual method of communicating about any sequential or iterative process
❖ Great for visual learners!

Top-down design
❖ One technique for creating a plan for large, multi-step problems
❖ Not tied to flow charts, but can be used effectively with flow charts

Flow chart symbols

- Terminator: Start or stop a sequence. May contain module name.
- Process: A step in the process or computational algorithm
- Data input: Information from outside of the algorithm or process
- Decision: Choose a flow path for continuing the algorithm or process
- Flow indicators: Connect other elements
- Connector or Junction: Optional joint where flow indicators merge
Exercise 1

Draw the flow chart to read and display the salinity value on the LCD monitor

Keep it simple
❖ 5 or so symbols (not counting arrows)
❖ Describe only the high level actions

![Flow Chart]

Read and display salinity

Specify constants

Initialize LCD

Read salinity

Display value to LCD
Exercise 2

Expand the “Read salinity” step in another flow chart

❖ Keep it simple
❖ “analog data” is an external input

Read and display salinity

Specify constants

Initialize LCD

Read salinity

Display value to LCD

Your answer goes here.
Exercise 3

Expand the “Read analog input” step in another flow chart

- Compute the average of n readings
- “analog data” is an external input

Your answer goes here.
Top-down design

1. Start with a general statement of the solution
 a. List the main steps
 b. Don’t worry yet about details
2. Pick one of the steps
 a. Break this step into a manageable number of sub-steps
 b. Don’t worry about too many of the details
 c. Apply step 2 to one of steps just generated

Recursive refinement: from general to specific

Repeat refinement until individual steps can be translated into concrete actions or lines of code