What is Brute Force?

force of the computer, not of your intellect

= simple & stupid

just do it!
Why study them?

✦ Simple to implement
 suppose you need to solve only one instance?
✦ Often “good enough”, especially when n is small
✦ Widely applicable
✦ Actually OK for some problems, e.g., Matrix Multiplication
✦ Can be the starting point for an improved algorithm
✦ “Baseline” against which we can compare better algorithms
✦ Can be a “gold standard” of correctness
Sequential Search

`searchFor: needle``

"sequential search for needle. Returns true if found."

```plaintext
self do: [:each |
    (each == needle) ifTrue: [ ^ true ].
].

^ false
```
Sequential Search

searchFor: needle

"sequential search for needle. Returns true if found."

```ruby
self do: [:each |
  (each == needle) ifTrue: [ ^true ].
].
^false
```

searchUsingSentinal: needle

"sequential search for needle. Returns true if found."

```ruby
| i |
i ← 1.
[(self at: i) == needle ] whileFalse: [ i ← i + 1 ].
^ (i ~< self size)
```
Sequential Search

searchFor: needle
"sequential search for needle. Returns true if found."

self do: [:each |
 (each == needle) ifTrue: [true].
].
↑ false

searchUsingAt: needle
"sequential search for needle. Returns true if found."

| i sz |
sz ← self size.
i ← 1.
[((self at: i) == needle) | (i = sz)] whileFalse: [i ← i + 1].
↑ (i ~< sz)
Sequential Search

searchUsingAt: `needle`

"sequential search for needle. Returns true if found."

```
<table>
<thead>
<tr>
<th>i sz</th>
</tr>
</thead>
</table>
sz ← self size.
i ← 1.
[((self at: i) == needle) | (i = sz)] whileFalse: [ i ← i + 1 ].
↑ (i ~= sz)
```

searchUsingSentinal: `needle`

"sequential search for needle. Returns true if found."

```
<table>
<thead>
<tr>
<th>i</th>
</tr>
</thead>
</table>
i ← 1.
[(self at: i) == needle ] whileFalse: [ i ← i + 1 ].
↑ (i ~= self size)
```
Timing Sequential Search

testSequentialSearch

| A B N M res t1 t2 t3 |
N ← 100000.
M ← 5000000. "bigger than the array to be searched, and any value in it"
A ← self randomArrayOfSize: N.
t1 ← Time millisecondsToRun: [1000 timesRepeat: [res ← A searchFor: M]].
self deny: res.
B ← A copyWith: M.
t2 ← Time millisecondsToRun: [1000 timesRepeat: [res ← B searchUsingSentinel: M]].
self deny: res.
A ← A copyWith: M.
t3 ← Time millisecondsToRun: [1000 timesRepeat: [res ← A searchUsingAt: M]].
self deny: res.
Transcript show: 'Sequential search, size: ';
show: N; cr;
show: 'sequential: '; show: t1; show: 'μs'; cr;
show: 'with sentinel: '; show: t2; show: 'μs'; cr;
show: 'without sentinel: '; show: t3; show: 'μs'; cr; cr.
Timing Results

Sequential search, size: 100000
 sequential: 1668µs
 with sentinel: 878µs
 without sentinel: 1452µs

Sequential search, size: 100000
 sequential: 1515µs
 with sentinel: 802µs
 without sentinel: 1409µs
Timing Results

Sequential search, size: 100000
sequential: 1668μs
with sentinel: 878μs
without sentinel: 1452μs

Sequential search, size: 100000
sequential: 1515μs
with sentinel: 802μs
without sentinel: 1409μs

Coding details *can* make a difference!
Timing Results

Sequential search, size: 100000
 sequential: 1668µs
 with sentinel: 878µs
 without sentinel: 1452µs

Sequential search, size: 100000
 sequential: 1515µs
 with sentinel: 802µs
 without sentinel: 1409µs

Coding details *can* make a difference!

But *not* to the asymptotic complexity.
ALGORITHM SelectionSort(A[0..n − 1])

//Sorts a given array by selection sort
//Input: An array A[0..n − 1] of orderable elements
//Output: Array A[0..n − 1] sorted in ascending order
for i ← 0 to n − 2 do
 min ← i
 for j ← i + 1 to n − 1 do
 min ← j
 swap A[i] and A[min]
selectionSort
"Sort me using selection sort. Levitin §3.1"

| indexOfMin n A |
A ← self.
n ← self size.
1 to: n - 1 do: [i |
 indexOfMin ← i.
i + 1 to: n do: [j |
 (A at: j) < (A at: indexOfMin) ifTrue: [|
 indexOfMin ← j]. |
 A swap: i with: indexOfMin]

ALGORITHM SelectionSort(A[0..n – 1])
//Sorts a given array by selection sort
//Input: An array A[0..n – 1] of orderable elements
//Output: Array A[0..n – 1] sorted in ascending order
for i ← 0 to n – 2 do
 min ← i
 for j ← i + 1 to n – 1 do
 swap A[i] and A[min]
Ex 3.1, Problem 4

a. Design a brute-force algorithm for computing the value of a polynomial

\[p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \]

at a given point \(x_0 \) and determine its worst-case efficiency class.
Ex 3.1, Problem 4

a. Design a brute-force algorithm for computing the value of a polynomial

\[p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \]

at a given point \(x_0 \) and determine its worst-case efficiency class.

Write it down clearly, so I can project it with the document camera
Ex 3.1, Problem 4

a. Design a brute-force algorithm for computing the value of a polynomial

\[p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 \]

at a given point \(x_0 \) and determine its worst-case efficiency class.

b. If the algorithm you designed is in \(\Theta(n^2) \), design a linear algorithm for this problem.
Solution to Problem 4

a. Design a brute-force algorithm for computing the value of a polynomial

\[p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \]

at a given point \(x_0 \) and determine its worst-case efficiency class.

Algorithm *BruteForcePolynomialEvaluation*(\(P[0..n] \), \(x \))

//The algorithm computes the value of polynomial \(P \) at a given point \(x \)
//by the “highest-to-lowest term” brute-force algorithm
//Input: Array \(P[0..n] \) of the coefficients of a polynomial of degree \(n \),
//stored from the lowest to the highest and a number \(x \)
//Output: The value of the polynomial at the point \(x \)
\(p \leftarrow 0.0 \)
for \(i \leftarrow n \) downto 0 do
 \(power \leftarrow 1 \)
 for \(j \leftarrow 1 \) to \(i \) do
 \(power \leftarrow power \times x \)
 \(p \leftarrow p + P[i] \times power \)
return \(p \)
Solution to Problem 4

Algorithm \textit{BruteForcePolynomialEvaluation}(P[0..n], x)
//The algorithm computes the value of polynomial \(P \) at a given point \(x \)
//by the “highest-to-lowest term” brute-force algorithm
//Input: Array \(P[0..n] \) of the coefficients of a polynomial of degree \(n \),
//stored from the lowest to the highest and a number \(x \)
//Output: The value of the polynomial at the point \(x \)
\(p \leftarrow 0.0 \)
for \(i \leftarrow n \) downto 0 do
 \(p \leftarrow 0.0 \)
 \(\text{power} \leftarrow 1 \)
 for \(j \leftarrow 1 \) to \(i \) do
 \(\text{power} \leftarrow \text{power} \times x \)
 \(p \leftarrow p + P[i] \times \text{power} \)
return \(p \)

- size of input is degree of polynomial, \(n \)
- number of multiplications depends only on \(n \)
- number of multiplications, \(M(n) \in \ ? \)

A. \(\Theta(n) \)
B. \(\Theta(n^2) \)
C. \(\Theta(n \lg n) \)
D. \(\Theta(n^3) \)
Ex 3.1, Problem 4

a. Design a brute-force algorithm for computing the value of a polynomial

\[p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 \]

at a given point \(x_0 \) and determine its worst-case efficiency class.

b. If the algorithm you designed is in \(\Theta(n^2) \), design a linear algorithm for this problem.
Solution to Problem 4

Algorithm BetterBruteForcePolynomialEvaluation($P[0..n]$, x)
// The algorithm computes the value of polynomial P at a given point x
// by the “lowest-to-highest term” algorithm
// Input: Array $P[0..n]$ of the coefficients of a polynomial of degree n,
// from the lowest to the highest, and a number x
// Output: The value of the polynomial at the point x
$p ← P[0]$; $\text{power} ← 1$
for $i ← 1$ to n do
 $\text{power} ← \text{power} \times x$
 $p ← p + P[i] \times \text{power}$
return p
True or False?

✧ It is possible to design an algorithm with better-than-linear efficiency to calculate the value of a polynomial.

A. True
B. False
Ex 3.1, Problem 9

iad Is selection sort stable?

- The definition of a stable sort was given in Levitin §1.3

A. Yes, it is stable

B. No, it is not stable
Ex 3.1, Problem 10

Is it possible to implement selection sort for a linked-list with the same $\Theta(n^2)$ efficiency as for an array?

A. Yes, it is possible

B. No, it is not possible
BubbleSort

ALGORITHM \textit{BubbleSort}(A[0..n - 1])

//Sorts a given array by bubble sort
//Input: An array A[0..n – 1] of orderable elements
//Output: Array A[0..n – 1] sorted in ascending order

\bf{for} i \leftarrow 0 \bf{to} n - 2 \bf{do}

\bf{for} j \leftarrow 0 \bf{to} n - 2 - i \bf{do}

BubbleSort

ALGORITHM \(\text{BubbleSort}(A[0..n - 1]) \)

//Sorts a given array by bubble sort
//Input: An array \(A[0..n - 1] \) of orderable elements
//Output: Array \(A[0..n - 1] \) sorted in ascending order

for \(i \leftarrow 0 \) to \(n - 2 \) do
 for \(j \leftarrow 0 \) to \(n - 2 - i \) do

• Is BubbleSort stable?
BubbleSort

ALGORITHM \(\text{BubbleSort}(A[0..n - 1]) \)

//Sorts a given array by bubble sort
//Input: An array \(A[0..n - 1] \) of orderable elements
//Output: Array \(A[0..n - 1] \) sorted in ascending order

\[
\text{for } i \leftarrow 0 \text{ to } n - 2 \text{ do } \\
\quad \text{for } j \leftarrow 0 \text{ to } n - 2 - i \text{ do } \\
\quad \quad \text{if } A[j + 1] < A[j] \text{ swap } A[j] \text{ and } A[j + 1]
\]

- Is BubbleSort stable?

- **Prove** that, if BubbleSort makes no exchanges on a pass through the array, then the array is sorted.
String Matching
Applications:

- Find all occurrences of a particular word in a given text
 - Searching for text in an editor
 - ...

- Compare two strings to see how similar they are to one another ...
 - Code diff-ing
 - DNA sequencing
 - ...

- ...
Notation

Let A be a set of characters (the alphabet)

The set of strings that consist of finite sequences of characters in A is written A^* (the Kleene Star)

For a string s, we’ll write:

- $s[i]$ for the i^{th} character in s
- $|s|$ for the length of s
- $s[i..j]$ for the substring of s from $s[i]$ to $s[j]$
- $s[..n]$ for the prefix $s[1..n]$, and $s[m..]$ for $s[m.|s|]$
- ε for the empty string (example: $s[1..0] = \varepsilon$)
- st for the concatenation of s with another string t
Simple Complexities:

Assume that string is represented by an array of consecutive characters.

What's the worst case running time for brute-force testing to determine:

- whether $s = t$
Simple Complexities:

Assume that string is represented by an array of consecutive characters.

What's the worst case running time for brute-force testing to determine:

- whether $s = t$

A. $\Theta(1)$

B. $\Theta(|s|)$

C. $\Theta(|\min(s, t)|)$

D. $\Theta(|s|^2)$

E. None of the above
Simple Complexities:

Assume that string s is represented by an array of consecutive characters

- Worst case running time for computing $s[i]$?
Simple Complexities:

Assume that string s is represented by an array of consecutive characters

- Worst case running time for computing $s[i]$?

 A. $\Theta(1)$
 B. $\Theta(|s|)$
 C. $\Theta(|\min(|s|, i)|)$
 D. $\Theta(i)$
 E. None of the above
Simple Complexities:

Assume that strings are represented by arrays of consecutive characters

- Worst case running time for computing st
Simple Complexities:

Assume that strings are represented by arrays of consecutive characters

Worst case running time for computing st?

A. $\Theta(1)$
B. $\Theta(|s|)$
C. $\Theta(|\min(s, t)|)$
D. $\Theta(|\min(s, t)|^2)$
E. None of the above
Simple Complexities:

Assume that string is represented by an array of consecutive characters

- Worst case running times for computing $s[i..j]$
Simple Complexities:

Assume that string is represented by an array of consecutive characters

Worst case running times for computing s[i..j]

A. $\Theta(1)$
B. $\Theta(|s[i..j]|)$
C. $\Theta(j-i)$
D. $\Theta((j-i)^2)$
E. None of the above
String Matching

- Find all occurrences of a pattern string p in a text string t

For example:

```
abraca[da]bracalama[azo][oo]
[rac] [rac]
```
String Matching, formally

- Given a text string, \(t \), and a pattern string, \(p \), of length \(m = |p| \), find the set of all shifts \(s \) such that \(p = t[s+1..s+m] \)

```
  a b r a c a d a b r a c a l a m a z o o
```

- \(s=2 \)

```
  a b r a c a d a b r a c a l a m a z o o
```

```
  r a c
```

- \(s=9 \)

```
  a b r a c a d a b r a c a l a m a z o o
```

```
  r a c
```
Brute-force Matching Algorithm

abracadabraocalamazoo

rac
Brute-force Matching Algorithm

abracadabraclamazoo

race

abracadabraclamazoo

race
Brute-force Matching Algorithm
Brute-force Matching Algorithm

...
Brute-force Matching Algorithm

abracadabraclamazoo

drac

abracadabraclamazoo

drac

drac

abracadabraclamazoo

drac

abracadabraclamazoo

drac
Brute-force Matching Algorithm

| a | b | r | a | c | a | d | a | b | r | a | c | a | l | a | m | a | z | o | o |
| r | a | c |

| a | b | r | a | c | a | d | a | b | r | a | c | a | l | a | m | a | z | o | o |
| r | a | c |
Brute-force Matching Algorithm

What's the asymptotic complexity of brute-force matching?:

```
abraca
dabracalama
```

```
abraca
dabracalama
```
What's the asymptotic complexity of brute-force matching?:

A. $\Theta(1)$
B. $\Theta(|t|)$
C. $\Theta(|p|)$
D. $\Theta(|p|(|t|-|p|+1))$
E. None of the above
Brute-force Matching Algorithm

\[
\text{match}(t, p) \\
m \leftarrow |p| \\
n \leftarrow |t| \\
\text{results} \leftarrow \{\} \\
\text{for } s \leftarrow 0..n-m \text{ do} \\
\hspace{1em} \text{if } p = t[s+1 .. s+m] \text{ then} \\
\hspace{2em} \text{results} \leftarrow \text{results} \cup \{s\} \\
\text{return results}
\]
Brute-force Matching Algorithm

\[
\text{match}(t, p) \\
\quad m \leftarrow |p| \\
\quad n \leftarrow |t| \\
\quad \text{results} \leftarrow \{\} \\
\quad \text{for } s \leftarrow 0..n-m \text{ do} \\
\quad \quad \text{if } p == t[s+1 .. s+m] \text{ then} \\
\quad \quad \quad \text{results} \leftarrow \text{results} \cup \{s\} \\
\quad \text{return results}
\]

Asymptotic Complexity:
\(\Theta(m(n-m+1))\)
Can we do better?

- Perhaps surprisingly: yes!
- Key insight: when a match fails, we learned something
 - Better algorithms in Chapter 7