Deflection of structures with curved beams for thin members \(\frac{R}{h} > 10 \)

Find deflection of the ends along \(F \) (new diameter)

\[
\delta = \int_0^L \frac{M}{EI} \frac{\partial M}{\partial F} \, dx
\]

\(dx = R \, d\theta \)

\[
\delta = \int_{\theta=0}^\pi \frac{M}{EI} \frac{\partial M}{\partial F} R \, d\theta
\]

\[
M = FR \sin \theta
\]

\[
\frac{\partial M}{\partial F} = R \sin \theta
\]

\[
\delta = \int_{\theta=0}^\pi \frac{FR \sin \theta (R \sin \theta)}{EI} R \, d\theta
\]

\[
\delta = \int_{\theta=0}^\pi \frac{FR^3 \sin^2 \theta}{EI} \, d\theta = \frac{FR^3}{EI} \int_0^\pi \sin^2 \theta \, d\theta
\]

\[
\int_0^\pi \sin^2 \theta \, d\theta = \frac{\pi}{2}
\]

\[F = 1h < \]
\[\delta = \frac{FR^3R}{2EI} \]

- \(F \) = lbs
- \(R \) = inches
- \(E \) = PSI
- \(I \) = \(in^4 \)

HW#5

Find deflection if all the load is applied at the tip.

Impact forces
Impact forces

\[\delta = \text{maximum deflection} \]

\[(PE)_w = (PE)_{\text{spring}} \quad \text{(no damping)} \]

\[w (h + \delta) = \frac{1}{2} K \delta^2 \]

\[\delta = \frac{w}{K} \left(1 + \sqrt{1 + \left(\frac{2hK}{w} \right)^2} \right) \]

\[F_{\text{max}} = K\delta = w \left(1 + \sqrt{1 + \left(\frac{2hK}{w} \right)^2} \right) \]

Note: \(h = 0 \quad F_{\text{max}} = 2w \)

As \(K \to \infty \), then \(F \to \infty \)

Horizontal impact

\[(KE)_{\text{weight}} = (PE)_{\text{spring}} \quad \text{(no damping)} \]

\[\frac{1}{2} m v^2 = \frac{1}{2} K \delta^2 \]
\[\delta = \sqrt{\frac{w}{Kg}} \times \nu \quad \text{(max deflection)} \]

\[F_{\text{max}} = k \delta = \sqrt{\frac{wk}{g}} \times \nu \]

Example
\[v = \frac{\text{in}}{\text{sec}} \]
\[k = \frac{\text{lb}}{\text{in}} \]
\[w = \text{lb} \]
\[F_{\text{max}} = \text{lb} \]
\[g = 386 \quad \frac{\text{in}}{\text{sec}^2} \]

\[v = \frac{\text{ft}}{\text{sec}} \]
\[k = \frac{\text{lb}}{\text{ft}} \]
\[w = \text{lb} \]
\[F_{\text{max}} = \text{lb} \]
\[g = 32.2 \quad \frac{\text{ft}}{\text{sec}^2} \]

What happens with column failure

\[M = FL = \text{Constant} \]

\[M = F \delta \]

Long columns have a critical load beyond.
Critical load beyond which the column suddenly collapses (Euler) - Euler formula

Similar to

FAILURE Theories

Static loading - Ductile behavior \(\varepsilon > 0.05 \)

- Frames, structural members
- Failure criterion = bulk yielding
 - change of geometry
 - Deformation / distortion
- Failure mechanism: Crystallographic planes sliding against each other
Main Cause: Excessive shear stress

Stress raisers: Ignore them

Theories

\[\sigma_x = \frac{F}{A} \]

F = tensile test

\[\sigma = \frac{F}{A} \]

\[\frac{F}{A} = \sigma \]

\[\epsilon \]