HW3 Class Statistics

Number of submitted grades: 22 / 28
Minimum: 61.9 %
Maximum: 100 %
Average: 83.5 %
Mode: 90.5 %
Median: 90.5 %
Standard Deviation: 11.9 %

Grade Distribution

Number of Users (%)
CS 350 Algorithms and Complexity

Fall 2015

Lecture 15: Limitations of Algorithmic Power
Introduction to complexity theory

Andrew P. Black

Department of Computer Science
Portland State University
Lower Bounds

✧ Lower bound: an estimate of the *minimum* amount of work needed to solve a given problem

✧ Examples:

 ✧ number of comparisons needed to find the largest element in a set of \(n \) numbers

 ✧ number of comparisons needed to sort an array of size \(n \)

 ✧ number of comparisons necessary for searching in a sorted array of size \(n \)

 ✧ number of multiplications needed to multiply two \(n \times n \) matrices
Lower Bounds (cont.)

- Lower bound can be
 - an exact count
 - an efficiency class (Ω)

- Lower bound is **tight** \triangleq there exists an algorithm with the efficiency of the lower bound

<table>
<thead>
<tr>
<th>Problem</th>
<th>Lower bound</th>
<th>Tight?</th>
</tr>
</thead>
<tbody>
<tr>
<td>sorting</td>
<td>$\Omega(n \log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>searching in a sorted array</td>
<td>$\Omega(\log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>element uniqueness</td>
<td>$\Omega(n \log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>n-digit integer multiplication</td>
<td>$\Omega(n)$</td>
<td></td>
</tr>
<tr>
<td>multiplication of $n \times n$ matrices</td>
<td>$\Omega(n^2)$</td>
<td></td>
</tr>
</tbody>
</table>
Lower Bounds (cont.)

- Lower bound can be
 - an exact count
 - an efficiency class (Ω)

- Lower bound is *tight* \triangleq *there exists* an algorithm with the efficiency of the lower bound

<table>
<thead>
<tr>
<th>Problem</th>
<th>Lower bound</th>
<th>Tight?</th>
</tr>
</thead>
<tbody>
<tr>
<td>sorting</td>
<td>$\Omega(n \log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>searching in a sorted array</td>
<td>$\Omega(\log n)$</td>
<td></td>
</tr>
<tr>
<td>element uniqueness</td>
<td>$\Omega(n \log n)$</td>
<td></td>
</tr>
<tr>
<td>n-digit integer multiplication</td>
<td>$\Omega(n)$</td>
<td></td>
</tr>
<tr>
<td>multiplication of $n \times n$ matrices</td>
<td>$\Omega(n^2)$</td>
<td></td>
</tr>
</tbody>
</table>
Lower Bounds (cont.)

✧ Lower bound can be
 ✧ an exact count
 ✧ an efficiency class (Ω)

✧ Lower bound is **tight** ≜ there exists an algorithm with the efficiency of the lower bound

<table>
<thead>
<tr>
<th>Problem</th>
<th>Lower bound</th>
<th>Tight?</th>
</tr>
</thead>
<tbody>
<tr>
<td>sorting</td>
<td>$\Omega(n \log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>searching in a sorted array</td>
<td>$\Omega(\log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>element uniqueness</td>
<td>$\Omega(n \log n)$</td>
<td></td>
</tr>
<tr>
<td>n-digit integer multiplication</td>
<td>$\Omega(n)$</td>
<td></td>
</tr>
<tr>
<td>multiplication of $n \times n$ matrices</td>
<td>$\Omega(n^2)$</td>
<td></td>
</tr>
</tbody>
</table>
Lower Bounds (cont.)

- Lower bound can be
 - an exact count
 - an efficiency class (Ω)

- Lower bound is tight \iff there exists an algorithm with the efficiency of the lower bound

<table>
<thead>
<tr>
<th>Problem</th>
<th>Lower bound</th>
<th>Tight?</th>
</tr>
</thead>
<tbody>
<tr>
<td>sorting</td>
<td>$\Omega(n \log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>searching in a sorted array</td>
<td>$\Omega(\log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>element uniqueness</td>
<td>$\Omega(n \log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>n-digit integer multiplication</td>
<td>$\Omega(n)$</td>
<td></td>
</tr>
<tr>
<td>multiplication of $n \times n$ matrices</td>
<td>$\Omega(n^2)$</td>
<td></td>
</tr>
</tbody>
</table>
Lower Bounds (cont.)

- Lower bound can be
 - an exact count
 - an efficiency class (Ω)

- Lower bound is *tight* \equiv there exists an algorithm with the efficiency of the lower bound

<table>
<thead>
<tr>
<th>Problem</th>
<th>Lower bound</th>
<th>Tight?</th>
</tr>
</thead>
<tbody>
<tr>
<td>sorting</td>
<td>$\Omega(n \log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>searching in a sorted array</td>
<td>$\Omega(\log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>element uniqueness</td>
<td>$\Omega(n \log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>n-digit integer multiplication</td>
<td>$\Omega(n)$</td>
<td>unknown</td>
</tr>
<tr>
<td>multiplication of $n \times n$ matrices</td>
<td>$\Omega(n^2)$</td>
<td></td>
</tr>
</tbody>
</table>
Lower Bounds (cont.)

- Lower bound can be
 - an exact count
 - an efficiency class (Ω)

- Lower bound is *tight* \triangleq *there exists* an algorithm with the efficiency of the lower bound

<table>
<thead>
<tr>
<th>Problem</th>
<th>Lower bound</th>
<th>Tight?</th>
</tr>
</thead>
<tbody>
<tr>
<td>sorting</td>
<td>$\Omega(n \log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>searching in a sorted array</td>
<td>$\Omega(\log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>element uniqueness</td>
<td>$\Omega(n \log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>n-digit integer multiplication</td>
<td>$\Omega(n)$</td>
<td>unknown</td>
</tr>
<tr>
<td>multiplication of $n \times n$ matrices</td>
<td>$\Omega(n^2)$</td>
<td>unknown</td>
</tr>
</tbody>
</table>
Methods for Establishing Lower Bounds

✧ trivial lower bounds
 ✧ based on data input & output
✧ information-theoretic arguments
 ✧ e.g., decision trees

✧ adversary arguments

✧ problem reduction
Trivial Lower Bounds

based on counting the number of items that must be processed in input and generated as output

Examples:
- finding max element
- polynomial evaluation
- sorting
- element uniqueness
- Hamiltonian circuit existence

Conclusions
- may or may not be useful!
- be careful deciding how many elements must be processed
Decision Trees

✧ A model for algorithms (that involve comparisons) in which:
 ✧ internal nodes represent comparisons
 ✧ leaves represent outcomes
Minimum of three numbers

\[a < c \land a < b \quad \text{yes} \]
\[b < c \quad \text{no} \]
\[a < c \quad \text{yes} \]
\[a < b \quad \text{no} \]
\[b \quad \text{no} \]
\[c \quad \text{no} \]
Median of three numbers
Median of three numbers

✧ Draw the decision tree (using 2-way comparisons) for finding the median of three numbers
Median of three numbers

✧ Draw the decision tree (using 2-way comparisons) for finding the median of three numbers

✧ What’s the information-theoretic lower bound on the number of 2-way comparisons needed to find the median of three numbers?
 A. 1
 B. 2
 C. 3
 D. None of the above
Median of three numbers

\[
\begin{align*}
\text{a < b} & \quad \text{b \leq a} \\
\text{c < a} & \quad \text{b < c} \\
\text{a} & \quad \text{b}
\end{align*}
\]

- If \(\text{a < b} \) and \(\text{c < a} \), then \(\text{c < a < b} \).
- If \(\text{a < b} \) and \(\text{b < c} \), then \(\text{c \leq b \leq a} \).
- If \(\text{a \leq c} \), then \(\text{c < a < b} \).
- If \(\text{b \leq a} \) and \(\text{b < c} \), then \(\text{c \leq b \leq a} \).
- If \(\text{c \leq b \leq a} \), then \(\text{c < a < b} \).
Median of three numbers

\[
\begin{align*}
&c < a < b \\
&b < c \\
&a \leq c
\end{align*}
\]
Median of three numbers

c < a
b < c

\[a < b \land b < c \]

\[a < b \land a \leq c \land b < c \]

\[a < c \]

\[b \leq a \leq c \]

\[c \leq b \leq a \]
Median of three numbers

The diagram represents a decision process to find the median of three numbers a, b, and c. The process involves checking the relationships between the numbers to determine their order.

1. **First Level**:
 - If $a < b$, proceed to the next level.
 - If $b \leq a$, proceed to the next level.

2. **Second Level**:
 - If $c < a$, then $c < a < b$.
 - If $a < c$, then $b \leq a \leq c$.
 - If $b \leq c$, then $b < c \leq a$.
 - If $b < c$, then $c \leq b \leq a$.
 - If $a \leq c$, then $a < b < c$.

The diagram visually captures these decision paths and outcomes, allowing for an efficient way to determine the median of the three numbers.
Median of three numbers

- If $a < b$, then check $c < a$.
- If $b \leq a$, then check $b < c$.

- If $c < a$, then $a < b \land a \leq c$.
- If $b < c$, then $b \leq a \land b < c$.

- If $a < c$, then $b \leq a \leq c$.
- If $a < b$, then $b < c \leq a$.

- If $c < a < b$, then $a < b \land a \leq c$.
- If $b < c \leq a$, then $b < c \leq a$.

- If $b \leq a \land b < c$, then $b < c \leq a$.
Median of three numbers

$c < a$
$b < c$
$b < a$
$a < b$
$c < a < b$

$a < b$
$b \leq a$

$c < a$
$a < b$
$a \leq c$

$b < c$
$b \leq a$
$b < c$
$b < c \leq a$

$a < b$ and $a \leq c$
$b < c$ and $b < c$

$c \leq b \leq a$

a < b < c
b \leq a \leq c
b < c \leq a
Median of three numbers

\[
\begin{align*}
\text{if } a < b & \quad \text{then } c < a < b \\
\text{if } a < b & \quad \text{then } c < a < b \\
\text{if } a < b \land a \leq c & \quad \text{then } a < b < c \\
\text{if } b < c & \quad \text{then } b < c \leq a \\
\end{align*}
\]
Median of three numbers?

✧ Is the number of comparisons (in the worst case) in your decision-tree greater than the lower bound?

A. Yes, it’s greater than the lower bound
B. No, it’s equal to the lower bound
C. No, it’s less than the lower bound
Median of three numbers

✧ Can you prove that no better algorithm exists?
Decision tree for 3-element insertion sort:
Decision tree for 3-element insertion sort:

Average number of comparisons?
Decision tree for 3-element insertion sort:

-average number of comparisons?
- assume results are equiprobable

✧ Average number of comparisons?
Decision tree for 3-element insertion sort:

Average number of comparisons?
assume results are equiprobable

\[
\frac{2 + 3 + 3 + 2 + 3 + 3}{6} = \frac{16}{6} = \frac{8}{3} = 2 \frac{2}{3}
\]
Decision Trees and Sorting Algorithms
Decision Trees and Sorting Algorithms

Any comparison-based sorting algorithm can be represented by a decision tree
Decision Trees and Sorting Algorithms

- Any comparison-based sorting algorithm can be represented by a decision tree
- Number of leaves (outcomes) = $n!$
Decision Trees and Sorting Algorithms

- Any comparison-based sorting algorithm can be represented by a decision tree
- Number of leaves (outcomes) = \(n! \)
- Height of binary tree with \(n! \) leaves \(\geq \lceil \lg n! \rceil \)
Decision Trees and Sorting Algorithms

- Any comparison-based sorting algorithm can be represented by a decision tree
- Number of leaves (outcomes) = $n!$
- Height of binary tree with $n!$ leaves $\geq \lceil \lg n! \rceil$
- Minimum number of comparisons in the worst case $\geq \lceil \lg n! \rceil$ for any comparison-based algorithm
Decision Trees and Sorting Algorithms

- Any comparison-based sorting algorithm can be represented by a decision tree
- Number of leaves (outcomes) = \(n! \)
- Height of binary tree with \(n! \) leaves \(\geq \lceil \lg n! \rceil \)
- Minimum number of comparisons in the worst case \(\geq \lceil \lg n! \rceil \) for any comparison-based algorithm
- \(\lceil \lg n! \rceil \in \Omega(n \lg n) \) (Why?)
Decision Trees and Sorting Algorithms

✧ Any comparison-based sorting algorithm can be represented by a decision tree
✧ Number of leaves (outcomes) = \(n! \)
✧ Height of binary tree with \(n! \) leaves \(\geq \lceil \lg n! \rceil \)
✧ Minimum number of comparisons in the worst case \(\geq \lceil \lg n! \rceil \) for any comparison-based algorithm
✧ \(\lceil \lg n! \rceil \in \Omega(n \lg n) \) (Why?)
✧ Is this lower bound tight? A: Yes B: No
Jigsaw puzzle

- A jigsaw puzzle contains n pieces. A “section” of the puzzle is a set of one or more pieces that have been connected to each other. A “move” consists of connecting two sections. What algorithm will minimize the number of moves required to complete the puzzle?
Adversary Arguments

Adversary argument: a method of proving a lower bound by playing a “game” in which your opponent (the adversary) makes the algorithm work as hard as possible by adjusting the input.

Example 1: “Guessing” a number between 1 and n with yes/no questions

Adversary: Puts the number in the larger of the two subsets generated by last question

Simulates the worst case
Example 2: Merging two sorted lists of size \(n \)
\[a_1 < a_2 < \ldots < a_n \quad \text{and} \quad b_1 < b_2 < \ldots < b_n \]

Adversary: \(a_i < b_j \quad \text{iff} \quad i < j \)

Output \(b_1 < a_1 < b_2 < a_2 < \ldots < b_n < a_n \)
requires \(2n-1 \) comparisons of adjacent elements
Example 2: Merging two sorted lists of size \(n \)
\[
a_1 < a_2 < \ldots < a_n \quad \text{and} \quad b_1 < b_2 < \ldots < b_n
\]
Adversary: \(a_i < b_j \) iff \(i < j \)

Output \(b_1 < a_1 < b_2 < a_2 < \ldots < b_n < a_n \)

requires \(2n-1 \) comparisons of adjacent elements

\(b_1 \) to \(a_1 \), \(a_1 \) to \(b_2 \), \(b_2 \) to \(a_2 \), etc.

Suppose that one of these comparisons is not made …
Lower Bounds by Problem Reduction

Idea: If problem P is “at least as hard” as problem Q, then a lower bound for Q is also a lower bound for P.

Hence: find problem Q with a known lower bound that can be reduced to problem P.

Example:

- You need a lower bound for P: finding minimum spanning tree for \(n \) points in Cartesian plane
- Q is element uniqueness problem — known to be in \(\Omega(n \log n) \).
- Reduce Q to P (note direction)
Problem

Alternating disks You have a row of $2n$ disks of two colors, n dark and n light. They alternate: dark, light, dark, light, and so on. You want to get all the dark disks to the right-hand end, and all the light disks to the left-hand end. The only moves you are allowed to make are those which interchange the positions of two neighboring disks.

\[\begin{array}{cccccccc}
\text{Black} & \text{White} & \text{Black} & \text{White} & \text{Black} & \text{White} \\
\text{White} & \text{Black} & \text{White} & \text{Black} & \text{White} & \text{Black} \\
\end{array} \quad \rightarrow \quad \begin{array}{cccccccc}
\text{White} & \text{Black} & \text{White} & \text{Black} & \text{White} & \text{Black} \\
\text{Black} & \text{White} & \text{Black} & \text{White} & \text{Black} & \text{White} \\
\end{array} \]
Problem

Prove that any algorithm solving the alternating disk puzzle must make at least \(n(n+1)/2 \) moves to solve it.

Alternating disks You have a row of \(2n \) disks of two colors, \(n \) dark and \(n \) light. They alternate: dark, light, dark, light, and so on. You want to get all the dark disks to the right-hand end, and all the light disks to the left-hand end. The only moves you are allowed to make are those which interchange the positions of two neighboring disks.
Problem

✧ Prove that *any* algorithm solving the alternating disk puzzle must make at least \(n(n+1)/2 \) moves to solve it.

✧ Is this lower bound tight? A: Yes B: No

Alternating disks You have a row of \(2n \) disks of two colors, \(n \) dark and \(n \) light. They alternate: dark, light, dark, light, and so on. You want to get all the dark disks to the right-hand end, and all the light disks to the left-hand end. The only moves you are allowed to make are those which interchange the positions of two neighboring disks.

\[
\begin{array}{cccccccc}
\text{dark} & \text{light} & \text{dark} & \text{light} & \text{dark} & \text{light} & \text{dark} & \text{light} \\
\downarrow & \downarrow \\
\text{light} & \text{dark} & \text{light} & \text{dark} & \text{light} & \text{dark} & \text{light} & \text{dark} \\
\end{array}
\]
Problem

Find a trivial lower-bound for the following problem. Is this bound tight?

- find the largest element in an n-element array

A. $\Omega(1)$
B. $\Omega(n)$
C. $\Omega(n \lg n)$
D. None of the above
Problem

Find a trivial lower-bound for the following problem. Is this bound tight?

is a graph with \(n \) vertices (represented by an \(n \times n \) adjacency matrix) complete?

A. \(\Omega(n^2) \)
B. \(\Omega(n^3) \)
C. \(\Omega(n \lg n) \)
D. None of the above
Find a trivial lower-bound for the following problem. Is this bound tight?

- generate all subsets of an n-element set

A. $\Omega(n^2)$
B. $\Omega(n^3)$
C. $\Omega(n^n)$
D. $\Omega(2^n)$
E. None of the above
Problem

✧ Find a trivial lower-bound for the following problem. Is this bound tight?

✧ are all the members of a set of n real numbers distinct?

A. $\Omega(n)$
B. $\Omega(n^2)$
C. $\Omega(n \lg n)$
D. None of the above
Fake-coin Problem

You have $n > 2$ identical-looking coins and a two-pan balance with no weights. One of the coins is a fake, but you do not know whether it is lighter or heavier than the genuine coins, which all weigh the same.

What is the information-theoretic lower bound on the number of 3-way weighings required to determine if the fake coin is light or heavy?

A. $\Omega(1)$ B. $\Omega(n)$ C. $\Omega(\lg n)$ D. something else
Fake-coin Problem

You have $n > 2$ identical-looking coins and a two-pan balance with no weights. One of the coins is a fake, but you do not know whether it is lighter or heavier than the genuine coins, which all weigh the same.

Design a $\Theta(1)$ algorithm to determine whether the fake coin is lighter or heavier than the others.

Hint: try solving the problem for $n = 12$.

Represent your algorithm as a decision tree
Problem
Problem

What do information-theoretic arguments tell us about Fake-coins problem?
Problem

✧ What do information-theoretic arguments tell us about Fake-coins problem?
✧ Suppose we wish to discover which coin is fake
Problem

✧ What do information-theoretic arguments tell us about Fake-coins problem?
✧ Suppose we wish to discover which coin is fake
✧ Can we deduce that we will need at least \(\lceil \log_2 n \rceil \) weighings?
Problem

✧ What do information-theoretic arguments tell us about Fake-coins problem?

✧ Suppose we wish to discover which coin is fake

✧ Can we deduce that we will need at least \(\lceil \log_2 n \rceil \) weighings?

✧ If \(n=12 \), what is \(\lceil \log_2 n \rceil \)?
Problem

✧ What do information-theoretic arguments tell us about Fake-coins problem?

✧ Suppose we wish to discover which coin is fake

✧ Can we deduce that we will need at least \(\lceil \log_2 n \rceil \) weighings?

✧ If \(n=12 \), what is \(\lceil \log_2 n \rceil \)?

✧ Can you solve the problem with < 4 weighings?
12 Coins

- If one out of 12 coins is too light:
 - 12 possible outcomes
- If we don’t know whether the fake is heavy or light:
 - 24 possible outcomes

1 weighing: 3 outcomes
3 weighings: $3^3 = 27$ outcomes
Therefore: there is enough information in three weighings to distinguish between the 24 possibilities
We will establish the lower bounds for sorting and searching in the next section. The element uniqueness problem asks whether there are duplicates among \(n \) given numbers. (We encountered this problem in Sections 2.3 and 6.1.) The proof of the lower bound for this seemingly simple problem is based on a very sophisticated mathematical analysis that is well beyond the scope of this book (see, e.g., [Pre85] for a rather elementary exposition). As to the last two algebraic problems in Table 11.1, the lower bounds quoted are trivial, but whether they can be improved remains unknown.

As an example of establishing a lower bound by reduction, let us consider the Euclidean minimum spanning tree problem: given \(n \) points in the Cartesian plane, construct a tree of minimum total length whose vertices are the given points. As a problem with a known lower bound, we use the element uniqueness problem. We can transform any set \(x_1, x_2, \ldots, x_n \) of \(n \) real numbers into a set of \(n \) points in the Cartesian plane by simply adding 0 as the points’ \(y \)-coordinate:

\[
(x_1, 0), (x_2, 0), \ldots, (x_n, 0)
\]

Let \(T \) be a minimum spanning tree found for this set of points. Since \(T \) must contain a shortest edge, checking whether \(T \) contains a zero-length edge will answer the question about uniqueness of the given numbers. This reduction implies that \(\Omega(n \log n) \) is a lower bound for the Euclidean minimum spanning tree problem, too.

Since the final results about the complexity of many problems are not known, the reduction technique is often used to compare the relative complexity of problems. For example, the formulas

\[
x \cdot y = (x + y)^2 - (x - y)^2
\]

and

\[
x^2 = x \cdot x
\]

show that the problems of computing the product of two \(n \)-digit integers and squaring an \(n \)-digit integer belong to the same complexity class, despite the latter being seemingly simpler than the former.

There are several similar results for matrix operations. For example, multiplying two symmetric matrices turns out to be in the same complexity class as multiplying two arbitrary square matrices. This result is based on the observation that not only is the former problem a special case of the latter one, but also that

Table 11.1

<table>
<thead>
<tr>
<th>Problem</th>
<th>Lower bound</th>
<th>Tightness</th>
</tr>
</thead>
<tbody>
<tr>
<td>sorting</td>
<td>(\Omega(n \log n))</td>
<td>yes</td>
</tr>
<tr>
<td>searching in a sorted array</td>
<td>(\Omega(\log n))</td>
<td>yes</td>
</tr>
<tr>
<td>element uniqueness problem</td>
<td>(\Omega(n \log n))</td>
<td>yes</td>
</tr>
<tr>
<td>multiplication of (n)-digit integers</td>
<td>(\Omega(n))</td>
<td>unknown</td>
</tr>
<tr>
<td>multiplication of (n \times n) matrices</td>
<td>(\Omega(n^2))</td>
<td>unknown</td>
</tr>
</tbody>
</table>
Lower-bounds by reduction

Find a tight lower bound for the problem of finding the two closest numbers in a set of \(n \) real numbers.

TABLE 11.1 Problems often used for establishing lower bounds by problem reduction

<table>
<thead>
<tr>
<th>Problem</th>
<th>Lower bound</th>
<th>Tightness</th>
</tr>
</thead>
<tbody>
<tr>
<td>sorting</td>
<td>(\Omega(n \log n))</td>
<td>yes</td>
</tr>
<tr>
<td>searching in a sorted array</td>
<td>(\Omega(\log n))</td>
<td>yes</td>
</tr>
<tr>
<td>element uniqueness problem</td>
<td>(\Omega(n \log n))</td>
<td>yes</td>
</tr>
<tr>
<td>multiplication of (n)-digit integers</td>
<td>(\Omega(n))</td>
<td>unknown</td>
</tr>
<tr>
<td>multiplication of (n \times n) matrices</td>
<td>(\Omega(n^2))</td>
<td>unknown</td>
</tr>
</tbody>
</table>
Lower-bounds by reduction

- Find a tight lower bound for the problem of finding the two closest numbers in a set of n real numbers.
- **Hint:** use a reduction from the element uniqueness problem.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Lower bound</th>
<th>Tightness</th>
</tr>
</thead>
<tbody>
<tr>
<td>sorting</td>
<td>$\Omega(n \log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>searching in a sorted array</td>
<td>$\Omega(\log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>element uniqueness problem</td>
<td>$\Omega(n \log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>multiplication of n-digit integers</td>
<td>$\Omega(n)$</td>
<td>unknown</td>
</tr>
<tr>
<td>multiplication of $n \times n$ matrices</td>
<td>$\Omega(n^2)$</td>
<td>unknown</td>
</tr>
</tbody>
</table>
Reduction

- **Closest numbers**: $\Omega(?)$
 - Find closest numbers m and n. Ask $m = n$?

- **Element uniqueness**: $\Omega(n \lg n)$
Classifying Problem Complexity
Tractability

✧ Is the problem *tractable*, i.e., is there a polynomial-time \(O(p(n)) \) algorithm that solves it?

✧ Possible answers:
 ✧ yes (give examples)
 ✧ no
 ‣ because it’s been proved that no algorithm exists at all
 ‣ because it’s been proved that any algorithm takes exponential time (or worse)
 ✧ unknown
Problem Types

烩 Optimization problem: find a solution that maximizes or minimizes some objective function
烩 Decision problem: answer yes/no to a question
烩 Many problems have decision and optimization versions.
 e.g.: traveling salesman problem
 optimization: find Hamiltonian cycle of minimum length
 decision: find Hamiltonian cycle of length \(\leq m \)
烩 Decision problems are more convenient for formal investigation of their complexity.
Class P

- The class of decision problems that are solvable in $O(p(n))$ time, where $p(n)$ is a polynomial in problem’s input size n

- Examples:
 - searching
 - element uniqueness
 - graph connectivity
 - graph acyclicity
 - primality testing (AKS Primality test, 2002)
Class NP

- NP (nondeterministic polynomial): class of decision problems whose proposed solutions can be verified in polynomial time = solvable by a nondeterministic polynomial algorithm

- A nondeterministic polynomial algorithm is an abstract two-stage procedure that:
 1. generates a random string purported to solve the problem
 2. checks whether this solution is correct in polynomial time

By definition, it solves the problem if it’s capable of generating and verifying a solution on one of its tries

- Why this definition?
 - led to development of the rich theory called “computational complexity”
Example: CNF satisfiability

Problem: is a boolean expression in its conjunctive normal form (CNF) satisfiable, i.e., are there values of its variables that makes it true?

This problem is in \(NP \). Nondeterministic algorithm:

1. Guess truth assignment
2. Substitute the values into the CNF formula to see if it evaluates to true

Example: \((A \lor \neg B \lor \neg C) \land (A \lor B) \land (\neg B \lor \neg D \lor E) \land (\neg D \lor \neg E)\)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Checking phase: \(O(n) \)
What problems are in NP?

- Hamiltonian circuit existence
- Partition problem: is it possible to partition a set of n integers into two disjoint subsets with the same sum?
- Decision versions of TSP, knapsack problem, graph coloring, and many other combinatorial optimization problems. (Few exceptions including MST, shortest paths)

- All the problems in P can also be solved in this manner (but no guessing is necessary), so we have:
 \[P \subseteq NP \]

- Big question: $P = NP$?
NP-Complete Problems

✧ A decision problem D is NP-complete if it is as hard as any problem in NP, i.e.,
 1. D is in NP
 2. every problem in NP is polynomial-time reducible to D

✧ Cook’s theorem (1971): CNF-sat is NP-complete
NP-Complete Problems (cont.)

✧ Other NP-complete problems obtained through polynomial-time reductions from a known NP-complete problem

✧ Examples: TSP, knapsack, partition, graph-coloring and hundreds of other problems of combinatorial nature
Knapsack?

- Didn’t we solve this by Dynamic Programming?
- For a knapsack of capacity W, and n items, how big is the table?
- What’s the efficiency of the Dynamic Programming Algorithm?

A. $O(n)$
B. $O(W)$
C. $O(nW)$
D. $O(W^n)$
E. None of the above
Knapsack?

✧ Didn’t we solve this by Dynamic Programming?

✧ For a knapsack of capacity W, and n items, how big is the table? $n \times W$

✧ What’s the efficiency of the Dynamic Programming Algorithm?

A. $O(n)$

B. $O(W)$

C. $O(nW)$

D. $O(W^n)$

E. None of the above
Knapsack?

✧ Complexity of Dynamic Programming algorithm is in $O(nW)$
✧ So why is Knapsack in NP?

DEFINITION 1 We say that an algorithm solves a problem in polynomial time if its worst-case time efficiency belongs to $O(p(n))$ where $p(n)$ is a polynomial of the problem’s input size n. [Levitin, p. 401]
Knapsack?

✧ Complexity of Dynamic Programming algorithm is in $O(nW)$
✧ So why is Knapsack in NP?

DEFINITION 1 We say that an algorithm solves a problem in polynomial time if its worst-case time efficiency belongs to $O(p(n))$ where $p(n)$ is a polynomial of the problem’s input size n. [Levitin, p. 401]
P = NP?

- P = NP would imply that every problem in NP, including all NP-complete problems, could be solved in polynomial time.
- If a polynomial-time algorithm for just one NP-complete problem is discovered, then every problem in NP can be solved in polynomial time, i.e., P = NP.

- Most (but not all) researchers believe that P \(\neq\) NP, i.e., P is a proper subset of NP.
The Status of the P Versus NP Problem

It's one of the fundamental mathematical problems of our time, and its importance grows with the rise of powerful computers.

Lance Fortnow

Communications of the ACM
Vol. 52 No. 9, Pages 78-86

November 2009
The second week of August was an exciting week. On Friday, August 6, Vinay Deolalikar announced a claimed proof that $P \neq NP$. Slashdotted blogs broke the news on August 7 and 8, and suddenly the whole world was paying attention. Richard Lipton's August 15 blog entry at blog@CACM was viewed by about 10,000 readers within a week. Hundreds of computer scientists and mathematicians, in a massive Web-enabled collaborative effort, dissected the proof in an intense attempt to verify its validity. By the time the New York Times published an article on the topic on August 16, major gaps had been identified, and the excitement was starting to subside. The P vs. NP problem withstood another challenge and remained wide open.

During and following that exciting week many people have asked me to explain the problem and why it is so important to computer science. "If everyone believes that P is different than $NP," I was asked, "why it is so important to prove the claim?" The answer, of course, is that believing is not the same as knowing. The conventional "wisdom" can be wrong. While our intuition does tell us that finding solutions ought to be more difficult than checking solutions, which is what the P vs. NP problem is about, intuition can be a poor guide to the truth. Case in point: modern physics.
Problem
Problem

A certain problem can be solved by an algorithm whose running time is in $O(n \log n)$. Which of the following assertions is true?

A. The problem is tractable.
B. The problem is intractable.
C. It’s impossible to tell.
Problem

A certain problem can be solved by an algorithm whose running time is in $O(n \lg n)$. Which of the following assertions is true?

A. The problem is tractable.
B. The problem is intractable.
C. It’s impossible to tell.

Hint: First, decide whether $n \lg n$ is polynomial.
Problem

✿ Give examples of the following graphs or explain why such examples cannot exist:

(a) graph with a Hamiltonian circuit but without an Eulerian circuit
(b) graph with an Eulerian circuit but without a Hamiltonian circuit
(c) graph with both a Hamiltonian circuit and an Eulerian circuit
(d) graph with a cycle that includes all the vertices but with neither a Hamiltonian circuit nor an Eulerian circuit
Unsolvable (by computer) Problem

- Suppose that you could write a program

  ```java
  boolean halts(Program p, Input i);
  ```

 that returns **true** if *p* halts on input *i*, and **false** if it doesn’t.

- Then I can write

  ```java
  boolean loopIfHalts(Program p, Input i) {
      if (halts(p,i))
          while (true) ;
      else
          return true;
  }
  ```

 which loops if *p* halts on input *i*, and **true** if it doesn’t
And I can write

```java
boolean testSelf(Program p) {
    return loopIfHalts(p,p);
}
```

which loops if \(p \) halts on \(p \), and answers \textbf{true}\ if \(p \) loops.

What does \texttt{testSelf(testSelf)} do?

- suppose that it returns \texttt{true}?
- suppose that it loops?
And I can write

```java
boolean testSelf(Program p) {
    return loopIfHalts(p,p);
}
```

which loops if \(p \) halts on \(p \), and answers \text{true} \ if \(p \) loops.

What does \text{testSelf(testSelf)} do?

- suppose that it returns \text{true}?
- suppose that it loops?

A contradiction!
And I can write

```java
boolean testSelf(Program p) {
    return loopIfHalts(p,p);
}
```

which loops if \(p \) halts on \(p \), and answers \texttt{true} if \(p \) loops.

What does \texttt{testSelf(testSelf)} do?

- Suppose that it returns \texttt{true}?
- Suppose that it loops?

A contradiction!

Therefore, no program \texttt{halts} can exist.