
UEFI Firmware Fuzzing with
Simics Virtual Platform

Zhenkun Yang, Yuriy Viktorov, Jin Yang, Jiewen Yao and Vincent Zimmer
Intel Corporation

{zhenkun.yang, yuriy.viktorov, jin.yang, jiewen.yao, vincent.zimmer}@intel.com

Abstract—This paper presents a fuzzing framework for Unified
Extensible Firmware Interface (UEFI) BIOS with the Simics vir-
tual platform. Firmware has increasingly become an attack target
as operating systems are getting more and more secure. Due to
its special execution environment and the extensive interaction
with hardware, UEFI firmware is difficult to test compared to
user-level applications running on operating systems. Fortunately,
virtual platforms are widely used to enable early software and
firmware development by modeling the target hardware platform
in its virtual environment before silicon arrives. Virtual platforms
play a critical role in left shifting UEFI firmware validation
to pre-silicon phase. We integrated the fuzzing capability into
Simics virtual platform to allow users to fuzz UEFI firmware
code with high-fidelity hardware models provided by Simics.
We demonstrated the ability to automatically detect previously
unknown bugs, and issues found only by human experts.

Index Terms—Firmware, Security, Simics, Fuzzing, UEFI

I. INTRODUCTION

Computer security is important, with potential exploits rang-
ing from the application space down to the hardware. Among
the various layers of the stack, firmware security is assuming a
more prominent role [1], [2]. Firmware is the layer of software
that ships with the hardware, typically in a semiconductor non-
volatile storage, such as SPI flash, and manages a plurality of
activities. These activities include initialization of the CPU
cores, memory controllers, I/O buses, and ancillary devices.
The firmware is typically the highest integrity software in the
system that is responsible for maintaining the chain of boot
trust, selecting the operating system, and providing various
configuration options to the end user. The Unified Extensible
Firmware Interface (UEFI), along with standards such as
System Management BIOS and Advanced Configuration and
Power Interface, provides a consistent environment to the
operating systems (OS) and pre-OS applications. To-date UEFI
style firmware has shipped on over 4 billion machines.

One common misconception people often have entails the
believe that once the BIOS boots the platform and handles
the control to the OS, its life time ends. In fact, UEFI BIOS
provides critical services while OS is running. For example, on
Intel-based platforms, the OS can enter System Management
Mode (SMM) by triggering System Management Interrupt
(SMI). SMI handlers that are installed in BIOS will be triggered
to serve requests from OS. SMM is the most privileged state of
execution on Intel-based platforms. SMM is the perfect place
to hide a root kit because code running in SMM can read and

write everything on the platform, while being invisible to OS
and anti-virus software.

Software community has common practices and great tools
available for quality assurance. For example, debugging and
profiling tools are widely used for software development. More
advanced techniques such as fuzzing, symbolic execution
and static analysis are becoming popular. However, firmware
development and validation community faces numerous chal-
lenges applying those tools due to the special execution
environments firmware is running on. The execution regime of
boot firmware does not resemble any known operating system
runtime, such as Linux or Windows, thus requiring custom,
bespoke solutions.

These are various challenges in assuring UEFI firmware.
The non-volatile SPI flash which stores the UEFI firmware has
to support other binary objects, such as management controller
firmware, core microcode patches, manufacturing defaults, and
redundant BIOS elements to support a fault-tolerant update.
This beach-front property dimension of the storage is com-
pounded by the fact that a modern UEFI firmware solution is
typically built from over 200 relocatable executable images.
Any attempt to provide instrumentation, checkers, or in-line
reference monitors will aggravate the storage challenge. For
example, binary instrumentation will bloat the image size, thus
making the image not fitting in the SPI flash.

Virtual Platforms (VP) are widely used in industry for pre-
silicon prototyping. A typical example is how industry uses
Simics for early software/firmware development. VP provides
a virtualized execution environment for firmware and the
underlying hardware. Although VP is mainly used for pre-
silicon software and firmware enabling, it has great potential
for security testing of UEFI firmware at early development
stage. We leverage the full visibility VP provides and the
recent advancement of software analysis techniques to test
UEFI firmware more efficiently in an automated fashion.

There has been work [3] on using symbolic execution
technique [4], [5] on SMI handlers. The basic idea is to dump
SMM memory (SMRAM) from a live system during the UEFI
firmware boot process, then memory-map the dumped SMRAM
into a user-level application via a test harness. An off-the-
shelf binary symbolic execution engine is used to explore
paths of the test harness as a user-level application from
a given SMI handler’s entry point. The idea works great if
privileged instructions and I/O operations are absent from
the SMI handlers. However, SMM is designed for handling

system-wide functions like power management and system
hardware control, therefore privileged and I/O instructions are
very common in SMM. Intel has developed a new tool, Host-
based Firmware Analyzer [6], for the UEFI community. It
allows UEFI firmware developers to run advanced testing tools
such as fuzzing, symbolic execution, and address sanitizers in
a host environment. The basic idea to extract software logic
of the UEFI code to user-level applications and use off-the-
shelf state-of-the-art software testing tools to catch firmware
issues at the development stage. However, when the code under
test interacts with the underlying hardware a lot, lifting the
firmware code to user-level applications is nontrivial.

Fuzzing has become a de facto standard in automated soft-
ware security testing domain recently due to its effectiveness
and ease of use. Fuzzing is a powerful technique to ensure the
robustness and security of software systems. American Fuzzy
Lop (AFL) is one popular coverage-guided fuzzer that utilizes
genetic algorithms to permute inputs based on code coverage
feedback in an effort to identify specific inputs that cause
crashes or hangs in target code. For example, syszkaller [7]
focuses on fuzzing OS kernel system calls. kAFL [8] uses
hardware assisted technique, i.e. Intel Processor Trace, to
speed up fuzzing of OS Kernels. Triforce [9] supports full-
system fuzzing using QEMU emulator, but it is mainly used
for fuzzing OS due to limited availability of hardware models.
To the best of our knowledge, there is no prior work on fuzzing
UEFI firmware with the help from virtual platforms. This work
enables guided fuzzing capabilities within Simics, it provides
users the capability to fuzz the software and firmware running
inside Simics platform and drive hardware inputs by leveraging
the high-fidelity hardware models provided by Simics. This
shifts left the security validation of software and firmware,
and enables bugs and security vulnerabilities elimination at
early stage.

We demonstrate the effectiveness and versatility of the
fuzzing framework with three usage scenarios: 1) security
researchers who want to test BIOS security with only access
to the BIOS binary (no source code available); 2) BIOS
development teams that have access of BIOS source code
but limited knowledge of virtual platform, and are willing to
modify source code to interact with fuzzing engine for more
efficient testing; and 3) BIOS validation teams that have access
of BIOS source code and knowledge of virtual platform for
more comprehensive testing, e.g. driving untrusted I/O inputs
to the BIOS. Experiments show that our fuzzing approach can
detect previously unknown high-critical bugs that may lead to
privilege elevation, and issues that were only found by security
experts with manual code inspection.

II. BACKGROUND

A. UEFI Firmware Security

UEFI provides a rich set of security capabilities. These are
often referred to as the various Roots of Trust (RoT). RoT is
a capability that must implicitly be trusted. This includes the
update capability of the UEFI firmware. This is a set of code
that processes potentially attacker-controlled input in order to

orchestrate a replacement of existing UEFI elements. UEFI
BIOS also serves as a RoT for verification, such as Secure
Boot [10], which entails a high degree of complexity. There
have been many issues found in these regimes over time [11].
Finally, there are other UEFI BIOS based RoTs, namely the
RoT for recovery and RoT for measurement. In the case of
recovery, any flaws in the UEFI recovery flow can render
machine into an inoperable state, or “brick.” And in the case
of the measurement, the UEFI BIOS logic that records the
cryptographic hash of the boot executables and data into the
Trusted Platform Module can be bypassed [12].

B. Virtual Platform

A VP is a software system that models a hardware system
that can run the same software as the hardware it models.
A VP is simulated on a host computer that may be different
from the hardware modeled by the virtual platform. Popular
virtual platforms include open-source QEMU [13] emulator
and commercial Simics [14] full-system simulator. VP allows
software and firmware (SW/FW) development happen before
silicon arrives. The shift-left benefits brought by VP help
vendors to shorten the time-to-market of their products.

However, there are a few issues with VP itself and the
way how industry is using VP. SW/FW are not easy to be
tested in the encapsulated VP environment as compared to
software running as user-level applications where engineers
have many available tools to test their software, e.g. code cov-
erage, memory profiling, and fuzzing. For example, many code
coverage tools are readily available in software development
industry for years, whereas a good solution to measure UEFI
firmware code coverage in Simics was made available only
recently. As a result, the SW/FW being developed in Simics
is not well tested before it is shipped to the customers. To
the best of our knowledge, VPs are mainly used for early
platform bring-up, which means that the thorough functional
and security validation is still done on real hardware at post-
silicon stage. However, security has become more and more
important given recent exposure of security vulnerabilities [1],
[2]. Performing security validation at post-silicon stage in a
compressed timeline results in insecure SW/FW. This paper
tries to bring the best testing practices used in software
community to firmware security validation into VP to enable
early quality assurance and security testing of SW/FW.

C. Fuzzing

Fuzzing is currently one of the most easy-to-use and popular
dynamic testing techniques for security vulnerabilities discov-
ery. Conceptually fuzzing generates lots of inputs, expected
or unexpected, to the program under test, and monitors the
program for abnormal behavior and exceptions. A fuzzer
can be categorized as generation-based or mutation-based
depending on how inputs are generated. Generation-based
fuzzers generate inputs from scratch with or without the
knowledge of program input structure or semantics. Mutation-
based fuzzers generate inputs by modifying existing ones
with some heuristics. AFL is a popular mutation-based fuzzer

which uses compile-time instrumentation to collect coverage
feedback of the target program and uses genetic algorithms to
permute inputs to maximize code coverage and therefore to
cause crashes or hangs in the program. LibFuzzer is another
coverage-guided fuzzer that is part of the LLVM compiler
framework. However, these fuzzers are designed to fuzz user-
level applications (with source code available) that are running
on an operating system, therefore fuzzing firmware running in
a VP is not possible with the current off-the-shelf fuzzers.

III. FUZZING FRAMEWORK

restore context
(restore snapshot)

virtual hardwareFirmware

monitor
exceptions
coverage

fuzzed
input

take
snapshot

start
point

Fuzzing
Engine

Simics Virtual Platform

Target Platform

end
point

feedback

Fig. 1. Architecture of the fuzzing engine and Simics virtual platform.
Fuzzing engine and Simics run on host machine, and firmware and virtual
hardware (virtual processor, memory, and devices) run on target platform
inside Simics. Detailed workflow of the framework is shown in Fig. 2.

A. Design

We now present the high-level overview of the design of
our feedback-driven firmware fuzzing framework that supports
unmodified and un-instrumented firmware image with Simics
virtual platform. When designing a feedback-driven fuzzer, the
following questions should be considered:

1) How and where to use fuzzed input: the fuzzer will
generate raw bytes as fuzzed input to the target program,
It is the user’s responsibility to figure out where and how
to read the input to the program under test.

2) How to save/store program state: for long-running pro-
grams where the functionality under test is in the middle
of the program, starting the program from beginning and
running the program all the way to the end is going to
slowdown the fuzzing process. Some mechanism to save
and restore the program state during fuzzing to avoid
unnecessary repetition is required.

3) How to collect feedback: execution feedback is crucial for
the fuzzing performance. It guides the fuzzer to generate
more effective test inputs to cover more branches.

4) How to monitor abnormal behavior: Fuzzer needs to
know the program’s symptoms if something goes wrong.

Fig. 1 shows the overall architecture of our UEFI firmware
fuzzing framework, which includes AFL fuzzing engine, and
Simics virtual platform. The target platform, which runs
firmware and includes the underlying virtual hardware, is emu-
lated by Simics. From fuzzing engine’s perspective, the whole
Simics virtual platform is the binary under test. However,
we configured Simics in a way that the target CPU is only

executing the portion of the firmware that we are interested
in testing, thus, we are effectively testing the firmware with
Simics virtual environment. We address the questions raised
in the beginning of this section as follows:

1) inject fuzzed input: This can be done either from Simics
to inject the data into correct location, or from firmware
by calling custom APIs to request input from Simics (see
Section III-B for detail)

2) save/restore: This is done by forking (fork system call)
the entire Simics process to preserve the execution state.

3) feedback: We configure Simics to only trace the execu-
tion of the firmware. Fuzzer has the illusion that it is
fuzzing the whole Simics process, but we only collect
the feedback on the firmware execution.

4) monitor: We instrument Simics to trap important
firmware panic functions, such as CpuDeadLoop().

There are a few reasons why off-the-shelf fuzzing engines
do not work for software or firmware running in virtual
platforms: 1) The fuzzing engines rely on compiler instru-
mentation to instrument the source code to collect feed-
back (execution tracing data) during the fuzzing process, the
feedback will be used to determine if a mutation is worth
keeping or not. However, software and firmware are compiled
with all kinds of compilers, instrumenting the code may not
be even possible due to firmware size restrictions, compiler
restrictions, performance concerns, or even the availability of
source code. 2) Both the fuzzing engine and the program
under test run as applications in an operating system. The
fuzzing engines usually uses fork() system call to preserve
program states between each run of the inputs. However,
system software and firmware run inside virtual platforms,
therefore process hooking and forking is not permissible under
virtual platforms.

B. Implementation

4

execute

execute

1

get feedback f based on tracing
terminate forked process

Q←{seed}

Host
AFL Simics

Target
Firmware Hardware

instantiate
platform

boot

start up

RDY to begin fuzzingRDY
fork Simics
i ← dequeue(Q) resume execution

get new input

copy input i to target, enable tracing

end condition reached

pass feedback f
N ← gen-new(f)
enqueue(Q, N)

next iteration

…
...

…
...

…
...

3

2

5

6

7

8

9

Start VP
initialize
platform

fuzzing
loop

Fig. 2. Workflow of the integration of AFL fuzzer and Simics virtual
platform. Arrows from firmware to Simics are implemented by means of
magic instructions; state save/restore are implemented via fork system call.

Fig. 2 illustrates the overall guided fuzzing process: in step
1○, AFL fuzzer starts and initializes the test case queue Q

with the user-provided initial input (also called seed, in the

form of file), and launches Simics as a child process. Then
Simics instantiates the given target platform with its high-
fidelity hardware models and begins to boot firmware in step
2○. In step 3○, firmware starts running and initializes the

underlying hardware to the point of interest, and signals Simics
that it is ready to begin fuzzing. Simics forwards the signal
to its parent process AFL. In step 4○ AFL forks the Simics
process, which preserves the state of the VP together with
the state of the firmware running inside of it. AFL gets an
input file i from its test case queue Q, and signals the child
Simics process to proceed with firmware execution. In step 5○,
firmware executes to a point where it needs to read the input,
then in step 6○ Simics copies the input i from host to the target
platform, and enables tracing the firmware execution with its
tracing capability. The tracer that we developed in Simics
keeps track of the branching information during firmware
execution. In step 7○, firmware consumes the fuzzed input,
executes, and signals Simics until it reaches the user-specified
end point. In step 8○, Simics processes the traced data to get
the branch coverage, feeds the information back to AFL, and
terminates itself. In step 9○, AFL generates new inputs based
on the branch coverage feedback and the mutation strategy,
and transitions to step 4○.

Fuzzer repeatedly mutates the input file with fuzzing strate-
gies, and collects coverage feedback based on the execution
tracing. If any of the mutations yields new code transition
recorded by the tracing instrumentation, fuzzer adds the mu-
tated input into the queue and to the list of generated test
inputs. The whole process repeats until the user stops it or a
user-specified timeout is reached.

The performance of the process forking critically depends
on the memory footprint of the process. For the VP process
it can be as big as the entire virtual address space plus
VP overhead (tens of GB of RAM). In order to minimize
Simics process memory footprint we use the check-pointing
mechanism. The checkpoints are loaded lazily (only when a
corresponding data are accessed). So, saving and restoring the
checkpoint after VP is set to initial state significantly reduces
the memory footprint and allows faster process forking.

We also need to efficiently trace the firmware execution
in Simics. The actual approach for execution tracing is VP
specific and the fastest way to trace the code execution inside
a VP depends on the features available. We use Simics’
instrumentation framework (with performance in mind) as a
mechanism for inspecting various parts of the running simu-
lated system. This approach, compared to the other approaches
available in Simics, avoids overhead by avoiding unnecessary
thread synchronization.

Communication of the firmware code running on a target
machine with the VP is commonly done by magic instructions
(the instructions that has a special meaning for VP and is
interpreted as a message to VP once executed on target).
Simics implements magic instructions via CPUID instruction
with unused value range for RAX. We extended this approach,
passing additional message information in RBX, RCX and RDX
before calling CPUID and passing response back in RSI after.

This is a foundation for the firmware-to-VP communication
protocol used by firmware to: 1) begin the fuzzing process, 2)
request a new fuzzed input (GetFuzzedInput()), and 3)
notify that the start or end point is reached. Our implementa-
tion of the firmware-to-VP communication protocol preserves
the normal execution of the instrumented code on a host, while
adding a special behavior when executed on target.

IV. EXPERIMENTAL RESULTS

In this section we demonstrate the versatility of our fuzzing
framework with three different ways (Table I) to instrument
the execution and introduce fuzzed inputs to the firmware:

1) Running unmodified and uninstrumented firmware, de-
tecting the start/end point within Simics, and injecting
fuzzed input from Simics to a proper location where
firmware then consumes it.

2) Modified firmware running on the target signals Simics
when execution reaches the start/end point. Simics injects
the fuzzed input to a proper location.

3) Modified firmware running on the target signals Sim-
ics when execution reaches the start/end point and re-
quests fuzzed inputs from Simics by explicitly calling
GetFuzzedInput().

TABLE I
EXPERIMENTS FOR DIFFERENT FUZZING SCENARIOS OF THE FRAMEWORK

start/end point Fuzzed Input Experiment
A. Simics detects Simics injects Fuzzing SMI Handlers
B.1 Firmware signals Firmware requests Fuzzing USB I/O at firmware level
B.2 Firmware signals Simics injects Fuzzing USB I/O at memory level

For experiment A, we demonstrate that given a firmware
binary image without the source code, we are able to locate
SMI handlers in SMRAM within Simics, inject fuzzed input
from Simics, and fuzz the SMI handlers. For experiment B.1,
we demonstrate that with access to the firmware source code,
firmware can interact with the fuzzing engine by explicitly
calling fuzzing APIs to signal the start/end point and request
fuzzed input. For experiment B.2, since Simics provides full
visibility and control over the high-fidelity hardware models,
we demonstrate that we are able to fuzz the hardware I/O,
i.e. driving potentially malicious hardware inputs to firmware
from Simics and testing the resiliency of the firmware.

All the experiments are done on a workstation with Intel
Xeon E5-2697 @ 2.60 GHz processor and 64 GB of RAM.
We use EDK II minimum platform firmware for Simics X58
platform1. The performance of the integrated fuzzing solution
is about 100 iterations per second. It lies between tens and
hundreds of iterations per second, depending on the VP
memory footprint, length of the code block to fuzz and how
deep execution goes on particular input. The performance is
about 10x slower, compared to fuzzing applications in user-
space, yet sufficient to fuzz complex firmware code effectively
with high-fidelity hardware models in Simics.

1https://github.com/tianocore/edk2-platforms/tree/master/Platform/Intel/S
imicsOpenBoardPkg

A. Fuzzing SMI Handlers

SMM is the highest and the most privileged CPU operating
mode on Intel-based platforms. Code running in SMM mode
resides in a special memory region (SMRAM) that is protected
by hardware. Code running in SMM mode has access the
whole system memory (including OS and hypervisor) and I/O.
However, under normal circumstances, code running in SMM
should only access certain address ranges. SMM mode is en-
tered by invoking system management interrupt (SMI). SMM is
intended for use only by BIOS, and SMI handlers are installed
by BIOS. Upon receiving SMI, BIOS calls the corresponding
SMI handler to serve the interrupt request. Each handler
communicates with the caller through a buffer and its size.
Here is an example of a SMI handler SampleSmiHandler.
Parameter CommBuffer and CommBufferSize are used
for exchanging data between the handler and non-SMM agents.

1 int SampleSmiHandler(EFI_HANDLE DispatchHandle,
2 const void *RegisterContext,
3 void *CommBuffer,
4 unsigned int *CommBufferSize)

Since CommBuffer and CommBufferSize are source of
untrusted inputs from non-SMM agents, e.g. operating system,
one of the main attack vectors on SMM is to construct mali-
cious communication buffers, which will cause SMI handlers
to corrupt SMM data, branching the execution or accessing
memory outside of SMRAM.

To demonstrate the capability of detecting such issues
with our fuzzing approach. We fuzz the CommBuffer and
CommBufferSize of the SMI handlers of interests. We
instrument Simics to trap every memory access. Upon each
memory access, we examine whether the memory location is
within ranges permitted for SMM. If the fuzzer generates an
input to the SMI handler that triggers an out-of-range memory
access, we then have found an issue in the SMI handler.

For SMI handlers, we know that they are in SMRAM, and
the location of SMRAM is known. We boot the firmware in
Simics until SMRAM is locked, then we stop the execution
and scan SMRAM for the exact location of the entry point
of each SMI handler. Since the signature of SMI handlers
and CommBuffer location are known in advance, we can
simply put the fuzzed input to the target system memory,
put relevant data on the stack (return address etc.), and load
values to the CPU registers according to calling convention.
For example, address of CommBuffer is loaded into R8,
address of CommBufferSize into R9, handler entry point
into RIP etc. Therefore, both the start/end (entry point/return
address) point and data injection (CommBuffer placement)
are managed by Simics.

We discovered issues in two SMI handlers. The issues
are related to memory accesses that are outside of SM-
RAM. We now explain the issue in OpalPasswordSmm
SMI handler for illustration. The fuzzing engine generated
a “buffer” and “size” which triggered out-of-range memory
access. OpalPasswordSmm SMI handler takes a fuzzer
generated CommBuffer as input and eventually calls function
ProblematicFunc. Note the parameter node of function

ProblematicFunc is derived from CommBuffer. So,
without proper validation of the pointer, it is casted into
another type and then dereferenced (line 3 of the following
listing).

1 unsigned char ProblematicFunc(const void *node){
2 assert(node != null);
3 return ((EFI_XXXX_PROTOCOL *)(node))->Type;
4 }

The bug was filed to Tianocore Bugzilla bug tracking
system. According to the triage of the issue by the maintainers,
this issue is classified as high critical issue which may lead
to privilege elevation.

Variable LockBox FTW Fpdt
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f C
ov

er
ag

e
(%

)

Branch Initial
Branch Improved
Line Initial
Line Improved
Func Initial
Func Improved
Assembly Initial
Assembly Improved

Fig. 3. Coverage improvements after applying fuzzing: solid bars represent
the coverage during normal firmware boot flow, and stripe bars represent the
coverage improvements with fuzzer generated test cases from initial seeds.

Besides OpalPasswordSmm, we also tested 4 other SMI
handlers with a 2-hour timeout. Fig. 3 shows the coverage
improvements after applying fuzzing with the initial seeds that
are captured during normal firmware boot to UEFI shell, which
is typically the only testing approach for SMI handlers. We can
see the improvements range from about 30% to more than 10x.
It is worth noting that some handlers, e.g. Variable, include
the OpenSSL library, that is why the overall coverage is low.

B. Fuzzing Hardware I/O

xHCIFirmware

Target Platform
data

memory
endpoint
controller

USB stick
1 2

Fig. 4. Diagram to illustrate the communication between a USB stick and the
UEFI firmware. Endpoint controller is the source of malicious input; USB host
controller xHCI copies malicious input from 2○ to 1○ without extra validation,
and firmware is the real consumer of the malicious input. 1○ represents in-
system communication, i.e. DMA, 2○ represents USB serial interface, i.e.
serial protocol message.

The common problem in UEFI firmware development and
validation with hardware I/O is the assumption about well-
behaving hardware, which leads to insufficient validation of
the input from hardware. In other words, firmware developers
and validation engineers often trust the hardware. However,
when hardware misbehaves, this assumption does not hold
with different implications from security risks to system
crashes. As an example, consider a malicious USB stick
sending unexpected responses to the PC. Such USB sticks are
commercially available for about $20 and can be programmed
even in Python. Once connected to the PC, firmware needs

to communicate with it. If firmware assumes it is a benign
hardware and trusts its response, then firmware may put itself
into a vulnerable state.

We reintroduced one of the known issues2 to demonstrate
the ability to automatically detect issues that previously either
escaped to final product or were only found by human experts.
More specifically, the issue can be described as follows:
When a new USB device is connected to a platform (Fig. 4),
firmware attempts to configure this device by calling func-
tion UsbBuildDescTable() in the process. This function
first calls UsbHcControlTransfer() to read the device
descriptors initiating a transfer from the device and getting a
response from USB endpoint controller (see 2○ in Fig. 4). Then
a buffer with the device descriptors is parsed and further pro-
cessed by calling function UsbParseConfigDesc()(see
1○ in Fig. 4). The buffer of device descriptors is generated

by the hardware. However, it is considered as untrusted input
from firmware perspective. Malformed descriptor may result
in buffer overflow, array-out-of-bound access etc.

Here is the simplified code snippet showing one of the
buffer overflow issues in USB code. In the while loop
at line 9, the check (Offset < Len) only ensures that
the struct USB_DESC_HEAD starts within the Buf, but does
not guarantee that it fits entirely. As the result, access to
Head->Type may go out of bound of Buf.

1 typedef struct {
2 UINT8 Len;
3 UINT8 Type;
4 } USB_DESC_HEAD;
5
6 void *UsbCreateDesc(UINT8 *Buf, UINTN Len, UINT8 Type){
7 UINTN Offset = 0;
8 USB_DESC_HEAD* Head = (USB_DESC_HEAD*)Buf;
9 while ((Offset < Len) && (Head->Type != Type)) {

10 Offset += Head->Len;
11 Head = (USB_DESC_HEAD*)(Buf + Offset);
12 }
13 DoSomethingUseful(Head);
14 }

The following is the correct version of the while loop
condition, therefore making the Head->Type safe to access:

8 ...
9 while (Offset < Len - sizeof(USB_DESC_HEAD))

10 ...

We performed fuzzing at two different levels of abstraction.
In both cases, the issue was detected by the fuzzer:

1) Fuzzing HW I/O at firmware level: In this experi-
ment, firmware is responsible for requesting a new fuzzed
input from VP by calling GetFuzzedInput(). The new
input is then used to replace the data just transferred
from device. This is done after the corresponding call to
UsbHcControlTransfer() by replacing the returned
buffer content. This approach requires firmware modification
but is more straightforward.

2) Fuzzing HW I/O at memory level: In this experiment, VP
monitors memory writes initiated by the xHCI host controller
and replaces the data written to memory before the firmware

2https://github.com/tianocore/edk2/commit/4c034bf62cbc1f3c5f4b5df25de
97f0f528132b2

starts processing it. This approach does not require firmware
modification to inject fuzzed input. However, most memory
writes done by xHCI do not contain USB endpoint data and
are used for maintaining scoreboards, circular buffers, etc.
Unguided modification of the data will usually break the xHCI
protocol instead of triggering interesting behavior on BIOS
side. Therefore, in order to fuzz efficiently, we need a model
for the xHCI protocol to identify the data of interest within
xHCI memory traffic and fuzz selectively.

V. CONCLUSION

We presented a coverage-driven fuzzing framework for
UEFI firmware with Simics virtual platform. This framework
uses the tracing capability in Simics to collect branching cov-
erage of the firmware execution as a feedback to the fuzzing
engine. We demonstrated the versatility of the framework with
three usage scenarios for UEFI firmware security validation,
ranging from fuzzing unmodified and uninstrumented firmware
to fuzzing hardware I/O interactions with and without source
code modification. Experimental results show that our ap-
proach automatically detects previously unknown bugs that
have been classified as high critical potential privilege eleva-
tion issues and also issues previously found only by security
expert via manual code inspection.

REFERENCES

[1] J. Loucaides and A. Furtak, “A new class of vulnerability in smi handlers
of bios/uefi firmware,” in The 15th Annual CanSecWest Conference
(CanSecWest 2015), 2015.

[2] X. Kovah and C. Kallenberg, “How many million bioses would you like
to infect,” 2015.

[3] O. Bazhaniuk, J. Loucaides, L. Rosenbaum, M. R. Tuttle, and V. Zim-
mer, “Symbolic execution for BIOS security,” in WOOT. Washington,
D.C.: USENIX Association, Aug. 2015.

[4] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic
Generation of High-coverage Tests for Complex Systems Programs,” in
OSDI. Berkeley, CA, USA: USENIX Association, 2008, pp. 209–224.

[5] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for In-
vivo Multi-path Analysis of Software Systems,” in ASPLOS. New York,
NY, USA: ACM, 2011, pp. 265–278.

[6] B. Richardson, C. Wu, J. Yao, and V. Zimmer, “Using host-based
firmware analysis to improve platform resiliency,” https://firmware.
intel.com/sites/default/files/Intel UsingHBFAtoImprovePlatformResilie
ncy.pdf, February 2019.

[7] “syzkaller: an unsupervised coverage-guided kernel fuzzer,” https://gith
ub.com/google/syzkaller, accessed: 2019-11-06.

[8] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels,” in
USENIX Security Symposium, 2017.

[9] “Triforce Linux Syscall Fuzzer,” https://github.com/nccgroup/Triforce
LinuxSyscallFuzzer, accessed: 2019-11-06.

[10] J. Yao and V. Zimmer, “Understanding uefi secure boot chain,” https:
//legacy.gitbook.com/book/edk2-docs/understanding-the-uefi-secure-b
oot-chain/details, May 2019.

[11] “Tiano Security Advisory,” https://edk2-docs.gitbooks.io/security-advis
ory/content/, accessed: 2019-11-06.

[12] V. Bashun, A. Sergeev, V. Minchenkov, and A. Yakovlev, “Too young
to be secure: Analysis of UEFI threats and vulnerabilities,” in 14th
Conference of Open Innovation Association FRUCT, Nov 2013, pp. 16–
24.

[13] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in
USENIX Annual Technical Conference, ser. ATEC ’05. Berkeley, CA,
USA: USENIX Association, 2005, pp. 41–41.

[14] D. Aarno and J. Engblom, Software and system development using
virtual platforms: full-system simulation with wind river simics. Morgan
Kaufmann, 2014.

