2.6 ADDITION OF CARTESIAN VECTORS

Important Points

- Cartesian vector analysis is often used to solve problems in three dimensions.
- The positive directions of the x, y, z axes are defined by the Cartesian unit vectors \mathbf{i}, \mathbf{j}, \mathbf{k}, respectively.
- The magnitude of a Cartesian vector is $A = \sqrt{A_x^2 + A_y^2 + A_z^2}$.
- The direction of a Cartesian vector is specified using coordinate direction angles α, β, γ which the tail of the vector makes with the positive x, y, z axes, respectively. The components of the unit vector $\mathbf{u}_i = A/A$ represent the direction cosines of α, β, γ. Only two of the angles α, β, γ have to be specified. The third angle is determined from the relationship $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.
- Sometimes the direction of a vector is defined using the two angles θ and ϕ as in Fig. 2–28. In this case the vector components are obtained by vector resolution using trigonometry.
- To find the resultant of a concurrent force system, express each force as a Cartesian vector and add the \mathbf{i}, \mathbf{j}, \mathbf{k} components of all the forces in the system.

EXEMPLARY 2.8

Express the force \mathbf{F} shown in Fig. 2–30 as a Cartesian vector.

SOLUTION

Since only two coordinate direction angles are specified, the third angle α must be determined from Eq. 2–8; i.e.,

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$
$$\cos^2 \alpha + \cos^2 60^\circ + \cos^2 45^\circ = 1$$

Thus $\cos \alpha = \sqrt{1 - (0.5)^2 - (0.707)^2} = \pm 0.5$

Hence, two possibilities exist, namely,

$\alpha = \cos^{-1}(0.5) = 60^\circ$ or $\alpha = \cos^{-1}(-0.5) = 120^\circ$

By inspection it is necessary that $\alpha = 60^\circ$, since $\mathbf{F_1}$ must be in the $+x$ direction.

Using Eq. 2–9, with $F = 200$ N, we have

$$\mathbf{F} = F \cos \alpha \mathbf{i} + F \cos \beta \mathbf{j} + F \cos \gamma \mathbf{k}$$
$$= (200 \cos 60^\circ \mathbf{i} + (200 \cos 60^\circ \mathbf{j} + (200 \cos 45^\circ \mathbf{k}$$
$$= \begin{bmatrix} 100.0 \mathbf{i} + 100.0 \mathbf{j} + 141.4 \mathbf{k} \end{bmatrix} N$$

$F = 200$ N.

Show that indeed the magnitude of $F = 200$ N.

$$\sqrt{(100)^2 + (100)^2 + (141.4)^2} = 200$$
EXAMPLE 2.9

Determine the magnitude and the coordinate direction angles of the resultant force acting on the ring in Fig. 2–31a.

\[\mathbf{F}_1 = \{50\mathbf{i} + 100\mathbf{j} + 100\mathbf{k}\} \text{ lb} \]
\[\mathbf{F}_2 = \{60\mathbf{j} + 80\mathbf{k}\} \text{ lb} \]
\[\mathbf{F}_R = \{50\mathbf{i} - 40\mathbf{j} + 180\mathbf{k}\} \text{ lb} \]
\[\gamma = 19.6^\circ \]
\[\alpha = 74.8^\circ \]
\[\beta = 102^\circ \]

Fig. 2–31

SOLUTION

Since each force is represented in Cartesian vector form, the resultant force, shown in Fig. 2–31b, is

\[\mathbf{F}_R = \sum \mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2 = \{60\mathbf{j} + 80\mathbf{k}\} \text{ lb} + \{50\mathbf{i} - 100\mathbf{j} + 100\mathbf{k}\} \text{ lb} \]
\[= \{50\mathbf{i} - 40\mathbf{j} + 180\mathbf{k}\} \text{ lb} \]

The magnitude of \(\mathbf{F}_R \) is

\[F_R = \sqrt{(50 \text{ lb})^2 + (-40 \text{ lb})^2 + (180 \text{ lb})^2} = 191.0 \text{ lb} \]
\[= 191 \text{ lb} \quad \text{Ans.} \]

The coordinate direction angles \(\alpha, \beta, \gamma \) are determined from the components of the unit vector acting in the direction of \(\mathbf{F}_R \).

\[\mathbf{u}_{F_y} = \frac{\mathbf{F}_y}{F_R} = \frac{50}{191.0} \mathbf{i} - \frac{40}{191.0} \mathbf{j} + \frac{180}{191.0} \mathbf{k} \]
\[= 0.2617 \mathbf{i} - 0.2094 \mathbf{j} + 0.9422 \mathbf{k} \]

so that

\[\cos \alpha = 0.2617 \quad \alpha = 74.8^\circ \quad \text{Ans.} \]
\[\cos \beta = -0.2094 \quad \beta = 102^\circ \quad \text{Ans.} \]
\[\cos \gamma = 0.9422 \quad \gamma = 19.6^\circ \quad \text{Ans.} \]

These angles are shown in Fig. 2–31b:

NOTE: In particular, notice that \(\beta > 90^\circ \) since the \(\mathbf{j} \) component of \(\mathbf{u}_{F_y} \) is negative. This seems reasonable considering how \(\mathbf{F}_1 \) and \(\mathbf{F}_2 \) add according to the parallelogram law.
Important Points

- The dot product is used to determine the angle between two vectors or the projection of a vector in a specified direction.
- If vectors \mathbf{A} and \mathbf{B} are expressed in Cartesian vector form, the dot product is determined by multiplying the respective x, y, z scalar components and algebraically adding the results, i.e.,
 $$\mathbf{A} \cdot \mathbf{B} = A_xB_x + A_yB_y + A_zB_z.$$
- From the definition of the dot product, the angle formed between the tails of vectors \mathbf{A} and \mathbf{B} is
 $$\theta = \cos^{-1}(\mathbf{A} \cdot \mathbf{B} / AB).$$
- The magnitude of the projection of vector \mathbf{A} along a line aa whose direction is specified by \mathbf{u} is determined from the dot product $A_u = \mathbf{A} \cdot \mathbf{u}.$

EXAMPLE 2.16

Determine the magnitudes of the projection of the force \mathbf{F} in Fig. 2-44 onto the u and v axes.

![Diagram](image)

Fig. 2-44

SOLUTION

Projections of Force. The graphical representation of the projections is shown in Fig. 2-44. From this figure, the magnitudes of the projections of \mathbf{F} onto the u and v axes can be obtained by trigonometry:

- $(F_u)_{proj} = (100 \text{ N})\cos 45^\circ = 70.7 \text{ N}$ \hspace{1cm} \text{Ans.}
- $(F_v)_{proj} = (100 \text{ N})\cos 15^\circ = 96.6 \text{ N}$ \hspace{1cm} \text{Ans.}

NOTE: These projections are not equal to the magnitudes of the components of force \mathbf{F} along the u and v axes found from the parallelogram law. They will only be equal if the u and v axes are perpendicular to one another.

\text{NOT COMPONENTS OF } \mathbf{F} \; \text{B/C } U \not\parallel V \; \text{not } \perp
EXAMPLE 2.18

The pipe in Fig. 2-46a is subjected to the force of \(F = 80 \text{ lb} \). Determine the angle \(\theta \) between \(\textbf{F} \) and the pipe segment \(BA \) and the projection of \(\textbf{F} \) along this segment.

![Diagram showing pipe with forces](image)

SOLUTION

Angle \(\theta \). First we will establish position vectors from \(B \) to \(A \) and \(B \) to \(C \); Fig. 2-46b. Then we will determine the angle \(\theta \) between the tails of these two vectors.

\[
\begin{align*}
\textbf{r}_{BA} &= \begin{pmatrix} -2i - 2j + 1k \end{pmatrix} \text{ ft}, \quad r_{BA} = 3 \text{ ft} \\
\textbf{r}_{BC} &= \begin{pmatrix} -3j + 1k \end{pmatrix} \text{ ft}, \quad r_{BC} = \sqrt{10} \text{ ft} \\
\end{align*}
\]

Thus,

\[
\cos \theta = \frac{\textbf{r}_{BA} \cdot \textbf{r}_{BC}}{r_{BA}r_{BC}} = \frac{(-2)(0) + (-2)(-3) + (1)(1)}{3 \sqrt{10}} = 0.7379
\]

\[
\theta = 42.5^\circ \quad \text{Ans.}
\]

Components of \(\textbf{F} \). The component of \(\textbf{F} \) along \(BA \) is shown in Fig. 2-46c. We must first formulate the unit vector along \(BA \) and force \(\textbf{F} \) as Cartesian vectors.

\[
\begin{align*}
\textbf{u}_{BA} &= \frac{\textbf{r}_{BA}}{r_{BA}} = \frac{\begin{pmatrix} -2i - 2j + 1k \end{pmatrix}}{3} = -\frac{2}{3}i - \frac{2}{3}j + \frac{1}{3}k \\
\textbf{F} &= 80 \text{ lb} \begin{pmatrix} \textbf{r}_{BC} \end{pmatrix} = 80 \begin{pmatrix} -3j + 1k \end{pmatrix} = -75.89j + 25.30k
\end{align*}
\]

Thus,

\[
\begin{align*}
\textbf{F}_{BA} &= \textbf{F} \cdot \textbf{u}_{BA} = (-75.89j + 25.30k) \cdot \left(-\frac{2}{3}i - \frac{2}{3}j + \frac{1}{3}k \right) \\
&= 0 \left(-\frac{2}{3} \right) + (-75.89) \left(-\frac{2}{3} \right) + (25.30) \left(\frac{1}{3} \right) \\
&= 59.0 \text{ lb} \quad \text{Ans.}
\end{align*}
\]

NOTE: Since \(\theta \) has been calculated, then also, \(F_{BA} = F \cos \theta = 80 \text{ lb} \cos 42.5^\circ = 59.0 \text{ lb} \).