
Automatic Fault Injection for Driver Robustness Testing

Kai Cong, Li Lei, Zhenkun Yang, and Fei Xie
Department of Computer Science, Portland State University, Portland, OR 97207, USA

{congkai, leil, zhenkun, xie}@cs.pdx.edu

ABSTRACT
Robustness testing is a crucial stage in the device driver
development cycle. To accelerate driver robustness testing,
effective fault scenarios need to be generated and injected
without requiring much time and human effort. In this pa-
per, we present a practical approach to automatic runtime
generation and injection of fault scenarios for driver robust-
ness testing. We identify target functions that can fail from
runtime execution traces, generate effective fault scenarios
on these target functions using a bounded trace-based it-
erative strategy, and inject the generated fault scenarios at
runtime to test driver robustness using a permutation-based
injection mechanism. We have evaluated our approach on
12 Linux device drivers and found 28 severe bugs. All these
bugs have been further validated via manual fault injection.
The results demonstrate that our approach is useful and
efficient in generating fault scenarios for driver robustness
testing with little manual effort.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Fault tolerance; D.2.5
[Testing and Debugging]: Error handling and recovery

General Terms
Experimentation

Keywords
Fault Injection, Fault Scenario Generation, Driver Robust-
ness Testing

1. INTRODUCTION
Robustness testing is a crucial stage in the device driver

development cycle. Device drivers may behave correctly in
normal system environments, but fail to handle corner cases
when experiencing system errors, such as low resource situa-
tions, PCI bus errors and DMA failures [32]. Therefore, it is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

critical to conduct such robustness testing to improve driver
reliability. However, such corner cases are usually difficult to
trigger when testing drivers. The time-to-market pressure
further exacerbates the problem by limiting the time allo-
cated for driver testing [30]. Thus, it is highly desirable to
speed-up driver robustness testing and reduce human effort.

Fault injection is a technique for software robustness test-
ing by introducing faults to test code paths, in particular
error handling code paths, that might otherwise rarely be
traversed. Recently, fault injection techniques have been
widely used for software testing [21, 24]. These techniques
have major potential to play a crucial role in driver robust-
ness testing.

Our approach is inspired by Linux Fault Injection Infras-
tructure (LFII) [19] which has been integrated into the Linux
kernel since Version 2.6.19. LFII can cause system faults,
such as memory allocation functions returning errors, for
system robustness testing. Our concept of faults is consis-
tent with that of LFII. There are also other similar studies
focusing on fault injection techniques for driver robustness
testing [27, 34]. However, these approaches and tools have
obvious limitations. First, they only provide basic frame-
works which mainly support low memory situations. Sec-
ond, they only support random fault injection which is hard
to control and inefficient. Third, they require much human
effort and time to get good results and are not easy-to-use.
This demands an innovative approach to systematic and ef-
fective fault generation and injection for driver robustness
testing.

We have developed an approach to automatic runtime
fault generation and injection for driver robustness testing.
Our approach runs a driver test and collects the correspond-
ing runtime trace. Then we identify target functions which
can fail from the captured trace, and generate effective fault
scenarios on these target functions. Each generated fault
scenario includes a fault configuration which is applied to
guide further fault injection. Each fault scenario is applied
to guide one instance of runtime fault injection and gener-
ate further fault scenarios. This process is repeated until
all fault scenarios have been tested. To achieve systematic
and effective fault injection, we have developed two key
strategies. First, a bounded trace-based iterative generation
strategy is developed for generating effective fault scenarios.
Second, a permutation-based injection strategy is developed
to assure the fidelity of runtime fault injection.

We have implemented our approach in a prototype driver
robustness testing tool, namely, ADFI (Automatic Driver
Fault Injection). ADFI has been applied to 12 widely-used

device drivers. ADFI generated thousands of fault scenarios
and injected them at runtime automatically. After applying
all these generated fault scenarios to driver testing, ADFI
detected 28 severe driver bugs. Among these bugs, 8 bugs
are caused by low resource situations, 8 bugs are caused by
PCI bus errors, 8 bugs are caused by DMA failures and the
other 4 bugs are caused by mixed situations.

Our research makes the following three key contributions:

1)Automatic Fault Injection. Our approach to driver
robustness testing not only enables runtime fault injection
to simulate system errors, but also generates fault scenarios
automatically based on the runtime trace to exercise possible
error conditions of a driver efficiently. Our approach is easy
to use and requires minimum manual efforts, which greatly
reduces driver testing costs and accelerates testing process.

2)Bounded Trace-based Iterative Generation Strat-
egy. A bounded trace-based iterative generation strategy
is developed to generate unique and effective fault scenar-
ios based on runtime traces. This strategy not only gener-
ates effective fault scenarios covering different kinds of error
situations in modest time, but also produces efficient fault
scenarios with no redundancy.

3)Permutation-based Replay Mechanism. To assure
the fidelity of runtime fault injection with generated fault
scenarios, a permutation-based replay mechanism is devel-
oped to handle software concurrency and runtime uncertain-
ty. The mechanism guarantees that the same driver behav-
iors can be triggered using the same fault scenario repeatedly
at runtime.

The remainder of this paper is structured as follows. Sec-
tion 2 provides the background. Sections 3 and 4 present
the design of our approach. Section 5 discusses its imple-
mentation. Section 6 elaborates on the case studies we have
conducted and discusses the experimental results. Section 7
reviews related work. Section 8 concludes our work.

2. BACKGROUND

2.1 Driver Robustness Testing
According to the IEEE standard [1], robustness is de-

fined as the degree to which a system operates correctly in
the presence of exceptional inputs or stressful environmen-
tal conditions in software testing. The goal of robustness
testing is to develop test cases and test environments where
the robustness of a system can be assessed.

Kernel modules, especially device drivers, play a critical
role in operating systems. It is important to assure that
device drivers behave safely and reliably to avoid system
crashes. Typically device drivers can work correctly under
normal situations. However, it is easy for driver develop-
ers to mishandle certain corner cases, such as low resource
situations, PCI bus errors and DMA failures.

int * p = (int *)kmalloc(size, GFP_ATOMIC);
p[10] = 3;

Figure 1: An example with kernel API function call

As shown in Figure 1, the kmalloc function is invoked to
allocate a block of memory. After the function returns, the

returned pointer is directly used without null pointer check-
ing. Under normal system conditions, the kmalloc function
returns successfully with a correct pointer to the allocat-
ed memory. However, when the kmalloc function returns a
null pointer under a low resource situation, it is possible for
the driver to crash the system. To handle such errors, the
common approach is to add an error handling mechanism.

int * p = (int *)kmalloc(size, GFP_ATOMIC);
if(!p) goto error;
p[10] = 3;
......
error: error_handler();

Figure 2: An example with error handler

As shown in Figure 2, after the kmalloc function returns,
the code checks whether the return value is a null pointer . If
the kmalloc function returns a null pointer, the correspond-
ing error handler is invoked to handle the error. However,
a further concern is whether the error is handled correctly
and does not trigger other driver or system errors.

To improve driver robustness, a device driver should be
tested to see whether there exist two kinds of bugs: (1)
driver error handling code does not exist; (2) driver error
handling mechanisms do not handle the error correctly or
trigger other driver/system issues. The first kind seems to be
easy to avoid as long as driver developers write and check the
code carefully. However, it still happens in the real world.
The second kind is usually difficult and expensive to test.

2.2 Runtime Driver Fault Injection
In driver robustness testing, all possible error conditions

of a driver ought to be exercised. However, certain error
conditions might be difficult and expensive to trigger, but
efforts should be made to force or to simulate such errors to
test the driver. Fault injection is a technique for software ro-
bustness testing by introducing faults to test code paths, in
particular error handling code paths that, otherwise, might
rarely be followed. Recently, fault injection techniques have
been widely explored and studied for software testing and
system robustness testing.

void * kmalloc(size t size, int flags) {
// Memory allocation operations

}

void * kmalloc_fault(size t size, int flags) {
return NULL;

}

Figure 3: A driver fault injection example

Runtime driver fault injection can be employed to simu-
late kernel interface failures to trigger and test error han-
dling code. The common approach to driver fault injection
is to hijack the kernel function calls, such as kmalloc and
vmalloc. By hijacking these functions, we can call the corre-
sponding fault function to return a false result instead of in-
voking these functions. As shown in Figure 3, when kmalloc
is invoked, the corresponding fault function kmalloc fault
is invoked to return a null pointer instead of a correct point-
er to simulate an allocation error. In this way, we can test

if device drivers can survive on different error handling code
paths to improve driver robustness.

There are two main limitations with current driver fault
injection. First, there is no automatic framework to support
fault injection for different system function calls. Second,
there is no systematic test generation approach to gener-
ate effective fault scenarios. Currently most fault injections
tools are using random fault injection which is facing ma-
jor challenges in achieving desired effectiveness and avoiding
duplicate fault scenarios.

In our approach, we provide a framework which can au-
tomatically generate and inject fault scenarios at runtime.
We proposed a trace-based iterative generation strategy to
produce unique and effective fault scenarios and developed
a permutation-based replay mechanism to inject fault sce-
narios with high fidelity.

3. BOUNDED TRACE-BASED ITERATIVE
FAULT GENERATION

3.1 Preliminary Definitions
To help better understand our approach, we first introduce

several definitions and illustrate them with examples.

Definition 1 (target function): A target function f̃ is a
kernel API function which can fail and return an error when
f̃ is invoked by a device driver.

As shown in Figure 1, function kmalloc is a target function
since it can fail and return a null pointer.

A stack trace records a sequence of function call frames
at a certain point during the execution of a program which
allows tracking the sequence of nested functions called [33].

Definition 2 (target stack trace): A target stack trace

τ � f1 → f2 → ...→ fn → f̃ of a driver consists of a
sequence of driver functions and a target function f̃ . The
sequence of driver functions are called prior to f̃ along a
driver path. The first function f1 is a driver entry function.

void Entry_A() { //Driver entry function
......
ret = Target_Function_1();
if(!ret) goto error;
Function_X();
......

}

void Function_X() {
......
ret = Target_Function_2();
......

}

void Entry_B() { //Driver entry function
......
ret = Target_Function_3();
......

}

Figure 4: A driver function call example

A target stack trace τ records what happened before a
target function was invoked. Once a driver/system crash
happens, the target stack trace can help the developer better

understand the driver behavior. The same target functions
can appear in different target stack traces since the same
target functions can be invoked along different driver paths.

τ1:τ1:

τ2:τ2:

τ3:τ3:

Function_XFunction_XEntryrr _yy AEntry_A

Target_Function_1Target_Function_1

ntryrr _yy BEntry_B

Entryrr _yy AEntry_A

Target_Function_2Target_Function_2

arget_Function_3Target_Function_3

Figure 5: Target stack trace examples

As shown in Figure 4, when driver entry functions Entry A
and Entry B are invoked during driver execution, there are
three possible target stack traces τ1, τ2 and τ3 shown in
Figure 5.

Definition 3 (runtime trace): A runtime trace ε � τ1 →
τ2 → ...→ τn is a sequence of target stack traces. A subse-
quence εk of ε contains the first k target stack traces of ε
where εk � τ1 → τ2 → ... → τk. A runtime trace records all
target stack traces during a driver life cycle.

A runtime trace example is shown in Figure 5 which is
ε � τ1 → τ2 → τ3.

Definition 4 (fault configuration): A fault configuration

φ � ϕ1, ϕ2, ..., ϕn is a sequence of boolean variables. Each
boolean variable ϕi (T or F) is used for deciding whether

the corresponding target function f̃ of τi invokes the kernel
API or returns error. A subsequence of φk of φ contains the
first k boolean variables of φ where φk � ϕ1, ϕ2, ϕ3, ..., ϕk.

Definition 5 (fault scenario): A fault scenario σ � 〈ε, φ〉
is a pair of ε and φ. A fault scenario is used to guide an
instance of runtime fault injection.

Suppose we capture a runtime trace ε � τ1 → τ2 and
execution statuses T, T of both target fault functions in τ1
and τ2, then one generated fault scenario example is σ �
〈ε, φ〉 where ε � τ1 → τ2 and φ � T, F .

Definition 7 (fault scenario database): A fault scenario

database Σ � {〈σ, ς〉 | σ is a fault scenario, ς is the fault
simulation result of σ} is a set which saves all unique fault
scenarios and their runtime execution results.

We have defined three different kinds of test results: pass,
fail and null. Before σ is applied, ς is null. When the driver
handles the fault scenario correctly, ς is pass. If the system
or the driver crashes during the fault simulation, ς is fail
and the corresponding crash report is saved for developers
to conduct further analysis.

3.2 Challenges
The high-level workflow of our approach is illustrated in

Figure 6. ADFI first runs a test suite on a device driv-
er under an empty scenario Fault0 to capture the runtime
trace where Fault0 includes an empty configuration which
does not introduce any runtime fault, and fault scenarios are
generated based on the captured trace. Then given one fault
scenario FaultX, ADFI runs the test to see if FaultX triggers
a crash. The process of applying one fault scenario is one
instance of runtime fault injection. In one instance, ADFI
hooks all target function calls. Each time a target function
call is captured, ADFI decides to execute the corresponding

Configure
faults Run tests Capture

traces
Generate

tests

Test SuiteFault0 Traces

Fault1
Fault2
…...
FaultN

Figure 6: The high-level workflow

target function or inject a fault (return a false result) ac-
cording to the fault scenario. Simultaneously, ADFI collects
the trace executed during this run. Next, ADFI generates
more fault scenarios based on the trace. The above process
is repeated until all fault scenarios are applied.

The approach described above has two major challenges.

Fault scenario explosion: Generating all feasible fault
scenarios does not scale if a large number of target functions
exist in a driver. A näıve approach to generating fault sce-
narios is to explore all target function combinations along a
driver runtime trace ε. If there are N target functions along
ε, the number of generated fault scenarios can be 2N − 1. If
we apply all these fault scenarios to driver robustness test-
ing, it can take much time or even forever. Indeed as we
tried this approach, it caused a fault scenario explosion af-
ter applying a few fault scenarios.

Handling concurrency and runtime uncertainty:
ADFI repeatedly runs the same test suite and applies different
fault scenarios to guide runtime fault injection. A fault sce-
nario σ is a pair of a reference runtime trace ε and a fault
configuration φ. To apply σ, ADFI captures a new runtime
trace εnew and run each target function εnew.τi.f̃ according
to φ. Due to system concurrency and runtime uncertainty,
ε and εnew can be different which brings difficulty to find
the right φ.ϕi to guide fault injection. This demands a sys-
tematic replay mechanism to guarantee that εnew conforms
to ε upon a given fault configuration φ.

3.3 Trace-based Iterative Strategy
In order to address the fault scenario explosion challenge,

we have developed a bounded trace-based iterative gener-
ation strategy. For each fault scenario σ, ADFI runs the
test suite on the driver and captures the runtime trace ε �
τ1 → τ2 → ...→ τn. In the following, we set n to 3 to il-
lustrate our approach. Although we use a small number as
the example, the idea can be applied to any large number.
As shown in Figure 7(a), we capture a runtime trace which
includes three stack traces and the corresponding execution
statuses of target functions in three stack traces: (T, T, T).

By applying the näıve approach, we can generate seven
(23 − 1) fault scenarios. However, some generated fault
scenarios are invalid fault scenarios which are not feasible
at runtime. For example, if a generated fault configuration
φ � (T, F) is applied, the actual trace is τ1 → τ2 → τ4 shown
in Figure 7(c) which is different from τ1 → τ2 → τ3. In this
case, (T, F, F) would be an invalid fault configuration for
the trace τ1 → τ2 → τ3. In order to avoid generating invalid
fault scenarios, our trace-based iterative generation strategy

only generates one-step fault configurations (F), (T, F) and
(T, T, F) in this iteration as shown in Figure 7(b).

Remark: Our approach does not miss any valid fault sce-
narios. If the driver works as shown in Figure 7(a), our trace-
based iterative generation strategy first generates three fault
scenarios. Then after the fault scenario including the con-
figuration (F) is applied, the captured fault trace should
be (F, T, T) and we can generate new fault configurations
(F, F) and (F, T, F). After we apply all fault scenarios, we
can cover all eight possibilities eventually.

τ1(f1̃)

τ2(f2̃)

τ3(f3̃)

T

T

T F

F

F
τ2(f2̃)

τ3(f3̃)
T F

τ3(f3̃)
T

T F

F
τ3(f3̃)
T F

(a)

(b)

(c)

τ1(f1̃)

τ2(f2̃)

τ3(f3̃)

T

T

T F

F

F

τ1(f1̃)

τ2(f2̃)
T

F
τ4(f4̃)
T F

Figure 7: Trace-based iterative generation example

Moreover, our trace-based iterative generation strategy
only generates new fault scenarios on a newly captured stack
trace. Suppose we apply fault configuration (T, F) gen-
erated in Figure 7(b), we can capture the runtime trace
τ1 → τ2 → τ4. As shown in Figure 7(c), we only gener-
ate one new fault configuration (T, F, F) from the captured
target function execution trace (T, F, T). Here, we do not
generate a fault configuration (T, T) because it has been
covered. In this way, no duplicate fault scenarios (configu-
rations) are generated.

Algorithm 1 Iterative Generation (ε, σ, Σ)

1: i ← ε.size(); j ← σ.size(); φ ← ∅;
2: φ ← buildCompleteConfiguration(σ.φ, i, j);
3: while i > j do
4: φnew ← φj , 0; //Build a new configuration
5: Σ.insert(〈εj+1, φnew〉); //Save the fault scenario
6: j ← j + 1;
7: end while

Algorithm 1 illustrates how to generate new fault scenar-
ios using the trace-based iterative generation strategy. The
algorithm takes a runtime trace ε, a reference fault scenario

σ and the fault scenario database Σ as inputs. If the length
of the configuration is less than the length of ε, the algo-
rithm first supplements the configuration by adding (j − i)
true decisions into φ to build a complete configuration (line
2). The algorithm goes through subsequences of the runtime
trace ε between εj and εi. For each subsequence εi, the al-
gorithm constructs a new fault decision φnew by combining
the subsequence φi−1 of the previous fault decision φ and
a false decision. A new fault scenario is created which in-
cludes εi and φnew and saved into the database Σ. Suppose
we apply a fault configuration φ � (T, F) and capture the

corresponding runtime trace ε � τ1 → τ2 → τ4, the corre-
sponding length i is 3 and j is 2. We first supplement the
configuration as φ � (T, F, T), then we build a new configu-

ration φ � (T, F, F).

3.4 Bounded Generation Strategy
We have applied the trace-based iterative generation strat-

egy to device drivers and it can greatly reduce the number
of generated tests. However, there are still a large number
of fault scenarios generated. After analyzing the captured
runtime trace, we found that there are two main reasons.

1)Duplicate stack traces. For some drivers, many dupli-
cate stack traces exist in a runtime trace. There are mainly
two reasons for duplicate stack traces. First, the same target
function is repeatedly invoked within a loop. For example,
a set of ring buffers is usually allocated using a loop when a
network driver is initialized. Second, the same target func-
tion is invoked along a driver path and the driver path is
frequently executed for processing special requests. For ex-
ample, system resources are allocated and freed in the trans-
mit function for a network driver and the transmit function
is called many times during an instance of driver testing.

2)Fault scenario explosion. Although we have applied
the trace-based iterative generation strategy to eliminate in-
valid fault scenarios, fault scenario explosion still exists. As
shown in Figure 7(a), eight fault scenarios can be all valid
for some drivers. If there are N target functions along a
runtime trace, a subset of all N target functions (the num-
ber is M , M < N) can still bring a large amount of fault
scenarios (the number can be 2M − 1) in the final result.

To solve these two problems, we have developed a bounded
generation strategy to avoid injecting an exponential num-
ber of fault scenarios. ADFI supports two kinds of bounds:
maximum number of injected faults on the same stack traces
in a fault scenario (MSF) and maximum number of injected
faults in a fault scenario (MF).

First we explain how MSF works. Suppose MSF is 1, we
use an example to illustrate the idea. We captured a runtime
trace ε � τ1 → τ2 → τ3 and the corresponding target func-
tion execution trace (F, T, T). Within ε, τ1 and τ3 are the
same stack traces. If we generate fault scenarios following
the trace-based iterative strategy, we should generate two
fault configurations (F, F) and (F, T, F). The bounded gen-
eration strategy does not allow us to inject more than one
fault on the same stack trace, which means we only generate
one fault configuration (F, F). For another bound MF, the
idea is straightforward. The number of injected faults in a
fault scenario cannot exceed MF.
As shown in Algorithm 2, we have extended Algorithm 1

to support bounded generation. There are mainly three

Algorithm 2 Bounded Generation (ε, σ, Σ, bound)

1: i ← ε.size(); j ← σ.size(); φ ← ∅; T ← ∅
2: φ ← buildCompleteConfiguration(σ.φ, i, j);
3: T ← recordAllFaults(σ);
4: if checkMFBound(T, MF) then
5: return
6: end if
7: while i > j do
8: if checkMSFBound(T, ε.τj+1, MSF) then
9: φnew ← φj , 0; //Build a new configuration
10: Σ.insert(〈εj+1, φnew〉); //Save the fault scenario
11: end if
12: j ← j + 1;
13: end while

differences. First, we go through the reference fault scenario
σ to record all fault-related stack traces and the number of
faults as a map T before generating tests. Second, before
fault scenarios are generated, we check whether the number
of faults in the reference fault scenario exceedsMF. If yes, we
terminate test generation and return directly. Third, dur-
ing the generation, we check whether the number of faults
injected on the same stack traces exceeds MSF. If not, we
generate the corresponding fault scenario. Otherwise, no
fault scenario is generated.

Algorithm 3 recordAllFaults (σ)

1: ε ← σ.ε; φ ← σ.φ; T ← ∅; i ← σ.size(); j ← 1;
2: while i ≥ j do
3: if φ.ϕj == F then
4: if T.find(ε.τj) == T.end() then
5: T.insert(ε.τj , 1);
6: else
7: T.find(ε.τj) ← T.find(ε.τj) + 1;
8: end if
9: end if
10: j ← j + 1;
11: end while
12: return T ;

As shown in Algorithm 3, we process the fault scenario σ
to record all fault-related stack traces. T � {〈τ, count〉 | τ is
a stack trace, count is the number of faults injected on τ} is
a map. We process each boolean variable φ.ϕj in the fault
configuration. Once φ.ϕj is false, we insert 〈ε.τj , 1〉 into T
or increase the count by 1 if ε.τj exists in T .

4. PERMUTATION-BASED INJECTION
STRATEGY

Even if we issue the same test suite to device drivers,
two runtime traces ε1 and ε2 can be different due to driv-
er concurrency, runtime uncertainty, such as timing issues,
memory allocation status and network overload.

There are three kinds of possible differences between ε1
and ε2 triggered by the same test suite.

1)Different sequences of stack traces. Device drivers
are system software which can handle more than one re-
quests at the same time, which means concurrency widely
exists in device drivers. Due to the concurrency, even if two

captured runtime traces include the same stack traces, the
sequence of stack traces can be different between ε1 and ε2.

2)Different length of runtime traces. Due to different
system situations or environments, the number of the same
stack trace τ can be different between ε1 and ε2. For exam-
ple, if we send the same data over a network driver, there
can be different number of calls to the transmit function of
the driver. This difference brings different number of the
same τ existing in ε1 and ε2.

3)Different number of unique stack traces. Due to
different faults injected, stack traces captured can be differ-
ent between ε1 and ε2. Since fault scenarios trigger different
driver paths, ε1 and ε2 along different paths can include
different stack traces.

Since a fault scenario σ is generated based on a runtime
trace, there are the same differences between σ.ε and the
corresponding triggered runtime trace εnew. This makes it
difficult to guide runtime fault scenario injection.

We first illustrate how to resolve the first difference. A
fault scenario σ includes a runtime trace ε � τ1 → τ2 →
... → τn and a fault configuration φ � ϕ1, ϕ2, ..., ϕn. To
guide fault injection at runtime, it might trigger a new run-
time trace εnew � τnew1 → τnew2 → ... → τnewn . Here
we assume that ε and εnew have the same stack traces, lat-
er we will illustrate how to handle different stack traces. ε
should be a permutation of εnew, which means εnew is con-
structed by all stack traces in ε with a different sequence.
As an example, τ1 → τ2 → τ4 → τ3 is a permutation of
τ1 → τ2 → τ3 → τ4. In the runtime fault injection, we
detect such permutations automatically and guide the fault
injection.

The second difference is caused by runtime uncertainty.
Here we assume that ε and εnew include the same set of
unique stack traces and the lengths of ε and εnew can be
different, later we will discuss how to handle different set of
unique stack traces. Based on the analysis of driver code
and our observation, repeatedly injecting faults on the same
stack traces caused by runtime uncertainty does not trigger
new bugs. Therefore we just ignore such kinds of differences.

Algorithm 4 Get Fault Configuration (τ , σ, Flags)

1: i ← 0; n ← Flags.size();
2: i ← findNextStackTrace(τ, σ, i);
3: while i �= n do
4: if Flags[i] �= true then
5: Flags[i] ← true;
6: return σ.φ.ϕi;
7: end if
8: i ← findNextStackTrace(τ, σ, i);
9: end while
10: return true;

As shown in Algorithm 4, a permutation-based injection
mechanism is developed to guide the fault configuration.
The algorithm takes a stack trace τ , the fault scenario σ
and a flag array Flags as inputs. The array Flags has the
length of σ.ε and each element is initialized as false at the
beginning of an instance of fault injection. Each time a tar-
get function is invoked, we determine whether the function
should be executed normally or return an error with the

corresponding stack trace τ . We first find τ from the begin-
ning of σ and return the index i. Then we check Flags[i]
to see whether the fault decision σ.φ.ϕi has been conducted
or not. If it is not conducted, we return σ.φ.ϕi. Otherwise,
we continue to get the index of the next stack trace from
the position i. If we can not get the index from a position,
findNextStackTrace function returns n which means all
fault decisions for τ have been covered. Therefore we return
true to let the target function execute normally.

The third difference is caused by different faults injected.
A set of unique stack traces in ε and εnew is represented as Sε

and Sεnew . There can be three kinds of cases: Sε � Sεnew ,
Sεnew � Sε and (Sε � Sεnew and Sεnew � Sε). According
to our experiments, only the first case Sε � Sεnew occurs.
There are two reasons. First, the same test suite is used for
different rounds of fault injections. Second, a fault injected
can trigger some new stack traces. Currently we also detect
two other kinds of cases in our tool. Once any case is found,
a warning is given.

5. IMPLEMENTATION

5.1 Overview
As illustrated in Figure 8, our automatic fault injection

framework includes three key components:

Driver
Under Test

Trace
Recorder

Kernel
APIs

Test Suite Trace File Fault
Scenarios

Fault Scenario
Generator

OS Kernel
Runtime

Controller

Figure 8: Runtime fault injection framework

1)Trace Recorder. The trace recorder captures runtime
traces and kernel function return values while the driver is
tested under a test suite. The trace recorder fully hooks the
kernel API function calls so that all function calls and return
values are intercepted and recorded in the trace files.

2)Fault Scenario Generator. The fault scenario gener-
ator takes a trace file as the input to generate fault scenarios.
A trace-based iterative generation algorithm is implemented
and employed by the generator to deliver high-quality fault
scenarios. Generated fault scenarios are saved in the fault
scenario database for guiding further fault injection.

3)Runtime Controller. The runtime controller applies
a fault scenario in the driver testing process by emulating a
fault return according to the fault configuration. The run-
time controller is a kernel-level module working with the
trace recorder together. It intercepts all target function calls
invoked by device drivers. Once a kernel API function call
is captured, it determines if a fault should be injected. If
it is, the runtime controller returns a false result instead of
invoking the real kernel API function.

5.2 Fault Injection on Kernel API Interface
In this paper, we mainly focus on the kernel API functions

provided by the kernel since we want to test whether device
drivers can survive under different system situations. Since

operating systems provide lots of kernel API functions to
support drivers, so far we have conducted our research on
three main categories of kernel API functions:

1)Memory Allocation Functions. The Linux kernel
offers a rich set of memory allocation primitives which can
be used by drivers to allocate and optimize system memory
resources. Different kinds of memory allocation functions
can be used for allocating different kinds of memory. For
example, the “kmalloc” function is used to grab small pieces
of memory in kernel space and the“get free page(s)”function
is used to allocate larger contiguous blocks of memory.

2)Memory Map and DMA Functions. A modern op-
erating system is usually a virtual memory system, which
means that the addresses seen by user programs do not di-
rectly correspond to the physical address used by the hard-
ware devices. Memory map functions are needed for the con-
version between virtual address and physical address. For
example, the “mmap” function establishes a mapping be-
tween a process address space and a device. DMA is the
hardware mechanism used for data transfer between device
drivers and hardware devices without the need of involv-
ing the system processor. For example, the “dma set mask”
function is used for checking if the mask is possible and up-
dates the device parameters if it is.

3)PCI Interface Functions. The PCI bus is a widely-
used system bus for attaching hardware devices. To support
PCI device control and management, a set of functions are
provided by the kernel and used by device drivers. For exam-
ple, the “pci enable device” function is used for initializing
device before it is used by a driver.

5.3 Filter Mechanism
When we first applied ADFI, we observed that the same

crashes happened repeatedly. After analyzing these crashes,
we found two key reasons.

1)Caused by a target function. If a fault is injected

into a target function f̃ , the corresponding error handling
code for f̃ is tested. If the error handling mechanism is not
correct, there is always a crash if a fault is injected on f̃ in
a fault scenario.

2)Caused by a sequence of stack traces. Suppose a

fault scenario σ1 includes a runtime trace ε � τ1 → τ2 →
τ3 → τ4 and a fault configuration φ � T, F, T, F , it triggers a
crash. If another fault scenario σ2 includes the same runtime
trace and a different fault configuration φ � F, F, T, F , σ2

possibly causes the same crash. In σ1, two faults are injected
in τ2 and τ4 which cause a crash. Since the same two faults
are injected in τ2 and τ4 within σ2, the same crash usually
happens according to our experiments.

The target function f̃ is included in different stack traces.
The stack trace τ is included in different fault scenarios. If
we detect a bug triggered by a specific target function or a
stack trace or a sequence of stack traces, we do not want to
trigger the same crash repeatedly by other fault scenarios.
Currently we provide two kinds of filter mechanisms to avoid
such kinds of repeated crashes.

1)Function-Call-based Filter. A function call can be
labeled as a filter pattern. As long as a fault needs to be
injected into this function call according to the fault config-
uration, the fault scenario is ignored and not applied.

2)Stack-Trace-based Filter. A stack trace (or a se-
quence of stack traces) can be defined as a filter pattern. As
long as a fault (or a sequence of faults) needs to be injected
into a stack trace (or a sequence of stack traces, respective-
ly) according to the fault configuration, the fault scenario is
ignored and not applied.

The filter mechanism provides flexibility for driver devel-
opers to define filters to avoid repeated crashes. It has been
applied to both fault scenario generation and injection.

6. EXPERIMENTAL RESULTS

6.1 Experimental Setup
As shown in Table 1, we applied ADFI to 12 drivers in

3 categories: Wireless, USB controller and Ethernet. These
three categories represent the most important three types of
PCI devices.

Table 1: Summary of target drivers
Category Driver Size Description

Wireless
ath9k 4.3M Qualcomm AR9485 Wireless Driver

iwlwifi 12M Intel Wireless AGN Driver

USB
ehci hcd 10M USB 2.0 Host Controller Driver

xhci hcd 13M USB 3.0 Host Controller Driver

Ethernet

e100 655K Intel(R) PRO/100 Network Driver

e1000 2.3M Intel(R) PRO/1000 Network Driver

ixgbe 5.9M Intel(R) 10 Gigabit Network Driver

i40e 8M Intel(R) 40 Gigabit Network Driver

tg3 2.1M Broadcom Tigon3 Ethernet Driver

bnx2 1.3M Broadcom NetXtreme II Driver

8139cp 537K RealTek Fast Ethernet driver

r8169 1.1M RealTek Gigabit Ethernet Driver

As the workloads of the experiments, we created different
test suites for different categories. There is one requirement
that each test suite must start with a“load driver”command
and end with a “remove driver” command. Between them,
any test cases are allowed. A partial list of test cases for
each category is shown in Table 2. Of these drivers, Intel
ethernet network drivers are downloaded1. The other drivers
are from Linux kernel source code.

Table 2: Summary of workload
Category Test Applications

Wireless

Basic network commands (e.g. ifup, ifconfig, ifdown)

Data transfer commands (e.g. scp, ping)

Wireless config tools (e.g. iw, iwconfig)

USB

Basic USB control commands (e.g. lsusb)

Enable/disable a USB device on the USB hub

Transfer data to a USB disk

Ethernet

Basic network commands (e.g. ifup, ifconfig, ifdown)

Data transfer commands (e.g. scp, ping)

Ethernet config tools (e.g. ethtool, scapy)

6.2 Bug Findings
After testing all 12 drivers, we found the 28 distinct bugs

described in Table 3. Of these bugs, 8 bugs are triggered by

1The latest version of Intel ethernet network drivers can
be download in the following link: http://sourceforge.net/
projects/e1000/files/

Table 3: Bug results

Category
Wireless Driver USB Driver Ethernet Driver

Total
ath9k iwlwifi ehci hcd xhci hcd e100 e1000 ixgbe i40e tg3 bnx2 8139cp r8169

PCI 0 0 0 0 0 0 2 2 0 2 2 0 8

Memory 0 1 0 0 1 4 0 2 0 0 0 0 8

DMA 1 0 0 4 1 0 0 0 0 1 1 0 8

Mixed 0 0 0 0 0 4 0 0 0 0 0 0 4

Total 1 1 0 4 2 8 2 4 0 3 3 0 28

PCI interface faults, 8 bugs are triggered by memory alloca-
tion faults, 8 bugs are triggered by DMA function faults, and
the other 4 bugs are triggered by mixed PCI/Memory/DMA
faults. All these bugs can result in serious driver/system is-
sues which include driver freeze, driver crash, system freeze
and system crash. Moreover, all these bugs are difficult to
find under normal situations.

These results show the effectiveness of our fault injection
approach. We summarize the failure outcomes as follows:

1)System crash. The fault results in a kernel panic or
fatal system error which crashes the entire system.

2)System hang. The fault results in a kernel freeze where
the whole system ceases to respond to inputs.

3)Driver crash. The fault only results in a driver crash
while the system can still work correctly.

4)Driver freeze. The fault only results in a driver freeze
where the driver can not be loaded/removed.

21.43%

10.71%

53.57%

14.29%

0

2

4

6

8

10

12

14

16

System crash System hang Driver crash Driver freeze

Figure 9: Outcomes of experiments

Figure 9 provides the distributions of failure types. Of the
28 bugs, 9 bugs result in system failures including 6 crashes
and 3 hangs. The other 19 bugs result in driver failures
including 15 crashes and 4 freezes.

Bug Validation. To verify if all these bugs are valid, we
manually injected bug-correlated faults into device driver-
s. For example, if there is a “kmalloc” fault, we manually
injected the fault. We modified the original statement

“void * p = kmalloc(size, GFP KERNEL);”

to

“void * p = NULL;”

Then we recompiled the driver and ran the driver under
the test suite. The above example is just a simple fault
scenario. Some fault scenarios are quite involved and require
more modifications to the driver code to reproduce. All 28

bugs can be triggered the same way as they are triggered by
ADFI. By this manual validation, we are better assured that
all 28 bugs are valid and they can happen in a real system
environment.

6.3 Human Efforts
One goal of ADFI is to minimize the human effort in test-

ing the robustness of a driver. The necessary effort of our
approach comes from three sources: (1) a configuration file
to prepare ADFI for testing a driver; (2) crash analysis; (3)
compilation flag modification to support coverage. The first
two efforts are required while the third one is optional.

Configuration file. Only a few parameters need to be
defined in a configuration file. They include driver name,
runtime data folder path, test suite path and several run-
time parameters. One example is shown in Figure 10. Such
configuration is easy to create. In our experiments, only a
few minutes are needed to set up one configuration file.

Figure 10: A sample configuration

Crash analysis. Once a crash happens, the developer needs
to figure out the cause of the crash. Our approach can inject
the same fault and trigger the same behavior repeatedly.
When there is a crash, our approach can tell what faults
have been injected into the driver. Furthermore, the whole
driver stack is provided by ADFI to support crash analysis.
This information can help driver developers understand and
figure out the root cause of the crash. In our experiments,
the average time for understanding each of the 28 bugs is
less than 10 minutes using the ADFI debug facilities.

Compilation flag. To evaluate the driver code coverage,
we need to compile the driver with additional compilation
flags. We can achieve this in two ways. First, we can add
the flags into the Linux kernel compilation process. Second,
we can add the flags into the driver compilation Makefile.
Both ways are easy to implement. In our experiments, we
manually added the flags into each driver Makefile.

6.4 Evaluation of
Fault Generation and Injection Strategy

ADFI allows two kinds of bounds, the maximum faults
(MF) and the maximum same faults (MSF) in a test case.

Table 4: Results under different MF (MSF = 1)

Category MF
Wireless Driver USB Driver Ethernet Driver

ath9k iwlwifi ehci hcd xhci hcd e100 e1000 ixgbe i40e tg3 bnx2 8139cp r8169

PCI

1 1 3 0 0 2 5 5 5 7 3 2 2

2 1 3 0 0 2 9 8 8 10 3 2 3

3 1 3 0 0 2 9 9 8 10 3 2 3

Memory

1 5 24 4 1 3 13 11 32 11 9 1 3

2 5 164 10 1 3 49 53 136 25 34 1 3

3 5 840 12 1 3 117 156 414 29 51 1 3

DMA

1 3 4 1 6 5 11 9 17 4 13 3 8

2 3 9 1 6 6 40 51 69 6 77 7 24

3 3 10 1 6 6 95 171 177 6 221 8 37

ALL

1 9 31 5 7 10 28 25 54 22 25 6 13

2 9 235 15 7 12 180 209 268 84 234 10 56

3 9 1375 18 7 12 858 924 1365 175 980 11 130

We first set MSF as 1 and then generated faults under
different MFs. Table 4 shows the number of generated fault
scenarios where MF is 1, 2 and 3.

We have generated fault scenarios on all functions in the
three categories (c.f. Section 5.2). As shown in Table 4, dif-
ferent number of fault scenarios were generated for different
device drivers. For drivers such as ath9k and 8139cp, only
about 10 fault scenarios were generated. For drivers such as
iwlwifi and i40e, more than 1000 fault scenarios were gener-
ated. The number of generated faults depends on how many
target functions are used in a device driver.

Another observation from the results is that there are no
generated fault scenarios for ehci hcd and xhci hcd under
PCI category. After analyzing the source code of ehci hcd
and xhci hcd code, we did not find PCI-related functions
invoked by these drivers directly. The fact is that both these
drivers only invoke some PCI wrapper functions directly and
these PCI wrapper functions are defined in the kernel.

We further tried to generate fault scenarios while setting
MSF as 2 on e1000 and iwlwifi drivers. We generated more
test cases on both drivers, however no new bugs were de-
tected and almost no coverage improvement was achieved.

4.5

450

6 2.5 4

290
320

476

60

230

4
45

0

100

200

300

400

500

Time Usage (Minutes)

Figure 11: Time usage

In order to evaluate the efficiency of ADFI, we summa-
rized total time usage for fault generation and injection in
Figure 11. All these time usages were summarized while gen-
erating fault scenarios on all functions in three categories.
ADFI can deliver high quality fault scenarios and find bugs
effectively with a modest amount of time.

6.5 Coverage Improvement
As shown in Table 5, the generated fault scenarios led to

decent test coverage improvement. Our approach focuses
on the error handling mechanism and capability of device
drivers. The error handling code only takes up a small por-
tion of driver code. Even if we can trigger all error handling
mechanisms in a driver, it does not mean that the improved
coverage is very high.

As shown in Table 5, the improved coverage is from 0.1%
to 6.5%. However, our approach can cover many error han-
dling branches. Particularly, for iwlwifi and i40e, the s-
tatement coverage can be improved by more than 200 new
statements and the branch coverage can be improved by
more than 150 new branches. After going through all 150
new branches, we found that most of them are error handling
branches.

6.6 Further Potentials
Although our approach is only evaluated on Linux drivers

in our experiments, the idea can be applied in other domains.
We list three potential applications in the following:

1)Linux kernel module testing. While ADFI mainly
focuses on device drivers, the principles can easily apply to
other kernel modules. The only effort is to identify necessary
categories of target functions for different kernel modules.

2)Windows driver testing. The Windows drivers have
similar structures to Linux drivers. Once we can figure out
how to migrate ADFI into the Windows environment, it can
be used for Windows driver robustness testing.

3)User-level program/library testing. The user-level
program/library needs to invoke certain functions which can
fail at runtime, for example “malloc” function. Our idea
can be further applied to test the robustness of user-level
program/library to improve reliability.

7. RELATED WORK
There has been much research on device driver testing

since drivers account for a major portion of operating sys-
tems and are a major cause of operating system crashes [12].
Our work is related to past work in several areas, including
static analysis, reliability testing and fault injection.

7.1 Static Analysis
Model checking, theorem proving, and program analysis

have been used to analyze device drivers to find thousands
of bugs [4, 11, 17, 25]. Nevertheless, these tools take time

Table 5: Summary of coverage improvement

Driver

Statement Branch

#
Test Suite Generated Tests

#
Test Suite Generated Tests

% # % # % # %

ath9k 6146 3147 51.20% 3208 52.20% 3171 1059 33.40% 1268 39.99%

iwlwifi 11966 6761 56.50% 7000 58.50% 6458 2454 38.00% 2648 41.00%

ehci hcd 2763 1307 47.30% 1323 47.88% 1586 568 35.81% 588 37.07%

xhci hcd 4772 2114 44.30% 2119 44.40% 2485 721 29.01% 723 29.09%

e100 1258 721 57.31% 743 59.06% 617 206 33.39% 231 37.44%

e1000 5496 2215 40.30% 2259 41.10% 3530 787 22.29% 833 23.60%

ixgbe 13234 4222 31.90% 4301 32.50% 7288 1414 19.40% 1479 20.29%

i40e 9666 3557 36.80% 3886 40.20% 4882 1089 22.31% 1255 25.71%

tg3 7865 2580 32.80% 2658 33.80% 4990 983 19.70% 1043 20.90%

bnx2 3856 1828 47.41% 1859 48.21% 2217 643 29.00% 687 30.99%

8139cp 856 498 58.18% 506 59.11% 314 117 37.26% 126 40.13%

r8169 2596 1241 47.80% 1264 48.69% 848 294 34.67% 319 37.62%

to run and the results require time and expertise to inter-
pret. Thus, these tools are not well suited to the frequent
modifications and tests that are typical of initial code devel-
opment. Numerous approaches have proposed to statically
infer so-called protocols, describing expected sequences of
function calls [11, 17, 26]. These approaches have focused
on sequences of function calls that are expected to appear
within a single function, rather than the specific interaction
between a driver and the rest of the kernel.

Some safety holes in drivers can be eliminated by the use
of advanced type systems. For example, Bugrara and Aiken
propose an analysis to differentiate between safe and unsafe
userspace pointers in kernel code [6]. They focus, howev-
er, on the entire kernel, and thus may report to the driver
developer about faults in code other than his own.

7.2 Reliability Testing
There has been much research for operating systems relia-

bility testing [2, 5, 8, 10, 16, 28, 29, 31]. Reliability testing of
operating systems has been focused on device drivers since
drivers are usually developed by a third party. Previous
research on device driver reliability has mainly targeted de-
tecting, isolating, and avoiding generic programming errors
and errors in the interface between the driver and the OS.

7.3 Fault Injection Techniques
In software testing, fault injection is a technique for im-

proving the coverage of a test by introducing faults to test
code paths, in particular error handling code paths, that
might otherwise rarely be followed. Fault injection tech-
niques are widely used for software and system testing [13,
20, 21, 22, 24], ranging from testing the reliability of device
drivers to testing operating systems, embedded systems and
real-time systems [3, 7, 14, 15, 18, 23, 27].

There are several fault injection frameworks provided on
both Windows and Linux platforms.

Windows Driver Verifier: Driver Verifier provides op-
tions to fail instances of the driver’s memory allocations, as
might occur if the driver was running on a computer with in-
sufficient memory. This tests the driver’s ability to respond
properly to low memory and other low-resource conditions.

Linux Fault Injection Framework: This framework [9]
can cause memory allocation failures at two levels: in the
slab allocator (where it affects kmalloc and most other small-
object allocations) and at the page allocator level (where

it affects everything, eventually). There are also hooks to
cause occasional disk I/O operations to fail, which should
be useful for filesystem developers. In both cases, there is
a flexible runtime configuration infrastructure, based on de-
bugfs, which will let developers focus fault injections into a
specific part of the kernel.

KEDR Framework: KEDR [27] is a framework for dynam-
ic (runtime and post mortem) analysis of Linux kernel mod-
ules, including device drivers, file system modules, etc. The
components of KEDR operate on a kernel module chosen by
the user. They can intercept the function calls made by the
module and, based on that, detect memory leaks, simulate
resource shortage in the system as well as other uncommon
situations, save the information about the function calls to
a kind of “trace” for future analysis by the user-space tools.

There are three major limitations in the frameworks above.
First, these frameworks mainly support memory-related fault
injection to simulate low resource situations. Second, these
frameworks mainly provide random fault simulation. Third,
these frameworks require high manual efforts. Our approach
extends the above framework to support more fault situa-
tions, such as DMA-related operations and PCI-related op-
erations. Our approach provides an easy-to-use approach
with little human effort which can systematically enumerate
different kinds of fault scenarios to guide fault simulation.

8. CONCLUSIONS
We have presented an approach to runtime fault injec-

tion for driver robustness testing. We have evaluated our
approach on 12 widely-used device drivers. Our approach
was able to generate and inject effective fault scenarios in a
modest amount of time using the trace-based iterative fault
generation strategy. We have detected 28 bugs which have
been further validated by manually injecting these bugs in-
to device drivers. We have also measured test coverage and
found that ADFI led to decent improvement in statement
and branch coverage in drivers.

9. ACKNOWLEDGMENT
This research received financial support from National Sci-

ence Foundation (Grant #: 1422067). The authors thank
the anonymous reviewers for their helpful comments.

References
[1] IEEE standard glossary of software engineering termi-

nology. IEEE Std 610.12-1990, 1990.

[2] A. Albinet, J. Arlat, and J.-C. Fabre. Characterization
of the impact of faulty drivers on the robustness of the
Linux kernel. In International Conference on Depend-
able Systems and Networks, 2004.

[3] A. Albinet, J. Arlat, and J.-C. Fabre. Characterization
of the impact of faulty drivers on the robustness of the
Linux kernel. In International Conference on Depend-
able Systems and Networks, 2004.

[4] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Licht-
enberg, C. McGarvey, B. Ondrusek, S. K. Rajamani,
and A. Ustuner. Thorough static analysis of device
Drivers. In ACM SIGOPS/EuroSys European Confer-
ence on Computer Systems, 2006.

[5] S. Boyd-Wickizer and N. Zeldovich. Tolerating ma-
licious device drivers in Linux. In Conference on
USENIX Annual Technical Conference, 2010.

[6] S. Bugrara and A. Aiken. Verifying the safety of user
pointer dereferences. In IEEE Symposium on Security
and Privacy, 2008.

[7] G. Cabodi, M. Murciano, and M. Violante. Boost-
ing software fault injection for dependability analysis
of real-time embedded applications. ACM Trans. Em-
bed. Comput. Syst., 2011.

[8] D. Cotroneo, D. Di Leo, F. Fucci, and R. Natella.
Sabrine: State-based robustness testing of operating
systems. In International Conference on Automated
Software Engineering, 2013.

[9] R. J. Drebes and T. Nanya. Limitations of the Linux
fault injection framework to test direct memory access
address errors. In Pacific Rim International Symposium
on Dependable Computing, 2008.

[10] J. Duraes and H. Madeira. Multidimensional character-
ization of the impact of faulty drivers on the operating
systems behavior. Transactions of IEICE, 2003.

[11] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and
B. Chelf. Bugs as deviant behavior: A general approach
to inferring errors in systems code. In ACM Symposium
on Operating Systems Principles, 2001.

[12] A. Ganapathi, V. Ganapathi, and D. Patterson. Win-
dows XP kernel crash analysis. In Conference on Large
Installation System Administration, 2006.

[13] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. ED-
FI: A dependable fault injection tool for dependability
benchmarking experiments. In Pacific Rim Int’l Sym-
posium on Dependable Computing, 2013.

[14] T. Jarboui, J. Arlat, Y. Crouzet, and K. Kanoun. Ex-
perimental analysis of the errors induced into Linux by
three fault injection techniques. In International Con-
ference on Dependable Systems and Networks, 2002.

[15] A. Johansson and N. Suri. On the impact of injection
triggers for os robustness evaluation. In International
Symposium on Software Reliability Engineering, 2007.

[16] A. Kadav, M. J. Renzelmann, and M. M. Swift. Tol-
erating hardware device failures in software. In ACM
SIGOPS Symposium on Operating Systems Principles,
2009.

[17] J. Lawall, J. Brunel, N. Palix, R. Hansen, H. Stuart,
and G. Muller. Wysiwib: A declarative approach to
finding api protocols and bugs in Linux code. In Inter-
national Conference on Dependable Systems Networks,
2009.

[18] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert.
Statistical fault injection: Quantified error and confi-
dence. In Conference on Design, Automation and Test
in Europe, 2009.

[19] Linux. Fault Injection Capabilities Infrastruc-
ture. http://lxr.linux.no/linux+v3.14/Documentation/
fault-injection/.

[20] P. D. Marinescu, R. Banabic, and G. Candea. An ex-
tensible technique for high-precision testing of recov-
ery code. In USENIX Conference on USENIX Annual
Technical Conference, 2010.

[21] P. D. Marinescu and G. Candea. LFI: A practical
and general library-level fault injector. In International
Conference on Dependable Systems and Networks, 2009.

[22] P. D. Marinescu and G. Candea. Efficient testing of re-
covery code using fault injection. ACM Trans. Comput.
Syst., 2011.

[23] A. Mohammadi, M. Ebrahimi, A. Ejlali, and S. G. Mire-
madi. Scfit: A FPGA-based fault injection technique
for SEU fault model. In Conference on Design, Au-
tomation and Test in Europe, 2012.

[24] T. Naughton, W. Bland, G. Vallee, C. Engelmann, and
S. L. Scott. Fault injection framework for system re-
silience evaluation: Fake faults for finding future fail-
ures. In Workshop on Resiliency in High Performance,
2009.

[25] H. Post and W. Küchlin. Integrated static analysis for
Linux device driver verification. In International Con-
ference on Integrated Formal Methods, 2007.

[26] M. K. Ramanathan, A. Grama, and S. Jagannathan.
Path-sensitive inference of function precedence proto-
cols. In International Conference on Software Engi-
neering, 2007.

[27] V. V. Rubanov and E. A. Shatokhin. Runtime verifica-
tion of Linux kernel modules based on call interception.
In International Conference on Software Testing, Veri-
fication, and Validation, 2011.

[28] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo:
Taming device drivers. In ACM European Conference
on Computer Systems, 2009.

[29] L. Ryzhyk, J. Keys, B. Mirla, A. Raghunath, M. Vi-
j, and G. Heiser. Improved device driver reliability
through hardware verification reuse. In International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2011.

[30] C. Sârbu, A. Johansson, F. Fraikin, and N. Suri. Im-
proving robustness testing of cots os extensions. In In-
ternational Conference on Service Availability, 2006.

[31] C. Sarbu, A. Johansson, N. Suri, and N. Nagappan.
Profiling the operational behavior of OS device Drivers.
In International Symposium on Software Reliability En-
gineering, 2008.

[32] V. Shakti D Shekar, B B Meshram. Device driver fault
simulation using kedr. International Journal of Ad-
vanced Research in Computer Engineering and Tech-
nology, 2012.

[33] Wikipedia. Stack trace. http://en.wikipedia.org/wiki/
Stack trace.

[34] Windows. Low Resources Simulation. http:
//msdn.microsoft.com/en-us/library/windows/
hardware/ff548288(v=vs.85).aspx.

