Exploring DFAs

CS 311, Fall 2015

Exercise 1 Consider the DFA M_1 where:

- $Q = \{q_0, q_1, q_2, q_3\}$
- $\Sigma = \{a, b\}$
- $F = \{q_0, q_1\}$

The start state is q_0 and the transition function is:

<table>
<thead>
<tr>
<th>δ</th>
<th>q_0</th>
<th>q_1</th>
<th>q_2</th>
<th>q_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>q_1</td>
<td>q_1</td>
<td>q_1</td>
<td>q_3</td>
</tr>
<tr>
<td>b</td>
<td>q_3</td>
<td>q_2</td>
<td>q_2</td>
<td>q_3</td>
</tr>
</tbody>
</table>

a) Draw a state diagram for the DFA M_1.

b) What is the language recognized by the DFA M_1, $L(M_1)$?

c) Choose an $s \in L(M_1)$ and write down the path of that string through the machine. Now do the same for a string $s' \notin L(M_1)$.

1
Exercise 2 Draw a state machine for a DFA that recognizes each of the following languages:

a) $A = \{ w \mid w$ contain neither the substrings 01 nor 10$\}$, $\Sigma = \{0, 1\}$

b) $B = \{ w \mid w = xbab, \text{ where } x, y \in \Sigma^* \}$, $\Sigma = \{a, b\}$

c) $C = \{ w \mid \text{every odd position in } w \text{ is a } 2 \}$, $\Sigma = \{0, 1, 2\}$