Deterministic Finite State Automata

• A very simple form of “computer”
• Used in real life for control circuits
 • Hardware control: e.g. traffic lights, appliances, computer CPU’s
 • Software control: e.g. servers, games, telephone and network communications
Example: Door Controller

• As found at supermarket or airport

• The state diagram is a universally understood way of describing such a machine.
Door Controller (continued)

- This FSA can also be represented as a transition function or transition table:

<table>
<thead>
<tr>
<th>state</th>
<th>NEITHER</th>
<th>FRONT</th>
<th>REAR</th>
<th>BOTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSED</td>
<td>CLOSED</td>
<td>OPEN</td>
<td>CLOSED</td>
<td>CLOSED</td>
</tr>
<tr>
<td>OPEN</td>
<td>CLOSED</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
</tbody>
</table>

- This contains the same information as the diagram.

REAR
NEITHER
FRONT
REAR BOTH
NO SIGNAL
FRONT
REAR BOTH
CLOSED
OPEN
NEITHER
FSA that “recognize” languages

- FSA “accepts” a string if it ends up in a “final” state after reading that string from an “input tape”.

- Start state indicated with

- Final states indicated with

- What strings are accepted by the FSA in the figure?
Let’s try an example

- input: 100101
Let’s try an example

- input: 100101

Always start in state q_1
Let’s try an example

- input: 100101
Let’s try an example

• input: 100101
Let’s try an example

- input: 100101
Let’s try an example

- **input:** 100101
Let’s try an example

- input: 100101
Let’s try an example

• input: 100101

Since machine is in a final state when it reaches the end of the input, it ACCEPTS the input
Example, continued

- What strings are accepted by this DFA?
- The set of all strings accepted by a DFA forms the language accepted (or recognized) by the DFA.

\[L = \{ w \in \{0,1\}^* \mid \} \]
Formal Definition of DFA

• A (deterministic) finite (state) automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where:
 1. \(Q\) is a finite set called the states,
 2. \(\Sigma\) is a finite set called the alphabet,
 3. \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function,
 4. \(q_0 \in Q\) is the start state, and
 5. \(F \subseteq Q\) is the set of final (or accept) states
Why use a formal definition?

1. It is precise, e.g., it says that
 1. There can be no accept states \(F = \emptyset \)
 2. \(\delta \) is total, so there is *exactly one* “next state” for each input symbols in the Alphabet

2. We can prove things about it.

3. We can easily turn it into a computer program
Example, again

• Diagram:

• Formal definition:

1. \(Q = \{ \} \)
2. \(\Sigma = \{ \} \)
3. \(q_0 = \)
4. \(\delta = \)
5. \(F = \{ \} \)
DFAs for Simple Languages

- Consider the alphabet $\Sigma = \{a,b\}$
- What DFA recognizes the language \emptyset?
- What DFA recognizes the language $\{\varepsilon\}$?
- What DFA recognizes the language $\{a\}$?
- The language $\{aa\}$? The language $\{a,b\}$? The language $\{aa, ab\}$?
Another Example

• What language is recognized by this machine?

• Stumped? Try using a simulator tool to explore the machine's behavior on different inputs. (See course web page for a few pointers.)
Formal Definition of DFA Computation

• Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA and let $w = a_1a_2…a_n$ be a string, where each $a_i \in \Sigma$.

• M accepts w iff there is a sequence of states $r_0, r_1, r_2, ..., r_n \in Q$ such that:
 1. $r_0 = q_0$
 2. $r_i = \delta(r_{i-1}, a_i)$ for $i = 1, 2, ... n$
 3. $r_n \in F$
IALC’s Definition of Acceptance

Extend the definition of δ (which is defined on symbols) to $\hat{\delta}$, defined on strings of symbols:

\[
\hat{\delta}(q, \epsilon) = q \\
\hat{\delta}(q, xa) = (\delta(\hat{\delta}(q, x), a) \quad \forall a \in \Sigma, x \in \Sigma^*
\]

Now we say that M accepts string w iff $\hat{\delta}(q_0, w) \in F$.

It should be easy to see that these two definitions are equivalent, with $r_i = \hat{\delta}(q_0, a_1 a_2 a_3 \ldots a_i), \forall i \in [0, n]$
Regular Languages

• A language L is regular iff there exists a DFA M such that M recognizes L.

• We write L(M) for the language recognized by M.

• Decision problems associated with regular languages are particularly simple
Combining DFA’s

• Fix alphabet $\Sigma = \{a,b\}$
• Find DFA’s recognizing the following:
 • $L_{bba} = \{w \mid w \text{ is one or more copies of } bba\}$
 • $L_{b\ldots} = \{w \mid w \text{ starts with } b\}$
 • $L_{2a} = \{w \mid w \text{ contains an even number of } a\text{’s}\}$
• Machines for $L_{bba} \cup L_{b\ldots}$ and $L_{b\ldots} \cup L_{2a}$ are easy
• But $L_{bba} \cup L_{2a}$ is harder
Product of States

• Here’s an easier example
 • \(L_{2a} = \{ w \mid w \text{ contains an even number of a’s} \} \)
 • Machine has two states:
 - state AE: # of a’s seen so far is even (accepting)
 - state AO: # of a’s seen so far is odd (not accepting)
 • \(L_{2b} = \{ w \mid w \text{ contains an even number of b’s} \} \)
 • Similarly, machine has states BE, BO
 • \(L_{2ab} = L_{2a} \cup L_{2b} \)
 • Machine has four states: (AE,BE), (AE,BO),
Closure Under Union

• Theorem: Suppose $L_1 = L(M_1)$ and $L_2 = L(M_2)$ for DFA’s M_1 and M_2. Then there exists a machine M such that $L(M) = L_1 \cup L_2$.

• Proof Idea: M should simulate both M_1 and M_2, in the sense that it keeps track of which state each of them is in after each input character. M should accept if either M_1 or M_2 would accept.
Details of Construction

- Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$

- Then $L(M) = L(M_1) \cup L(M_2)$ if $M = (Q, \Sigma, \delta, q_0, F)$, where
 - $Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$
 - Can also say Q is the **Cartesian product** $Q_1 \times Q_2$
 - $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
 - $q_0 = (q_1, q_2)$
 - $F = \{(r_1, r_2) \mid r_1 \in F_1 \lor r_2 \in F_2\}$
More on closure under union

• This construction is essentially what we did for L_{2ab}

• Eventual homework: give formal proof that this construction works

• What happens if we change “\lor” to “\land” in definition of F?
Regular Operations

• Let A and B be languages. We define the following regular operations:
 • Union: \(A \cup B = \{ x \mid x \in A \text{ or } x \in B \} \)
 • Concatenation: \(A \cdot B = \{ xy \mid x \in A \text{ and } y \in B\} \)
 • Star: \(A^* = \{x_1x_2...x_k \mid k \geq 0 \text{ and each } x_i \in A \} \)
• Claim: the set of regular languages is closed under the regular operations (that’s where the name comes from!)
Coding up DFA’s

• DFAs are very easy to simulate on a computer
 • Direct-coded approach:
 • states are program locations
 • transitions are jumps
 • Table-driven approach:
 • fixed code works for all machines
 • change data for each machine
Direct-coded L_{2a} in C

```c
#include "stdio.h"

#define ACCEPT {printf("accept\n"); return 0;}
#define REJECT {printf("reject\n"); return 0;}
#define IMPOSSIBLE {printf("invalid symbol in input\n"); return 1;}

int main (int argc, char **argv) {
    char *input = *++argv;

    goto Seven;

    Seven:
    switch (*input++) {
    case '\0': ACCEPT;
    case 'a': goto Sodd;
    case 'b': goto Seven;
    default: IMPOSSIBLE;
    }

    Sodd:
    switch (*input++) {
    case '\0': REJECT;
    case 'a': goto Seven;
    case 'b': goto Sodd;
    default: IMPOSSIBLE;
    }
}
```
Direct-coded L_{bba} in C

```c
int main (int argc, char **argv) {
    char *input = *++argv;

Sstart:
    switch (*input++) {
        case '\0': REJECT;
        case 'a':  goto Serr;
        case 'b':  goto Sb;
        default:   IMPOSSIBLE;
    }

Sb:
    switch (*input++) {
        case '\0': REJECT;
        case 'a':  goto Serr;
        case 'b':  goto Sbb;
        default:   IMPOSSIBLE;
    }

Sbb:
    switch (*input++) {
        case '\0': REJECT;
        case 'a':  goto Sbba;
        case 'b':  goto Serr;
        default:   IMPOSSIBLE;
    }

Sbba:
    switch (*input++) {
        case '\0': ACCEPT;
        case 'a':  goto Serr;
        case 'b':  goto Sb;
        default:   IMPOSSIBLE;
    }

Serr: ...
}
```
/* TABLE-DRIVEN DFA SIMULATOR */
/* Machine-specific data follows. It must be
adjusted for each different DFA to be simulated.
*/
/* Here we specify the DFA for language Lbba */

/* number of states */
#define STATES 5

/* number of symbols */
#define SYMBOLS 2

/* convert ASCII character to symbol number
0,1,2,...,SYMBOLS-1 */
#define SYMBOL_OF_CHAR(c) (c-'a')

/* these are just defined to increase legibility
in the remainder
of the machine description */
#define Sstart 0
#define Sb 1
#define Sbb 2
#define Sbba 3
#define Serr 4

int initial_state = Sstart;

int next_state[STATES][SYMBOLS] =
{ /* from Sstart */ {Serr,Sb},
/* from Sb */ {Serr,Sbb},
/* from Sbb */ {Sbba,Serr},
/* from Sbba */ {Serr,Sb},
/* from Serr */ {Serr,Serr} };

int is_accepting_state[STATES] =
{ /* Sstart */ 0,
/* Sb */ 0,
/* Sbb */ 0,
/* Sbba */ 1,
/* Serr */ 0 };

int initial_state = Sstart;

int next_state[STATES][SYMBOLS] =
{ /* from Sstart */ {Serr,Sb},
/* from Sb */ {Serr,Sbb},
/* from Sbb */ {Sbba,Serr},
/* from Sbba */ {Serr,Sb},
/* from Serr */ {Serr,Serr} };

int is_accepting_state[STATES] =
{ /* Sstart */ 0,
/* Sb */ 0,
/* Sbb */ 0,
/* Sbba */ 1,
/* Serr */ 0 };

32

Portland State University
Driver for table-driven DFA

/* --- */
/* The simulation code is identical for every DFA */

#include "stdio.h"

int main (int argc, char **argv) {
 char *input = *++argv;

 int current_state = initial_state;
 char c;
 while (c = *input++) {
 int symbol = SYMBOL_OF_CHAR(c);
 if (symbol >=0 && symbol < SYMBOLS)
 current_state = next_state[current_state][symbol];
 else {
 printf("invalid symbol in input\n");
 return 1;
 }
 }
 if (is_accepting_state[current_state])
 printf("accept\n");
 else
 printf("reject\n");
 return 0;
}