
Validating Scheduling Transformation for

Behavioral Synthesis

Zhenkun Yang∗, Kecheng Hao∗, Kai Cong∗, Li Lei∗, Sandip Ray† and Fei Xie∗

∗ Dept. of Computer Science, Portland State University, Portland, OR 97207, USA

{zhenkun, kecheng, congkai, leil, xie}@cs.pdx.edu
† Strategic CAD Labs, Intel Corporation, Hillsboro, OR 97124, USA

sandip.ray@intel.com

Abstract—Behavioral synthesis automatically compiles an elec-
tronic system-level description of a hardware design into an
RTL implementation. Scheduling in behavioral synthesis is an
important, sophisticated, and error-prone transformation which
converts the untimed or partially timed description into a
fully timed implementation. We present a scalable equivalence
checking algorithm for validating scheduling transformations.
Our approach accounts for control/data dependency, scheduling
modes, and subtle interface protocols. We successfully validated
designs with tens of thousands of lines of RTL synthesized by
commercial synthesis tool, demonstrating the viability of our
approach.

I. INTRODUCTION

Behavioral synthesis is the process of translating a high-

level description of a hardware design (usually in C, C++, or

SystemC) into a register-transfer level (RTL) implementation.

It allows hardware designers to develop systems at a higher

abstraction level than directly implementing them in RTL,

thereby significantly improves design productivity. However,

a critical requirement for practical adoption of behavioral

synthesis is verification support to ensure correspondence

between the high-level description and the synthesized RTL.

However, this is a complex enterprise, since the high abstrac-

tion difference between high-level models and RTL makes it

difficult to compare them directly through sequential equiva-

lence checking (SEC) techniques [1], [2]. In particular, there

is no direct mapping between internal variables of the two,

making it difficult to apply traditional SEC decompositions.

Previous work [3]–[5] made partial progress in providing

SEC for behavioral synthesis. SEC frameworks were devel-

oped for front-end compiler transformations and back-end

code-generation modules. Both front-end and back-end SEC

were shown to scale to complex industrial-size designs.

However, SEC in previous work did not handle scheduling

transformations, i.e., transformations that generate fully timed

implementations from untimed or partially timed descriptions.

Unfortunately, scheduling is also one of the most complex

activities in behavioral synthesis, since it performs aggressive

optimizations to meet timing and resource constraints. In fact,

the complexity of scheduling transformations distinguishes be-

havioral synthesis from both software compilers and hardware

logic synthesis.

In this paper, we present an approach to validating schedul-

ing transformations in behavioral synthesis. Our approach in-

volves careful characterization of different scheduling modes,

formalization of the notions of equivalence to compare designs

scheduled according to each mode, and equivalence checking

algorithms to perform such comparison. We used our approach

on two behavioral synthesis benchmarks, CHStone [6] and

S2CBench [7], containing designs from as variety of appli-

cation domains. The designs were synthesized by a state-

of-the-art commercial behavioral synthesis tool. Some of the

designs in the benchmark synthesized to tens of thousands of

lines of RTL. Our approach successfully validated scheduling

transformations in all designs in a few seconds, demonstrating

the scalability of our approach. Furthermore, we found several

bugs in the synthesis tool itself. The experience underlines

both the feasibility and the critical need for such an equiva-

lence checking framework to ensure high-quality synthesized

hardware designs.

II. BACKGROUND

A. Behavioral Synthesis

Figure 1 shows the typical flow of a behavioral synthesis

tool. It accepts a behavioral level design written in either

untimed C/C++ or timed SystemC, builds an intermediate

representation (IR) through its compiler front-end, and applies

a sequence of transformations which can be classified into the

following categories.

1) Compiler transformation includes generic compiler op-

timizations, e.g., dead code elimination, common sub-

expression elimination, loop unrolling etc.

2) Scheduling and binding. Scheduling assigns every oper-

ation a clock cycle to execute, and ensures that the result

satisfies timing and resource constraints. In this phase,

each operation maps to a hardware resource (e.g., the

operation ‘*’ is bound to a multiplier).

3) Code generation involves creating RTL implementation

code (e.g., VHDL, Verilog, etc.) from the IR.

B. SEC for Back-End and Front-End Transformations

Fig. 1 shows an illustrative SEC framework for behavioral

synthesis developed in previous research. Back-end algorithms

were defined for comparing the synthesized RTL with the IR

generated by synthesis tools after compiler and scheduling

transformation [3], [4]; they exploit the operation binding

computed by the synthesis tool to define mappings between

C
e
rt

if
ic

a
ti

o
n

 F
lo

w

B
e
h

a
v
io

ra
l
S

y
n

th
e
s
is

 T
o

o
l

C/C++/SystemC

RTL

Compiler

Transformations

Scheduling

Compiler Front-end

Code Generation

IR0

IRn

IRs

Back-end

Checker

Transformation

Checker

missing

Fig. 1: Behavioral synthesis and certification flow

operations in the IR and RTL. Separately, there was also recent

work on SEC for front-end compiler transformations [5]. It

uses symbolic simulation to compare IRs generated after each

successive transformation.

However, the above frameworks do not support scheduling

transformations, resulting in a serious hole in the certification

flow for behavioral synthesis. Furthermore, neither the back-

end nor the front-end techniques can be easily extended to

adapt to scheduling. Back-end techniques critically depend

on operation mapping through binding stages of behavioral

synthesis which occur later in the synthesis flow than schedul-

ing. On the other hand, optimizations used for front-end

transformations (e.g., inductive assertions) cannot be directly

applied to provide a guarantee for timing correlation between

timed and untimed designs.

III. SCHEDULING TRANSFORMATION

Scheduling is a critical synthesis phase that directly affect

the quality of synthesized design in terms of timing, perfor-

mance, and thermal characteristics [8]. Scheduling transfor-

mation involves complex heuristics to ensure that the design

being synthesized can meet the timing and resource constraints

while preserving control and data dependencies.

To understand the source of resource constraints consider

scheduling the following operations:

S1: x = y * z;

S2: p = x + y;

S3: w = a * b;

S4: q = a + z;

Assume that the design is non-pipelined and needs to be

implemented with a single 3-cycle multiplier and two adders.

Suppose the scheduling transformation schedules S1 to start

at clock cycle t. Since there is data dependency between S1

and S2, and the multiplier takes 3 clock cycles, S2 cannot be

scheduled to start before cycle t+3. Furthermore, since there

is only one multiplier, S3 cannot be scheduled to start before

cycle t + 3 (or after t − 3) either, although there is no data

dependency between S1 and S3. However, since there are two

adders, S2 and S4 can be scheduled concurrently.

For untimed C/C++ designs, scheduling can assign any

clock cycle to an I/O operation as long as control/data depen-

dencies and resource constraints as discussed above are met.

However, most high-level descriptions of hardware designs

also specify partial timing. For example, SystemC designs can

have default I/O timing constraints that are usually specified by

wait statements. Behavioral synthesis tools usually provide

the user the flexibility to explore different architectures by

picking different I/O scheduling modes [9] as discussed below.

1) Cycle-Fixed mode: In this mode, the user explicitly spec-

ifies the timing of the I/O operations, and the scheduling

transformation cannot change or refine this timing. This

is applied typically at design interfaces which implement

communication protocols (possibly with other external

interfaces), and the cycles when data must be read or

written is governed by the protocol.

2) Superstate-Fixed mode: In this mode, the user specifies

wait statements. The scheduler comprehends these

wait statements to be the boundaries of “superstates”,

which impose constraints on scheduling I/O operations

as follows. Informally, a superstate is a sequence of op-

erations, possibly scheduled over multiple clock cycles,

with the requirements that (1) no I/O operation in a

superstate can be moved across the superstate boundary,

and (2) all I/O writes must be scheduled at the last clock

cycle assigned to operations in the superstate.

3) Free-Floating mode: The scheduling transformation can

assign any I/O operation to any clock cycle (possibly

switching their program order), even add or delete

clock cycles, as long as control/data dependencies are

maintained.

IV. PROBLEM FORMALIZATION

In order to formalize the validation requirement to certify

scheduling transformations, we need a notion of correspon-

dence between IRs before and after scheduling. In this section,

we develop the formalization of this notion. Note that the no-

tion we require for certifying a specific scheduling application

depends on the scheduling mode for the application.

Conventions. Our formalization of IRs uses the Control/Data

Flow Graph (CDFG). We assume that (1) the set Vo of

operations in an IR is a subset of a fixed set O of all

operations; and (2) all operations in O are defined through

operational semantics over abstract machine states. The IR

is decomposed into a collection of basic blocks Vb. These

assumptions are standard in formalization of control constructs

for programming language semantics. Furthermore, O is as-

sumed to contain standard variable read and write operations

with the usual meaning, and a wait operation that specifies a

transition with no effect on machine state. Given a set V of

operations, we define the active subset of V , denoted by V [N]
to be the subset of V excluding all wait statements. For each

operation o ∈ Vo we assume there is a unique basic block in Vb

containing o; this is easily implemented by uniquely labeling

all design operations. Following conventions from program

analysis, the control flow graph of an IR is a directed graph

GC , (Vb, Ec) where an edge e ∈ Ec from basic block b0
to b1 represents a control dependency of b1 on b0, and the

data flow graph is the directed graph GD , (Vo, Ed) where

an edge e ∈ Ed from operation o1 to o2 represents a data

dependency of o2 on o1.

Definition 1 (CDFG)

The CDFG is a triple G , (GC , GD, R), where Gc ,

(Vb, Ec) is a control flow graph, GD , (Vo, Ed) is a data

flow graph, and R is a mapping R : Vo → Vb.

Informally, for each operation o ∈ Vo, R(o) represents

the basic block for o. The mapping is well-defined by the

uniqueness assumption.

We formalize the timing associated with an operation execu-

tion with the notion of a state transition partition (STP) below.

It is convenient to interpret the pair (Pi, τi) as the directive

that (active) operations in Pi are scheduled at cycle τi.

Definition 2 (STP)

Let Vo be a set of operations. A state transition partition of

Vo is a finite set of pairs {(Pi, τi) : i = 1 . . . k}, where each

Pi is a sequence of operations over Vo[N] and the following

conditions hold:

1)
⋃k

i=1
Pi = Vo[N];

2) Pi ∩ Pj = ∅ for i 6= j;

3) τi ∈ N with τi 6= τj for i 6= j.

If the pair (P, τ) is a member of STP S then for any

operation o ∈ P we represent τ as τS [o] and P as PS [o],
dropping the subscript when there is no ambiguity.

It is convenient to view each partition Pi as a sequence

requiring that if an operation o appears before o′ then o′

cannot be scheduled for execution before o. We utilize this

restriction in defining trace compatibility below. Informally,

an operation o can be scheduled at cycle τ only after any

operations o depends on have completed, either in a previous

cycle or earlier in the same cycle.

Definition 3 (Operation Precedence)

Given an STP S over a set of operations Vo, and two

operations o1, o2 ∈ Vo, we say o2 follows o1 in Vo if either

(1) τ [o2] > τ [o1], or (2) τ [o1] = τ [o2] and o2 appears after

o1 in P [o1].

Definition 4 (Trace Compatibility)

Let G , (GC , GD, R) be a CDFG over the set of operations

Vo and basic blocks Vb, and let S , {(P, τ)} be an STP

over Vo. We say that S is compatible with G if the following

conditions hold for each pair of operations oi and oj in Vo[N]:

1) If there is a path from oi to oj in GD then oj follows

oi in S.

2) If there is a path from R(oi) to R(oj) in GC then oj
follows oi in S.

In addition to respecting control/data flow requirements

from CDFG specified by the definition of Trace Compatibility,

scheduling must also satisfy the I/O restrictions as specified

by the scheduling mode (other than free-floating). Formally,

we capture the I/O restrictions for each scheduling mode by

further restricting for I/O operations the timing constraints.

Definition 5 (Valid Cycle-Fixed Schedule)

Let S , {(Pi, τi), i = 1, . . . , k} over an operation set Vo and

G , (GC , GD, R) be a CDFG. We say that S is a valid cycle-

fixed schedule with respect to G if S is compatible with G,

and the following additional condition holds:

Let o1 and o2 be two read or write operations such

that R(o1) = R(o2). Suppose that there is a path Π
in GD from o1 to o2 that has n wait operations.

Then τ [o2] = τ [o1] + n.

Definition 6 (Valid Superstate-Fixed Schedule)

Let S , {(Pi, τi), i = 1, . . . , k} over an operation set Vo

and G , (GC , GD, R) be a CDFG. We say that S is a valid

superstate-fixed schedule with respect to G if S is compatible

with G, and additional timing conditions hold which are

specified as follows. Let oi and oj be two read or write

operations such that R(oi) = R(oj). Suppose that there is a

path Π in GD from oi to oj that has n wait operations. Then

τ [oj] ≥ τ [oi]+n. In addition, let o1, o2, o3 be operations such

that R(o1) = R(o2) = R(o3), o1 and o2 are write operations,

and o3 is a wait operation. Suppose that there are paths Π1

and Π2 in GD from o1 to o3 and o2 to o3 such that there is

no intermediate wait operation. Then:

1) P [o1] = P [o2].
2) Let o be any operation such that R(o) = R(o1) and

there is a path Π from o to o1 (resp., o2) in GD. Then

τ [o] ≤ τ [o1] (resp., τ [o] ≤ τ [o2]).
3) Let o be any operation such that either (1) there is a

path Π from o1 (resp., o2) to o in GD, or (2) there is

a path Π′ from R(o1) to R(o) in GC (resp., o2). Then

τ [o1] ≤ τ [o] and τ [o2] ≤ τ [o].

Requirements 1-3 above ensure that the scheduling does

not “squeeze” I/O operations by removing clock cycles. In

addition, any write operation is scheduled in the last cycle

before any user-provided wait operation.

V. VALIDATION APPROACH

A. Validating Trace Compatibility

Let G be the CDFG of a design and S be the STP

after scheduling for a set Vo of operations. Our approach

to control/data dependency checking (and hence free-floating

mode scheduling) is to first define a dependency graph G∆,

consolidating the control and data dependencies. The depen-

dency graph G∆ = (V∆, E∆) is a pair, where V∆ is a set of

operations, E∆ is a list of tuples. Each tuple 〈oi, oj , C〉 means

that operation oj depends on oi under condition C, where C is

a conjunction of Boolean expressions. G∆ not only captures

the data dependencies of a design, but also includes control

dependencies through the condition encoded in each edge.

Constructing G∆ requires a traversal of G, and identifications

of each operation o ∈ Vo and the condition under which

void dut::my_thread() {
 initialize();
 while(true) {
 wait();
 a = 1;
 if(x) {
 wait();
 b = a + 1;
 } else {
 wait();
 c = a + b;
 wait();
 d = c + 1;
 }
 }
}

s0

s1

s2 s3

s4

(a) (b)

Fig. 2: Extract superstates of a thread in SystemC. (a)

my_thread is a thread of module dut, wait statements

are the boundary of superstates in SystemC. (b) Superstates

and their transitions of my_thread.

o is executed. This is done efficiently using def-use chain

analysis [10]: since the left-hand-side of every assignment is

unique we can trivially identify variable dependency chains.

Finally, to check if the control/data dependencies are satisfied

in S, it is sufficient that for each pair of operations oi and oj ,

oj follows oi in S under condition C.

From Definition 4, S is compatible with G if control and

data dependencies are preserved in S. We can validate this

condition by comparing the dependency graphs of S and G.

B. Validating I/O Timing

Algorithm 1: CHECK-CYCLE-FIXED-MODE(G, S)

1 ss← BUILD-SUPERSTATES(G)
2 T1 ← COMPUTE-TRACES(ss)
3 T2 ← COMPUTE-TRACES(S)
4 foreach π = [ss1, s

s
2, . . . , s

s
m] ∈ T1 do

5 C ← EXTRACT-TRACE-COND(π)
6 [sg

1
, s

g
2
, . . . , sgn]← FIND-TRACE(T2, C)

7 assert m = n ⊲ have the same number of cycles

8 for i← 0 to m do

9 assert HAS-1-1-MAPPING(Frw(s
s
i), Frw(s

g
i))

10 return true

For Cycle-Fixed and Superstate-Fixed modes, we must

additionally validate the I/O timings. It will be convenient to

call the partitions in the STP S to be states, and the set of

operations between any two user-specified wait operations in

a CDFG G to be superstates. Fig. 2(a) shows an example of

a module dut in SystemC, where my_thread is a thread of

dut. Fig. 2(b) shows the superstates and their transitions in

my_thread. Let an execution trace π = [ss1, s
s
2, . . . , s

s
i , . . .]

of a CDFG G , (GC , GD, R) be a sequence of execution

of superstates following control flow in GC . Let an execution

trace π′ = [sg
1
, s

g
2
, . . . , s

g
j , . . .] of an STP S be a sequence

of operation segments, such that operations in each segment

belong to the same partition. Since we have already checked

the control and data dependencies of G and S in Section V-A,

we know loop structures in π and π′ are preserved by the

scheduling transformation. Thus, when computing the traces

of G and S we can break loop back-edges temporarily. As a

result, traces in G and S are finite.

From the requirements of Cycle-Fixed mode, the number

of superstates after scheduling must be equal to the number

of scheduled states. Algorithm 1 checks if STP S is a valid

Cycle-Fixed scheduling of CDFG G. Function BUILD-SUPER-

STATES build superstates ss from G. The superstates can be

obtained easily by traversing G in a depth-first search manner

while accumulating operations. A new superstate is built when

we encounter a wait operation. Then function COMPUTE-

TRACES computes all traces in ss and S. Since we temporarily

break loop back-edges, there is a finite number of traces

for ss and S. For each trace π ∈ T1, functions EXTRACT-

TRACE-COND and FIND-TRACE pair up traces in ss and S

according to the trace condition C. We assert that each

paired traces should be executed in the same number of cycles,

and within each cycle, function HAS-1-1-MAPPING checks

that I/O operations have one-to-one mappings between each

superstate ssi and operation segment s
g
i .

Algorithm 2: CHECK-SUPERSTATE-FIXED-MODE(G, S)

1 ss← BUILD-SUPERSTATES(G)
2 T1 ← COMPUTE-TRACES(ss)
3 T2 ← COMPUTE-TRACES(S)
4 foreach π = [ss1, s

s
2, . . . , s

s
m] ∈ T1 do

5 C ← EXTRACT-TRACE-COND(π)
6 π′ = [sg

1
, s

g
2
, . . . , sgn]← FIND-TRACE(T2, C)

7 start← 0
8 for i← 0 to m do

9 end←
FIND-SHORTEST-SEGMENTS(π′, start, ssi)

10 seg ← [sgstart, . . . , s
g
end]

11 assert HAS-1-1-MAPPING(Frw(s
s
i), Frw(seg))

12 assert HAS-1-1-MAPPING(Fw(s
s
i), Fw(s

g
end))

13 start← end+ 1

14 return true

Algorithm 2 checks if STP S is a valid Superstate-Fixed

scheduling of CDFG G. Each superstate may be “stretched”

into multiple states after scheduling. For each trace pair

π ∈ T1 and π′ ∈ T2, we use function FIND-SHORTEST-

SEGMENTS to find the corresponding trace segments that

were “stretched” from a particular superstate. Function FIND-

SHORTEST-SEGMENTS(π′, start, ssi) finds the trace segments

seg = s
g
start, . . . , s

g
end with minimum length which starts from

start and ends at end, such that Fio(s
s
i) ⊆ Fio(seg). We

then assert that I/O operations have one-to-one mappings

between each ssi and trace segments seg, which means that

all I/O operations are within the bound of the superstate.

VI. EXPERIMENTAL RESULTS

TABLE I: Summary of Evaluation on S2CBench Benchmark

App. Domain Design
Lines of code

Time (s)
C RTL

Security AES CIPHER 429 3941 8.89
KASUMI 415 3602 0.44
MD5C 467 4105 9.72
SONW 3G 522 3121 1.54

Media Processing QSORT 204 865 0.07
SOBEL 269 1191 0.15
ADPCM 270 370 0.05
FIR 176 561 0.07
DECIMATION 422 3267 9.14
INTERPOLATION 231 1721 0.18
IDCT 450 4266 1.08
DISPARITY 634 4355 9.06

TABLE II: Summary of Evaluation on CHStone Benchmark

App. Domain Design
Lines of code

Time (s)
C RTL

Arithmetic DFADD 542 12933 0.11
DFDIV 452 10948 0.13
DFMUL 392 7100 0.07
DFSIN 772 22949 0.34

Microprocessor MIPS 256 7237 0.05

Media Processing ADPCM 521 33706 0.84
GSM 388 22816 0.45
JPEG 1031 53584 1.46
MOTION 414 13770 1.38

Security AES 699 40014 1.37
BLOWFISH 1241 23490 0.53
SHA 1284 12491 0.13

We applied our algorithms on two behavioral synthesis

benchmarks, CHStone [6] and S2CBench [7]. The designs

were synthesized by a commercial synthesis tool, and many

of them generated tens of thousands of lines of RTL. The

necessary CDFGs and STPs are created by parsing the reports

generated by the synthesis tool. Since designs in the CHStone

benchmark do not have wait statements, the only scheduling

mode is free-floating. However, the benchmark is still illus-

trative since the designs are large and complex. S2CBench

has SystemC designs with wait statements, permitting us to

exercise algorithms for different scheduling modes as well.

We conducted our experiments on a workstation with Debian

7.1 running on a 2.93 GHz Intel Xeon X3470 processor with

8GB memory. Tables I and II summarize the results. Note that

we can validate all the designs from both benchmarks within

10 seconds. For S2CBench benchmark, the FFT design is not

shown, because the floating point datatype in it is not accepted

by the synthesis tool.

Interestingly, we found two bugs in the synthesis tool itself,

based on violation of SystemC specifications. For pedagogical

reasons, we provide simplified version of the programs and

show both pre- and post-scheduling designs in SystemC.

Fig. 3(a) shows a design before scheduling, where Out is

an output signal of type sc_uint<16>. According to the

specification, the write statement Out.write(a) in line 5 is

invisible and invalid, therefore should be eliminated; the only

observable behavior should be the write statement in line 6.

However, as shown in Fig. 3(b), the scheduling transformation

scheduled the two writes into two different states. Thus, both

writes are observable, which violates the SystemC standard.

Algorithm 2 detects this violation by checking that the two

write statements are scheduled to two different states.

Fig. 4 shows another scheduling bug. In Fig. 4(a), signal

sig is written and read in the same cycle. Therefore variable

j will take the old value of sig. However, after scheduling,

as shown in Fig. 4(b), the read of sig is scheduled to the

next cycle after the write. Variable j will take the new value

of sig instead of the old one.

VII. RELATED WORK

Koelbl et al. [11] provide a comprehensive tutorial on

methods of equivalence checking of high-level designs with

RTL. Anderson [12] reports an early effort on the verification

of as soon as possible scheduling transformation using the-

orem proving. Narasimhan et al. [13] used theorem proving

approach to verification of force-directed list scheduling algo-

rithm for resource-constrained scheduling in high-level synthe-

sis. Karfa et al. [14] develops techniques for more automated

SEC on scheduling transformation. This framework converts

the designs before and after scheduling transformation into

Finite State Machine with Datapath (FSMD) models, then

checks the equivalence of two FSMD models. The major dif-

ference between the above approaches and our research is the

observation that scheduling transformations can be extricated

from compiler transformations and handled as a verification of

partitioning. This permits efficient static checking to validate

these transformations, obviating expensive theorem proving or

symbolic simulation techniques used in previous work. The

efficiency is critical in enabling application of our approach on

large-scale designs. Finally, the the SLEC equivalence checker

from Calypto is reported to be able to handle equivalence

checking under timing constraints [15]; however, no details are

provided on the approach, and it is unclear whether different

scheduling modes are handled.

VIII. CONCLUSIONS AND FUTURE WORK

We have developed an efficient approach to validating

scheduling transformations in behavioral synthesis. We char-

acterized different scheduling modes, formalized equivalence

relations to compare designs scheduled by different modes,

and proposed efficient algorithms to validate designs sched-

uled by each mode. Experiments on synthesizable designs in

S2CBench show that our approach can successfully validate

all designs within a few seconds. Furthermore, our approach

detected bugs in a commercial behavioral synthesis tool.

For future work, in addition to checking I/O timing con-

straints, we will check resource constraints in characterization

1 void block::thread() {

2 int accu = 0;

3 wait();

4 while(1) {

5 Out.write(a);

6 Out.write(a+1);

7 wait();

8 }

9 }

1 void block::thread() {

2 int accu = 0;

3 wait();

4 while(1) {

5 Out.write(a);

6 add_state(); // an extra cycle is added

7 Out.write(a+1);

8 wait();

9 }

10 }

(a) (b)

Fig. 3: An example of incorrect scheduling of signal I/O. (a) Design before scheduling, where a signal output Out is written

twice with different values, however, only the last write is valid. (b) Design after scheduling, where two writes of Out are

scheduled to two different cycles. We use add_state() to denote that scheduling transformation will add a new state.

1 void block::thread2() {

2 var = 0; // var is a variable

3 Out.write(0); // output

4 sig.write(0); // sig is a signal

5 wait();

6 while(1) {

7 var ++;

8 sig.write(var);

9 sc_uint<16> j = sig.read();

10 Out.write(j);

11 wait();

12 }

13 }

1 void block::thread2() {

2 var = 0; // var is a variable

3 Out.write(0); // output

4 sig.write(0); // sig is a signal

5 wait();

6 while(1) {

7 var ++;

8 sig.write(var);

9 add_state(); // an extra cycle is added

10 sc_uint<16> j = sig.read();

11 Out.write(j);

12 wait();

13 }

14 }

(a) (b)

Fig. 4: An example of incorrect scheduling of signal I/O. (a) Design before scheduling, where sig is written and then read at

the same cycle. The read statement takes the old value. (b) Design after scheduling, where the write and read statements are

scheduled to two different cycles. We use add_state() to denote that the scheduling transformation will add a new state.

results of the technology libraries used by scheduling trans-

formation. Furthermore, behavioral synthesis tools often map

high-level data structures on the interface to different pre-

defined interface components.e.g., an interface variable can

be synthesized to components with handshaking protocols,

memories, FIFOs, and Modular interfaces. It will be interesting

to validate the correctness of interface synthesis process.

REFERENCES

[1] P. Chauhan, D. Goyal, G. Hasteer, A. Mathur, and N. Sharma, “Non-
cycle-accurate sequential equivalence checking,” in Design Automation

Conference, 2009. DAC ’09. 46th ACM/IEEE, July 2009, pp. 460–465.

[2] A. Koelbl, R. Jacoby, H. Jain, and C. Pixley, “Solver technology for
system-level to rtl equivalence checking,” in Design, Automation Test in

Europe Conference Exhibition, 2009. DATE ’09., April 2009, pp. 196–
201.

[3] S. Ray, K. Hao, Y. Chen, F. Xie, and J. Yang, “Formal verification
for high-assurance behavioral synthesis,” in Proc. of ATVA, 2009, pp.
337–351.

[4] K. Hao, F. Xie, S. Ray, and J. Yang, “Optimizing equivalence checking
for behavioral synthesis,” in Proc. of DATE, 2010, pp. 1500–1505.

[5] Z. Yang, K. Hao, K. Cong, L. Lei, S. Ray, and F. Xie, “Scalable
certification framework for behavioral synthesis front-end,” in Proc.

DAC, 2014, pp. 149:1–149:6.

[6] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and quanti-
tative analysis of the CHStone benchmark program suite for practical c-
based high-level synthesis,” Information and Media Technologies, vol. 4,
no. 4, pp. 740–752, 2009.

[7] B. Schafer and A. Mahapatra, “S2CBench: Synthesizable SystemC
benchmark suite for high-level synthesis,” IEEE Embedded Systems

Letters, vol. 6, no. 3, pp. 53–56, Sep. 2014.
[8] J. Cong and Z. Zhang, “An efficient and versatile scheduling

algorithm based on SDC formulation,” in Proceedings of the

43rd annual Design Automation Conference, ser. DAC ’06. New
York, NY, USA: ACM, 2006, pp. 433–438. [Online]. Available:
http://doi.acm.org/10.1145/1146909.1147025

[9] J. P. Elliott, Understanding Behavioral Synthesis: A Practical Guide to

High-Level Design, 1999th ed. Boston: Kluwer Academic Publishers,
May 1999.

[10] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-

niques, and Tools, 1st ed. Addison Wesley, Jan. 1986.
[11] A. Koelbl, Y. Lu, and A. Mathur, “Embedded tutorial: formal equiv-

alence checking between system-level models and RTL,” in ICCAD,
2005, pp. 965–971.

[12] D. Anderson and J. Ainscough, “The verification of scheduling al-
gorithms,” in IEE Colloquium on Structured Methods for Hardware

Systems Design, 1994, pp. 7/1–7/5.
[13] N. Narasimhan, E. Teica, R. Radhakrishnan, S. Govindarajan, and

R. Vemuri, “Theorem proving guided development of formal assertions
in a resource-constrained scheduler for high-level synthesis,” Formal

Methods in System Design, vol. 19, no. 3, pp. 237–273, Nov. 2001.
[14] C. Karfa, D. Sarkar, C. Mandal, and P. Kumar, “An Equivalence-

Checking Method for Scheduling Verification in High-Level Synthesis,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 27, no. 3, pp. 556–569, Mar. 2008.
[15] Calypto, SLEC HLS, http://calypto.com/en/products/ slec/slec

system-hls, (accessed April 18, 2015).

