Concolic Testing of SystemC Designs

Bin Lin*, Kai Cong', Zhenkun Yang', Zhigang Liaof, Tao Zhan$, Christopher Havlicek', Fei Xie*
*Department of Computer Science, Portland State University, Portland, OR 97207, USA
{linbin, xie}@cs.pdx.edu
TIntel Corporation, Hillsboro, OR 97124, USA
{kai.cong, zhenkun.yang, christopher.havlicek} @intel.com
Virtual Device Technologies LLC, Portland, OR 97201, USA
zhigangliao @virtualdevicetech.com
§School of Computer Science and Engineering, NorthWestern Polytechnical University, Xi’an 710072, China
zhantao@nwpu.edu.cn

Abstract— SystemC is a system-level modelling language
widely used in the semiconductor industry. SystemC validation
is both necessary and important, since undetected bugs may
propagate to final silicon products, which can be extremely
expensive and dangerous. However, it is challenging to validate
SystemC designs due to their heavy usage of object-oriented
features, event-driven simulation semantics, and inherent con-
currency. In this paper, we present CTSC, an automated, easy-
to-deploy, scalable, and effective binary-level concolic testing
framework for SystemC designs. We have implemented CTSC
and applied it to an open source SystemC benchmark. In our
extensive experiments, the CTSC-generated test cases achieved
high code coverage, triggered 14 assertions, and found two
severe bugs. In addition, the experiments on two designs with
more than 2K lines of SystemC code show that our approach
scales to designs of practical sizes.

Keywords— SystemC, concolic testing, code coverage,
assertion-based verification, bug detection

I. INTRODUCTION

SystemC [1] is a system-level modelling language for sys-
tems that might be implemented in software, hardware, or
combination of the two. A SystemC design is described as a set
of modules that communicate through ports. A module includes
at least one process that describes certain behaviors of a
system. A module can also contain submodules to represent the
hierarchy of a system. Processes in a design run concurrently.
The SystemC scheduler has cooperative multitasking semantics
that processes cannot be preempted. Each process yields when
it runs to the end or to the predefined yield points, such as
function wait () or its variations. The process is resumed by
notification events to which it is sensitive.

SystemC has become a de-facto standard modelling language
in the semiconductor industry. SystemC has been widely used
for system-level modelling, architectural exploration, func-
tional verification, and high-level synthesis [2]. It is critical to
verify these high level SystemC designs during the system de-
sign life cycle, since undetected design errors may propagate to
low-level implementations and become costly to fix. Bugs that
remain uncovered in a final silicon product can be extremely
expensive and dangerous, especially in safety-critical systems.
This demands innovative approaches to SystemC validation.

There have been recent studies on formal verification of
SystemC designs inspired by advances in the application of
formal methods to software. However, it is very challenging
to extend such methods to SystemC designs. Formal methods
require formal semantics that describe the transition relation
of a design. This is nontrivial for SystemC designs due to
their heavy usage of object-oriented features, event-driven sim-
ulation semantics, and concurrency. Furthermore, state-space
explosions limit the scalability of formal verification.

Dynamic validation, also known as the simulation-based
approach, is the workhorse of SystemC validation [3]. SystemC
simulation requires a set of concrete test cases. Generally, test
cases for SystemC simulation are manually written, randomly
generated or derived from symbolic execution [4]. Manual
test writing requires the indepth knowledge of a design under
validation (DUV), which is time-consuming, labor-intensive,
and error-prone. Random testing, in contrast, is fast. However,
many redundant test cases may be generated, which results
in low code coverage and long simulation time. Symbolic
execution can generate effective test cases and improve code
coverage. Thus, symbolic execution has been widely used
[5]-[8]. Unfortunately, for complex system-level designs in
SystemC, traditional symbolic execution has its own limitations
due to the path explosion problem.

Recently, concolic (a portmanteau of concrete and symbolic)
execution that combines concrete execution and symbolic exe-
cution has achieved considerable success in both software and
hardware domains [9]-[12]. Concolic execution runs a program
by making input values symbolic in addition to concrete.
The concrete execution part performs normal execution of the
program. The symbolic execution part collects symbolic con-
straints over the symbolic inputs at each branch point along the
concrete execution path. The collected constraints are negated
one condition by one condition and sent to a constraint solver.
If the solver can solve the negated constraints successfully, new
test cases will be generated. Concolic execution can mitigate
the path explosion problem of symbolic execution, as well as
alleviating the redundancy problem of random testing. Thus,
concolic execution has great potential to play an important role
in validating SystemC designs.

In this paper, we present an effective concolic testing ap-
proach for SystemC designs. Central to this approach is CTSC

(Concolic Testing of SystemC), an automated, easy-to-deploy,
scalable, and effective framework for SystemC validation.

We bring the idea of binary-level concolic execution into
SystemC validation. CTSC works directly on binaries compiled
from SystemC designs by linking the SystemC library [23].
Therefore, CTSC requires no translation of SystemC designs,
no modelling of dependent libraries, and thus supports all
SystemC features provided by the SystemC library.

We have implemented the proposed framework as a proto-
type tool. A SystemC design and its testbench that can be
generated automatically are compiled into a binary with a
standard compiler by linking the SystemC library. Then, the
binary is executed with an initial test case by our binary-
level concolic execution engine which generates new test cases.
The newly generated test cases are used to validate the design
directly with integration of assertion-based verification (ABV)
techniques. A test report, which mainly indicates assertion
violations and the statuses of test cases (failure or pass), is
generated when the testing process terminates.

Furthermore, we have evaluated the effectiveness of CTSC
on a SystemC benchmark [22]. The benchmark comprises a
variety of application domains, such as security, CPU architec-
ture, image processing, network, and digital signal processing
(DSP). These designs cover most core features and data types
of the SystemC language. Our experimental results demonstrate
the effectiveness of our approach. It is able to achieve high
code coverage, as well as detecting severe bugs. Moreover,
the experiments on RISC CPU and DES illustrate that our
approach scales to designs of practical sizes.

The rest of this paper is organized as follows. Section II
reviews related work. Section III presents the key idea of our
approach to SystemC validation using binary-level concolic
testing. Section IV elaborates on the experiments that we have
conducted and the evaluation results. We conclude this research
and discuss future work in Section V.

II. RELATED WORK

There have been several attempts for SystemC formal veri-
fication. Scoot [24] extracts formal models from SystemC de-
signs for formal analysis. However, it implemented a simplified
library because the SystemC library [23] makes heavy usage
of object-oriented features. STATE [14] translates SystemC
designs into UPPAAL timed automata, which can be verified
by the UPPAAL tool chain. KRATOS [15] translates SystemC
designs to threaded C models, which are checked by combining
an explicit scheduler and symbolic lazy predicate abstraction.
Chou et al. [16] present a symbolic model checking tech-
nique that conducts reachability analysis on Kripke structures
formulated from SystemC designs. SISSI [17] proposes an
intermediate verification language for SystemC. Due to the
complexity and characteristics of SystemC, it is challenging
to describe the transition relation of a SystemC design directly
using formal semantics. Thus, all these approaches translate
SystemC designs into intermediate representations (IR), which
are verified afterwards. However, these IRs usually represent
only a subset of SystemC features.

There are also a handful of simulation-based approaches to
SystemC verification. The SystemC verification library [23]

Testbench
Generator

l Testbench

A

SystemC
Design

Test-Case
Pool

Test-Case

SystemC . Repl
Compiler &ecp ayer

Computer

| Binary Concolic Execution Engine

Fig. 1. Workflow for binary-level concolic testing of SystemC designs

provides APIs only for transaction-based verification using
weighted, constrained, or unconstrained randomization tech-
niques. Chen et al. [19] present an approach for generating
register transfer level (RTL) test cases from TLM specifica-
tions. A SystemC TLM design is first translated into an IR that
can represent only a subset of SystemC TLM. Our previous
work, SESC [20], generates test cases for SystemC designs
automatically using symbolic execution. Although SESC is
able to achieve high code coverage, it is focused on high-
level synthesizable subset of SystemC. Mutation testing has
also been applied to SystemC verification [18]. However, for
mutation testing, users may develop any number of mutants,
and exercising these mutants is time consuming.

III. CONCOLIC TESTING OF SYSTEMC DESIGNS

In this section, we describe the key idea of our approach.
Before discussing details, we first introduce the definition of
a test case. A test case of a SystemC design, denoted as 7 =
Ii,I5,...,1I,, is a sequence of inputs, such that input I; (1 <
i < n) is applied to the design at clock cycle i, where I;
is a set of concrete stimuli corresponding to all input ports.
Note that our approach determines whether a test case passes
or fails according to whether it triggers an assertion, since our
framework integrates the ABV techniques.

A. Workflow for Binary Concolic Testing of SystemC Designs

To validate SystemC designs effectively, we propose a
framework using binary-level concolic testing. Figure 1 shows
the workflow of our framework. It has four key steps: (1)
testbench generation, (2) binary-level concolic execution, (3)
test-case selection, and (4) testing with generated test cases.
For a given SystemC design, its testbench is generated first
and compiled with the design into a binary by linking the
SystemC library. Then, the binary and an initial test case, called
the seed, are fed to a binary concolic execution engine that
includes two parts, concrete execution and symbolic execution.
Concrete execution simulates a design concretely during which
an execution trace is obtained. Symbolic execution exercises
the trace symbolically to generate new test cases. Subsequently,
a test case is selected from the newly generated test cases
for a new iteration of concolic execution. Finally, the newly
generated test cases are used to validate the SystemC design.
This process repeats until a termination condition is achieved.

Algorithm 1 illustrates the validation process using concolic
testing. For most complex system designs, due to path explo-
sion, the common usage model for automated test generation
by symbolic or concolic execution is to run for a fixed amount
of time or run until a target coverage goal is reached. We also
follow such a model. SC-CON-TESTING takes four parameters,
a SystemC design duv, an initial test case seed, a target
coverage tgt, and a time bound 3, as inputs. The outputs are
the generated test cases 7'C' and achieved coverage cov.

Algorithm 1: SC-CON-TESTING(duv, seed, tgt, 3)

1 TC «+ {seed}, TCP «+ {seed}
2 cov+0
3 while (TCP # () A (cov < tgt) A (time < 3) do
4 T < TEST-CASE-SELECTOR(T'CP)
TCP «+ TCP\ {7}
NTC < CONCOLIC-EXECUTION(duv, 7)
foreach t € NTC do
L TEST-CASE-REPLAYER(duwv, t)

R-2E- - B WY |

TCP + TCPU {t}

10 TC «+ TCUNTC
1 cov < COVERAGE-COMPUTER()

12 return TC, cov

Here, T'C' saves all generated test cases and TCP is a test-
case pool accessed dynamically during the validation process.
At the beginning, the concolic execution engine executes the
design with the seed (line 6). When the engine terminates, it
generates new test cases that are saved in a temporary set,
NTC. For each newly generated test case, our framework
reruns it on the SystemC design (line 8) to look for unusual
behavior, such as assertion violations, and generate information
for computing coverage. Each test case that is replayed is
added to TCP (line 9) for the next iteration. Subsequently,
the newly generated test cases are added to 7'C' (line 10),
and COVERAGE-COMPUTER is called to compute coverage
(line 11). If the coverage satisfies the coverage target tgt, the
concolic testing terminates. Otherwise, the test-case selector
selects a new test case (line 4) and removes it from T'CP
(line 5). Then, the binary concolic engine runs again. This
process repeats until the target or other termination conditions
are achieved. The time bound S guarantees the termination of
the validation process in case the target coverage cannot be
achieved within the given time. The variable t¢me denotes the
total time elapsed since the start of the validation process. In
the following, we will discuss the details of each key step.

B. Testbench Generation

The main purposes of a testbench are to generate stimuli and
apply them to the design, as well as recording and monitoring
the output of the design. To apply CTSC to an existing
SystemC project, the existing testbench of the SystemC project
can be reused with slight modification. Instead of generating
concrete stimuli, the function CTSC_make_ concolic is
used to construct stimuli as symbolic in addition to keeping
their concrete values, so-called concolic stimuli. Additionally,

1 SC_MODULE (driver) {

2 sc_in<bool> clk;

3 sc_out<int> datal;

4 sc_out<int> data2;

5

6 void run () {

7 int datal tmp, data2 tmp;

8

9 wait () ;

10 while (true) {

11 CTSC_make concolic(&datal tmp,
12 sizeof (datal tmp), “datal tmp”);
13 CTSC_make_concolic(&data2_tmp,
14 sizeof (data2_ tmp), “data2_tmp”);
15 datal.write(datal_ tmp);

16 data2.write(data2_tmp);

17

18 wait () ;

19 }

20 }

21 SC_CTOR (driver) {

22 SC_CTHREAD (run, clk.pos());

23 }

24 };

Fig. 2. An example of stimuli generation module

we have developed a GUI to generate a testbench for a DUV
automatically. Users simply specify names and types for both
stimuli and outputs of DUVs. Users can also set the properties
of a clock signal, such as period and duty cycle. A complex
testbench may demand slight modification manually.

Suppose there are two integral inputs, ¢nl and in2, for a
SystemC design, Figure 2 illustrates the stimuli generation
module! in a testbench for the design. The module has one
clock input clk, and two data outputs, datal and data2 that
are connected to the inputs, inl and in2, of the design. The
function CTSC_make_concolic constructs concolic stimuli
for the design. The recording and monitoring of the output and
the definition of the clock signal are straightforward. Thus, they
are not presented.

C. Binary-Level Concolic Execution of SystemC Designs

SystemC designs usually include hierarchical structures,
object-oriented features, and hardware-oriented data types.
Generally, a SystemC design also contains multiple processes
that run concurrently, which requires a scheduler to simulate
the design. These features are implemented in libraries. Thus,
SystemC designs are not stand-alone programs. SystemC sim-
ulation invokes libraries that provide those features.

Therefore, to analyze a design’s behavior accurately, it often
requires taking the dependent libraries into account. Due to the
complexity of the SystemC library, most existing SystemC ver-
ification approaches either translate SystemC designs into other
IRs, which can represent only a subset of SystemC usually, or
handle the SystemC library by writing a simplified one. Thus,
those approaches cover only a subset of SystemC features. Al-
though SystemC comes with a well-written user’s manual and
a reference implementation, it lacks formal specification and
leaves out some implementation choices deliberately. Hence,
even carefully writing a simplified library can easily result in
a dialect. Moreover, such modelling is time-consuming, error-
prone, and labor-intensive.

I'The infinite while loop follows the SystemC semantics.

Our framework, in contrast, requires no translation of Sys-
temC designs, no modelling of dependent libraries, and there-
fore supports all kinds of SystemC designs without restrictions.
First, our concolic execution engine concretely simulates a Sys-
temC binary in a native operating system for a fixed number of
clock cycles by linking the SystemC library [23], the reference
implementation of the Standard [1]. So, concrete execution
follows the scheduling mechanism provided by the library.
During concrete execution, the current concrete execution path
is recorded as a trace. The recorded trace is in the format
of LLVM [21] bitcode including all runtime information that
is required by symbolic execution afterwards. This way, a
concurrent SystemC design is unwound as a sequential self-
contained execution trace. Then, the trace is analysed by the
engine symbolically to generate new test cases. The symbolic
execution follows the scheduling orders of concrete execution.
In the future, we will perform scheduling-space exploration to
detect concurrency related bugs, such as data races.

A SystemC program is a hardware design that can be
simulated for arbitrary clock cycles. Thus, a concrete execution
trace of a design can be intimidating long. If we capture the
entire execution trace, the symbolic engine will take a long time
to exercise the trace and may use up the memory after loading
the trace, even before symbolic execution starts. To relieve
the strain on memory and reduce the time usage of symbolic
execution, we need an intelligent way of capturing a trace. We
introduce selective instruction tracing technique to reduce the
size of a captured trace. CTSC provides a mechanism to capture
instructions only from a design itself, excluding the SystemC
library and other libraries. Usually, users are not interested in
the library code. In addition, if the entire trace is captured, the
symbolic engine may explore numerous paths in the library
while only a small number of paths are explored from the
design perspective.

We built our binary-level concolic execution engine based
on CRETE [13], a recently open-sourced concolic execution
engine that targets software programs. We will not present the
details of binary-level concolic execution here, such as how
to capture a concrete trace and what it consists of. Users of
interests may refer to CRETE for detailed information.

D. Test-Case Selection

Concolic execution requires a concrete test case each time.
At the beginning, there is only one test case, the seed, which
is simply selected by TEST-CASE-SELECTOR. After the first
iteration, multiple test cases may be generated. Thus, different
test-case selection strategies can be adopted. Currently, we have
developed three test-case selection strategies in terms of the
time stamp of test cases: (1) first-come-first-serve (FCFS) that
the earliest generated test case is selected first; (2) last-come-
first-serve (LCFS) that the last generated test case is selected
first, and (3) random selection that a test case is selected among
all generated test cases randomly. In the future, we will use
SystemC features to guide test-case selection.

E. Testing with Generated Test Cases

It is only half of the story to generate test cases that explore
as many paths as possible. A generated test case follows the

exact same code path that the concolic engine exercised. Thus,
if an error is encountered by the concolic engine, the generated
test case can reproduce the error afterwards. Therefore, our
framework validates SystemC designs by replaying the gener-
ated test cases (line 8 in Algorithm 1). This replay is checked
for unusual behavior or errors. If TEST-CASE-REPLAYER
detects an error when replaying a test case, it saves the test case
and generates a report that records the detailed information of
the error, such as error type and error location. This helps users
better analyze the design and fix the error.

To check whether a test case passes or fails, we have
also integrated the ABV techniques in which designers use
assertions to capture specific design intents. Assertions are
used to improve the ability to observe bad behavior once they
are triggered by specific test cases. By getting an assertion
triggered, users can easily identify if there are bugs or invalid
inputs. This helps users fix the bug or further constrain the
input ranges.

Currently, our framework is focused on generating test cases,
not focused on generating assertions for designs. Instead,
we utilize the existing assertions in the SystemC designs to
evaluate the effectiveness of the CTSC-generated test cases.

IV. EXPERIMENTAL RESULTS

This section presents our experimental results on the Sys-
temC benchmark [22] that includes a number of application
domains, such as security, CPU architecture, network and DSP.
The benchmark designs cover most core features and data types
of the SystemC language. We currently have performed the
experiments on 19 total designs, among which 16 designs are
from the SystemC benchmark [22]. The other three designs,
RISC_CPU_bdp, RISC_CPU_crf, and sync_mux81, are
taken from SESC [20] for comparison. Two out of 19 designs
have practical sizes, RISC CPU containing 13 processes and
2056 lines of code (LoC), and DES consisting of 14 processes
and 2410 LoC.

The summary of 19 designs are shown in the first three
columns of Table I. It lists the names of the designs, the number
of processes, and LoC, respectively. Note that only the code in
a design itself is taken into account, excluding the testbench
code. All experiments were performed on a desktop with a 4-
core Intel(R) Core(TM) i7-4790 CPU, 16 GB of RAM, and
running the Ubuntu Linux OS with 64-bit kernel version 3.19.

Appropriate coverage metrics are required to evaluate the
effectiveness and confidence in the verification results. Func-
tional coverage needs to be redeveloped for new designs and
built by engineers with indepth knowledge of both the design
specification and implementation. Thus, it is not automatic.
SystemC is widely used for modelling functionalities of sys-
tems at high-level abstraction. Therefore, we adopt the typical
code coverage, line coverage and branch coverage, which
are widely used and understood. We choose line and branch
coverage reported by LCOV [25]. We also adopt assertion
coverage to show the ability of our approach to detect bugs.

A. Code Coverage Improvement over Seeds

In our experiments, we developed the seed for each design.
We set a 24-hour time bound and 100% branch coverage target

TABLE I
SUMMARY OF DESIGNS, TIME AND MEMORY USAGE

Designs # of Proc. LoC ET (s) MEM (MB) # of TCs
DES 14 2401 186 3928 35
RISC_CPU_bdp 3 148 3077 505 149
RISC_CPU_mmxu 1 187 1291 240 258
RISC_CPU_exec 1 126 251 230 44
RISC_CPU_floating 1 127 576 243 122
Qsort 1 86 88 175 41
UsbTxArbiter 5 144 234 265 298
Sync_mux81 1 52 73 180 28
MIPS 1 255 207 124 474
IDCT 1 244 335 574 494
MDS5C 1 271 21 465 37
RSA 1 324 1944 8103 131
RISC_CPU_crf 5 927 10863 331 1220
RISC_CPU_control 1 826 12005 347 1246
ADPCM 1 134 25 220 40
Y86 11 301 493 480 67
Pkt_switch 17 376 3189 333 385
RISC CPU 13 2056 17520 1303 386
Master/Slave Bus 5 974 24 205 88

for all designs. The actual execution time (ET) of each design
in seconds is listed in the fourth column of Table I, after which
the branch coverage could not be improved within the 24-hour
time bound. The corresponding maximum memory usage and
the number of generated test cases are presented in column five
and six. As shown, the time and the memory usage was modest.
Since RSA and DES are cipher algorithms that do computation
on large numbers, they used more memory.

Figure 3 and Figure 4 show the code coverage improvement
on 19 total designs over the seeds with the time usage listed in
Table I. In our current experiments, we adopted FCFS test-case
selection strategy. In the future, we will evaluate the effects
of different test-case selection strategies. As illustrated, the
CTSC-generated test cases are able to improve code coverage
substantially. For most designs, high code coverage is achieved
in a short time. CTSC achieves 100% line coverage on ten
designs and 100% branch coverage on eight designs. Table II
shows the overall code coverage improvement of CTSC over
the seeds. On average, CTSC achieves 97.3% line coverage and
91.8% branch coverage (Column 2 of Table II). The maximum
improvement of line coverage and branch coverage are 84%
and 91.5% (Column 3 of Table II), respectively. On average,
line coverage and branch coverage are improved by 32.3% and
50.2% (Column 4 of Table II), respectively.

TABLE II
COVERAGE IMPROVEMENT OVER SEEDS

Coverage Ave. (%) Max A (%) Ave. A (%)
Line 97.3 84 323
Branch 91.8 91.5 50.2

Besides the final coverage our approach achieved, we also
graphically demonstrate the cumulative progression as test
cases were generated. Here, we selected three designs, RISC
CPU, RISC_CPU_control, and RISC_CPU_crf, which

100
B Sced

=3
I =3 Improvement|

80 -

60 q

40 4

20 q

Line Coverage Improvement (%)

DES
_bdp

)t g
Qsort
MIPS
IDCT
MD5C
RSA
ADPCM
Y86
RISC CPU

Pkt_switch.

Sync_mux81l

UsbTxArbiter

RISC_CPU_bdj
RISC_CPU_mmxu
RISC_CPU_exec

RISC_CPU_floatin
RISC_CPU_crf
RISC_CPU_control
Master/Slave Bus

Fig. 3. Line coverage improvement on 19 total designs

100

— B Seed
3 Improvement

80

60

40

20

Branch Coverage Improvement (%)

p
9

DES

<
"]
-4

Qsort
ADPCM
Y86

Pkt_switch

RISC CPU

Sync_mux81

UsbTxArbiter

t
S
>
a
¥}
%)
]
3

RISC_CPU_bd
RISC_CPU_exec

°
2
=
€
]
S
)
o
5}
%
a

RISC_CPU_mmxu
Master/Slave Bus

RISC_CPU_floatin

Fig. 4. Branch coverage improvement on 19 total designs

use relatively longer time. Figure 5 and Figure 6 illustrate the
cumulative progression of line coverage and branch coverage,
respectively. The figures demonstrate the 10-hour time line
visually. As shown, the line coverage and the branch coverage
are improved substantially within the first hour based on the
seed, after which improvement tapers off in a few hours.

There are three possible reasons that our approach is unable
to achieve 100% code coverage for some designs. First, the
constraint solver may fail to solve complex symbolic ex-
pressions. Since there are symbolic inputs at each simulation
cycle, the collected path constraints can be very complicated.
Second, the concolic execution engine records instructions
from discrete parts of an execution path. Symbolic variables
may be concretized from the captured part to the uncaptured
part. Third, there are unreachable statements and branches in
certain designs.

B. Comparison with the State-of-the-Art Approaches

In this section, we compare the results of our approach with
the state-of-the-art approaches. To the best of our knowledge,
no other existing SystemC verification approaches except our
previous work, SESC [20], provide such code coverage. There-
fore, we compare the results of the 11 shared designs achieved
by CTSC and SESC, as shown in the Table III. LCov and BCov
denote line coverage and branch coverage, respectively.

As illustrated, compared with SESC, CTSC achieves higher
line and branch coverage for RISC_CPU_mmxu. CTSC

TABLE III
COMPARISON WITH SESC

Designs ET (s) MEM (MB) # of TCs LCov (%) BCov (%)
SESC | CTSC | SESC | CTSC | SESC | CTSC | SESC | CTSC | SESC | CTSC
RISC_CPU_mmxu 11.38 1291 15.6 240 95 258 99.4 100 97.9 100
RISC_CPU_exec 3.23 251 49.6 230 35 44 100 100 100 100
RISC_CPU_bdp 0.15 3077 17.5 505 36 149 100 100 100 100
UsbTxArbiter 0.05 234 13.7 265 10 298 100 100 100 100
Sync_mux81 0.04 73 135 180 10 28 100 100 100 100
MIPS 178.23 207 27.6 124 39 474 100 100 97.9 97.9
IDCT 180 335 134 574 135 494 100 100 100 89.5
ADPCM 1.88 25 16.2 220 25 40 100 96.1 100 90.6
RISC_CPU_control 0.57 12005 17.8 347 76 1249 100 97.9 100 94
RISC_CPU_crf 300 10863 61.1 331 1759 1220 98.2 98.1 95.7 94.9
RISC CPU 169 17520 264 1303 2099 386 96.3 87.4 932 73.7

Line coverage (%)

V-V RISC CPU
20 *—k RISC_CPU_control|{
@@ RISC_CPU_crf

2 4 6 8 10
Time (hours)

Fig. 5. The cumulative progression of line coverage

Branch coverage (%)

v

RISC CPU
*—% RISC_CPU_control
@@ RISC_CPU_crf

0 2 4 6 8 10
Time (hours)

Fig. 6. The cumulative progression of branch coverage

achieves the same line coverage for six designs and the same
branch coverage for five designs as achieved by SESC. For
other designs, CTSC achieves a little lower code coverage
compared with SESC. In terms of the number of test cases
and time usage, CTSC has slightly larger number of generated
test cases and a bit longer time usage in general. The reason
is that SESC symbolically executes a design only once, while
CTSC is an iterative process. A test case generated by one
iteration may cover the same code with a test case generated by
another iteration. CTSC also costs a little more memory, which
is because the concolic execution in this framework involves
virtual machine. Thus, the memory usage is reasonable and
modest. However, SESC only works on high-level synthesiz-
able SystemC that is a subset of SytemC. CTSC supports all

features of the SystemC language provided by the SystemC
library and has better scalability.

C. Comparison with Random Testing

We also compare the code coverage results of CTSC with
random testing that randomly generates test cases automatically
at each simulation cycle. We set the branch coverage of each
design achieved by CTSC as the target for random testing. In
case random testing could not achieve the target, we set a 24-
hour time bound. We conducted the experiments of random
testing 10 times for each design and computed the average.
Note that the inputs of Master/Slave Bus has rigorous
restrictions. It is hard to generate valid inputs randomly. Thus,
we excluded this design.

The target is achieved on eight designs, but with many more
test cases. Random testing does not achieve the target for other
ten designs after running 24 hours, although numerous random
test cases were generated and simulated. Note that if regression
testing is performed, it is time-consuming to simulate hundreds
of thousands of test cases or more each time. Compared with
random testing, CTSC has the advantage of generating much
fewer test cases to achieve high code coverage and to cover
corner cases efficiently where bugs are likely to appear, as
illustrated in the following section.

D. Bug Detection

In addition to computing code coverage, we also show the
capability of our approach to trigger assertions and detect
bugs. When the validation process terminates, a validation
report is generated automatically. The report is in a plain
text format that mainly indicates the statuses of test cases
(failure or pass) and assertion violations. Upon triggering an
assertion, CTSC generates a test case automatically leading to
the assertion, which helps designers find the root cause easier
when debugging the design.

Among the 19 total designs, five designs contain assertions,
as shown in the first column of Table IV. The second column
shows the total number of assertions. The last three columns
present the number of assertions triggered by the seed, by

the CTSC-generated test cases, and by random testing, respec-
tively. Although random testing can trigger some assertions, it
generates many more test cases than CTSC. Note that some
assertions always hold. For instance, although there are 15
total assertions in the design RSA, we have verified manually
that 11 assertions can never be triggered. For example, the
violation of assertion assert (a == d) directly following
the assignment a = d cannot be triggered.

TABLE IV
ASSERTION COVERAGE

of Assertions

Designs

total by seed by CTSC by random
RISC_CPU_exec 2 0 2 0
MD5C 1 0 1 0
RSA 15 0 3 3
Master/Slave Bus 11 0 6 N/A
RISC CPU 2 0 2 2

During our experiments, we found an interesting bug in the
design RSA, an asymmetric cryptographic algorithm. The first
step of RSA is to find two different large prime numbers,
p and ¢. Note that the algorithm relies on the fact that p
and ¢ are different. If they are equal, the algorithm does not
work correctly. However, this implementation does not check
whether or not p and ¢ are equal. In addition, we also found
an out-of-bound access to an array in the design Y86. The
bugs found by CTSC underlines the importance of performing
automated concolic testing and the effectiveness of CTSC.

V. CONCLUSIONS

In this paper, we have presented an automated, easy-to-
deploy, scalable, and effective binary-level concolic testing
framework for SystemC designs. Our extensive experiments
illustrate that CTSC is able to achieve high code coverage
and detect bugs effectively, as well as scaling to designs
of practical sizes. Our framework can handle object-oriented
features, hardware-oriented structures, event-driven simulation
semantics, and concurrency effectively. Four major advantages
of our approach are summarized as follows. First, CTSC
requires no translation of SystemC designs and no modelling
of dependent libraries, while most existing work does. Second,
CTSC supports all features of the SystemC language, while
most existing approaches support only a subset of SystemC
features. Third, CTSC provides an easy deployment model. It
requires minimum engineering effort to apply CTSC to existing
SystemC projects. Fourth, once a testbench is configured, the
whole validation process is fully automated.

The current experimental results are promising. We will
evaluate the performance of our framework on the remaining
designs from the SystemC benchmark [22]. Besides, there are
three directions that we want to explore in the future. First,
we will utilize SystemC specific features to guide test-case
selection. Second, we will explore the scheduling space sys-
tematically to detect concurrency related bugs. Third, we will
work on the constraint solver failures and over concretization
problems.

ACKNOWLEDGEMENT

This research received financial support from National Sci-
ence Foundation (Grant #: CNS-1422067).

REFERENCES

[1] IEEE Standards Association, “Standard SystemC Language Reference
Manual,” IEEE Standard 1666-2011, 2011.

[2] https://en.wikipedia.org/wiki/SystemC

[3] M. Y. Vardi, "Formal Techniques for SystemC Verification,” in Proceed-
ings of the 44th annual Design Automation Conference, 2007.

[4] J. C. King, “Symbolic Execution and Program Testing,” Communications
of the ACM, 1976.

[5] C. Cadar, D. Dunbar and D. Engler, “KLEE: Unassisted and Automatic
Generation of High-coverage Tests for Complex Systems Programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation, 2008.

[6] V. Chipounov,V. Kuznetsov and G. Candea, “S2E: A Platform for In-
vivo Multi-path Analysis of Software Systems,” in Proceedings of the
16th International Conference on Architectural Support for Programming
Languages and Operating Systems, 2011.

[7]1 K. Cong, F. Xie, and L. Lei, “Symbolic Execution of Virtual Device,” in
Proc. of the 13th International Conference on Quality Software, 2013.

[8] B. Lin and D. Qian, “Regression Testing of Virtual Prototypes Using
Symbolic Execution,” International Journal of Computer Science and
Software Engineering (IJCSSE) 4, no. 12, 2015.

[9] P. Godefroid, N. Klarlund and K. Sen, “DART: Directed Automated
Random Testing,” ACM SIGPLAN Notices, 2005.

[10] K. Sen, D. Marinov and G. Agha, “CUTE: A Concolic Unit Testing
Engine for C,” in Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, 2005.

[11] K. Cong, F. Xie and L. Lei, “Automatic Concolic Test Generation
with Virtual Prototypes for Post-silicon Validation,” in Proceedings of
IEEE/ACM International Conference on Computer-Aided Design, 2013.

[12] G. Guglielmo, M. Fujita, F. Fummi, G. Pravadelli, and S. Soffia,
“EFSM-based Model-driven Approach to Concolic Testing of System-level
Design,” in Proceedings of the 9th IEEE/ACM International Conference
on Formal Methods and Models for Codesign, 2011.

[13] B. Chen, C. Havlicek, Z. Yang, K. Cong, R. Kannavara and F. Xie,
“CRETE: A Versatile Binary-Level Concolic Testing Framework,” to
appear in Proceedings of FASE, 2018.

[14] P. Herber, J. Fellmuth and S. Glesner, “Model Checking SystemC De-
signs Using Timed Automata,” in Proceedings of the 6th IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis, 2008.

[15] A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya, and M. Roveri,
“KRATOS: A Software Model Checker for SystemC,” in Proceedings of
International Conference on Computer Aided Verification, 2011.

[16] C.-N. Chou, Y.-S. Ho, C. Hsieh, and C.-Y. Huang, “Symbolic Model
Checking on SystemC Designs,” in Proceedings of the 49th Annual Design
Automation Conference, 2012.

[17] H. M. Le, D. GroBe, V. Herdt, and R. Drechsler, “Verifying SystemC
Using an Intermediate Verification Language and Symbolic Simulation,”
in Proceedings of the 50th Annual Design Automation Conference, 2013.

[18] A. Sen and M. S. Abadir, “Coverage Metrics for Verification of Con-
current SystemC Designs Using Mutation Testing,” in Proceedings of
International High Level Design Validation and Test Workshop, 2010.

[19] M. Chen, P. Mishra, and D. Kalita, “Automatic RTL Test Generation
from SystemC TLM Specifications,” ACM Transaction on Embedded
Computing System, 2012.

[20] B. Lin, Z. Yang, K. Cong and F. Xie, “Generating High Coverage Tests
for SystemC Designs Using Symbolic Execution,” in Proceedings of the
21st Asia and South Pacific Design Automation Conference, 2016.

[21] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and
Runtime Optimization, 2004.

[22] B. Lin, and F. Xie, “SCBench: A Benchmark Design Suite for SystemC
Verification and Validation,” in Proceedings of the 23rd Asia and South
Pacific Design Automation Conference, 2018.

[23] http://www.accellera.org/downloads/standards/systemc/files

[24] B. Nicolas, K. Daniel, and S. Natasha, “Scoot: A Tool for the Analysis
of SystemC Models,” in Proceedings of International Conference on Tools
and Algorithms for the Construction and Analysis of System, 2008.

[25] http://ltp.sourceforge.net/coverage/lcov/readme.php

