
Coverage Evaluation of Post-silicon Validation Tests
with Virtual Prototypes

Kai Cong, Li Lei, Zhenkun Yang, and Fei Xie
Department of Computer Science, Portland State University, Portland, OR 97207, USA

{congkai, leil, zhenkun, xie}@cs.pdx.edu

Abstract—High-quality tests for post-silicon validation should
be ready before a silicon device becomes available in order to
save time spent on preparing, debugging and fixing tests after
the device is available. Test coverage is an important metric
for evaluating the quality and readiness of post-silicon tests. We
propose an online-capture offline-replay approach to coverage
evaluation of post-silicon validation tests with virtual prototypes
for estimating silicon device test coverage. We first capture
necessary data from a concrete execution of the virtual prototype
within a virtual platform under a given test, and then compute
the test coverage by efficiently replaying this execution offline on
the virtual prototype itself. Our approach provides early feedback
on quality of post-silicon validation tests before silicon is ready.
To ensure fidelity of early coverage evaluation, our approach
have been further extended to support coverage evaluation and
conformance checking in the post-silicon stage. We have applied
our approach to evaluate a suite of common tests on virtual
prototypes of five network adapters. Our approach was able to
reliably estimate that this suite achieves high functional coverage
on all five silicon devices.

I. INTRODUCTION

Post-silicon validation has become a critical problem in
the product development cycle, driven by increasing design
complexity, higher level of integration and decreasing time-
to-market. According to recent industry reports, validation
accounts for a large portion of overall product cost. Post-silicon
validation consumes an increasing share of the overall product
development time [1]. This demands innovative approaches to
speeding up post-silicon validation and reducing its cost.

To accelerate post-silicon validation, high-quality tests
should be ready before a silicon device becomes available [2]
in order to save time spent on preparing, debugging and fixing
tests in the post-silicon stage after the device is available.
Test coverage is an important metric for evaluating the quality
and readiness of post-silicon validation tests. Precise coverage
results are needed for engineers to judge whether existing test
suites can achieve sufficient coverage on the device.

Before the first silicon prototype is ready, it is very chal-
lenging to quantify coverage of post-silicon validation tests
since we do not have a silicon device to run these tests on.
Even if a silicon prototype is ready, the black box nature of the
silicon prototype only supports limited observability and trace-
ability that makes post-silicon validation difficult. Recently
virtual prototypes are increasingly used in hardware/software
co-development to enable driver development and validation
at an early stage even before silicon prototypes become avail-
able [3]. An example is how Intel used virtual prototypes to

enable software development for their 40G Ethernet adapter
(E40G) before the silicon prototype became available [4]. A
virtual prototype for the E40G was created and used to test and
validate the E40G driver being developed. Bugs were found in
the driver using the E40G virtual device, even before the real
E40G device became available.

Physical
Machine

Validation Tests

Operating System

Device Driver

Silicon Prototype

Virtual
Platform

Validation Tests

Virtual Prototype

Operating System

Device Driver

Fig. 1: From physical to virtual

As shown in Figure 1, virtual prototypes and silicon devices
are running respectively in virtual platforms and physical
machines. Virtual prototypes can provide the same transaction-
level functionalities as silicon devices to support driver devel-
opment and validation. Virtual prototypes have major potential
to play a crucial role in estimating silicon device functional
coverage of post-silicon validation tests. The white box na-
ture of virtual prototypes brings complete observability and
traceability that evades silicon devices. It is possible to have
thorough test coverage evaluation over virtual prototypes.

This paper presents an online-capture offline-replay ap-
proach to coverage evaluation of post-silicon validation tests
with virtual prototypes. We first capture necessary run-time
data, including the initial device state and device requests from
a concrete execution of the virtual prototype within a virtual
platform under a given test. We then compute the test coverage
by efficiently replaying captured data offline on the virtual
prototype itself. To evaluate the coverage, we have adopted
four typical software coverage metrics and developed two
hardware-specific coverage metrics: register and transaction
coverage. To ensure fidelity of coverage estimation on the
silicon device, we further extend our approach to compute
coverage after the silicon device becomes ready and check
conformance with coverage estimate on the virtual prototype.

We have implemented this approach in Device Coverage
Analyzer (DCA), a coverage analysis tool using virtual pro-
totypes. We have applied our approach to evaluate a suite of
common tests with virtual prototypes of five network adapters.
Our approach was able to reliably estimate that this suite
achieves high functional coverage on all five silicon devices.978-3-9815370-2-4/DATE14/©2014 EDAA

The remainder of this paper is structured as follows.
Section 2 provides the background. Section 3 presents the
design of our approach. Section 4 presents the implementation.
Section 5 elaborates on the five case studies we have conducted
and discusses the experimental results. Section 6 reviews
related work. Section 7 concludes and discusses future work.

II. BACKGROUND

A. Virtual Prototypes and QEMU Virtual Devices

Virtual prototypes are fast, fully functional software models
of hardware systems, which enable unmodified execution of
software code. Virtual prototypes are running within virtual
platforms such as Synopsys Virtualizer [5] and QEMU [6].

QEMU is a generic and open source machine emulator and
virtualizer, which provides a large number of virtual devices.
We adopt QEMU virtual devices as the virtual prototypes for
our study due to the open-source nature of QEMU and its
wide varieties of virtual devices. Technologies developed on
QEMU virtual devices can be readily generalized to other
open-source or commercial virtual prototyping environments
due to the similarity in virtualization concepts, despite their
different levels of modeling details.

// 1. Device state
typedef struct E1000State_st {

PCIDevice dev; //PCI configuration
uint32_t mac_reg[0x8000]; //Interface registers
......
uint32_t rxbuf_size; //Internal variables
......

} E1000State;
// 2. Interface register function: write register
static void write_reg(void *opaque, uint64_t index,

uint32_t value) {
E1000State *s = (E1000State *)opaque;
......
if(index == TRANSMIT) {

s->mac_reg[index] = value;
start_xmit(s); //Invoking transaction function

}
......

}
// 3. Device transaction function: transmit packets
static void start_xmit(E1000State *s) {

......
set_irq(s->dev.irq[0],1);//Invoking interrupt function

}
// 4. Environment function: receive packets
static ssize_t receive(NetClientState *nc, const uint8_t

*buf, size_t size) {
......
pci_dma_read(&desp);//Invoking DMA function

}

Fig. 2: Excerpt of QEMU E1000 virtual device

To better understand the concept of virtual prototype, we
illustrate it with a QEMU virtual device for the Intel E1000
Gigabit network adapter. As shown in Figure 2, the E1000
virtual device has the following components: 1) The device
state, E1000State, which keeps track of the state of the E1000
device and the device configuration; 2) The interface register
functions such as write_reg which are invoked by QEMU to
access interface registers and trigger transaction functions; 3)
The device transaction functions such as start_xmit which

are invoked by the interface register functions to realize the
functionality; 4) The environment functions such as receive
which are invoked by QEMU to pass environment inputs such
as a packet received to the virtual device. Both transaction
functions and environment functions may access DMA data by
invoking DMA functions pci_dma_read or pci_dma_write,
and may fire interrupts by calling interrupt function set_irq.

B. Preliminary Definitions

In order to help better understand our approach, we first
introduce several definitions.

Definition 1: A device state is denoted as s = 〈sI , sN 〉
where sI is the interface state including all interface registers
and sN is the internal state including all internal variables.
sI can be accessed by system software (for example, device
driver) while sN can only be accessed by the device itself.

Definition 2: An interface register request is denoted as
rir which is issued by drivers to access interface registers.

Definition 3: An environment input is denoted as rei
which is received by the device from the environment.

Definition 4: A device request is denoted as r which is
received by the device from either the system software or the
environment. The request r is either rir or rei.

Direct memory access (DMA) is a feature of modern
computers that allows certain devices to access system memory
independently of CPU. In order to process a device request r,
a device might read/write data using DMA.

Definition 5: A DMA sequence is denoted as d = d1, d2,
..., dn where di is the ith DMA data accessed for processing
one request.

Definition 6: A device event is denoted as e = 〈r, d〉 where
r is a device request and d is a sequence of DMA data. For
some event e, d might be null since no DMA data is needed
for processing r.

Definition 7: A device event sequence is denoted as seq =
e1, e2, ..., en where seq is a sequence of events. A subsequence
seqk of seq contains the first k events of seq where seqk = e1,
e2, ..., ek.

C. Post-silicon Conformance Checking

In previous work [7], we have developed an approach to
post-silicon conformance checking of a silicon device with
its virtual device. The conformance between the silicon and
virtual devices is defined over their interface states. The request
sequence issued to the device is first captured on the silicon
device, and then replayed on the virtual device to check if the
interface states of the silicon and virtual devices are consistent.

III. ONLINE-CAPTURE OFFLINE-REPLAY COVERAGE
EVALUATION WITH VIRTUAL PROTOTYPES

A. Motivation

Post-silicon validation has become a bottleneck in system
development cycle and is a significant, growing part of overall
validation cost [8]. To speed-up post-silicon validation, some

tasks should be conducted early in the pre-silicon stage, e.g.,
development and evaluation of post-silicon validation tests.

Before a silicon device is ready, post-silicon validation tests
can be evaluated using RTL emulation. However, emulating
hardware design has certain limitations. First, RTL emulators
can be very expensive. Second, RTL emulation is often slow.
Third, it requires a complete working RTL design [4] to
evaluate post-silicon validation tests. Recently virtual devices
and virtual platforms have been used for driver development
and validation before a silicon device is ready. Virtual devices
are software components. Compared to their hardware coun-
terparts, it is easier to achieve observability and traceability
on virtual devices. This makes virtual devices amenable to
coverage evaluation of post-silicon validation tests.

B. Online-capture

In order to compute test coverage on virtual devices,
we need to collect necessary run-time data from the virtual
platform. A naïve idea is to capture all necessary run-time
data including execution information of virtual devices directly
from the virtual platform. However, such approach has three
disadvantages. First, we need to instrument virtual devices
to capture execution information of virtual devices. Second,
capturing detailed execution information introduces heavy
overhead into the virtual platform. Third, we need to decide
what kinds of information should be captured before run-time
execution of the virtual platform. It is hard to guarantee that
captured information is sufficient. Once a new metric is added,
it is possible that we have to modify the capture mechanism
and then rerun the virtual platform to capture more data.

Therefore, we developed an online-capture offline-replay
approach to capture minimum necessary data at run-time, and
then replay the run-time data on the virtual device itself offline
to collect necessary execution information.

s0
e1 - ek-1

snsk-1
ek+1 - en

sk
ek

Fig. 3: Device state transition graph

A device can be treated as a state transition system. As
shown in Figure 3, given a device state sk−1 and a device event
ek, the device will transit to a new device state sk. Therefore,
with the initial state s0 and the whole event sequence seq, we
can infer all states and reproduce all state transitions. In other
words, capturing s0 and seq from the concrete execution of a
virtual device within the virtual platform should introduce the
lowest overhead and deliver the most effective data.

C. Offline-replay

Our offline-replay mechanism reproduces run-time execu-
tion on virtual devices with s0 and seq, which provides flexible
analysis mechanism and powerful debug capability.

1) Flexible analysis mechanism: The replay process is in-
dependent of the virtual platform/physical machine. Once run-
time data is captured, users can replay the event sequence and
reproduce the execution at any time. Based on different user
requirements, users can generate different coverage reports
from the replay process with different metrics.

2) Powerful debug capability: The replay mechanism pro-
vides capability for debugging interesting execution traces on
virtual devices statement by statement, backward and forward.

Algorithm 1 REPLAY_EVENTS (s0, seq)

1: i← 0; //loop iteration
2: s← s0; //Set initial device state
3: while i < seq.size() do
4: e← seq[i];
5: 〈t, snext〉 ←Execute_Virtual_Device (s, e);
6: T.save(t);
7: s← snext; //Set next device state
8: i← i + 1;
9: end while

10: Generate_Report (T);

Algorithm 1 illustrates how to replay all events with s0 and
seq to collect necessary execution information. In Algorithm 1,
T is a temporary vector for saving execution information for
all events. The algorithm takes the initial device state s0 and
the event sequence seq as inputs. Before replaying the event
sequence, we set s0 as the device state s. We run the virtual
device with each event e in the event sequence seq and the
corresponding state s to compute the execution information
t and the next state snext. Then t is saved in T and snext is
assigned to s. After replaying all events, we generate coverage
reports based on T and user configuration.

D. Coverage Computation and Conformance Checking in the
Post-silicon Stage

In our approach, we use coverage evaluation of virtual
prototypes to estimate functional coverage on silicon devices.
In order to make our approach practical and reliable, we need
to address the following two key challenges:

1) Accuracy: In our approach, we capture run-time data
from the concrete execution of virtual devices within a virtual
platform. Events (Ev) issued to virtual devices within a virtual
platform can be different from events (Es) issued to silicon
devices within a physical machine for the same tests. The
concern is whether the coverage (Cv) computed on (Ev) is
a good approximation of the coverage (Cs) computed on (Es).

2) Conformance: Another challenge is whether coverage
estimation on virtual devices can really reflect functional sili-
con device coverage. Although both virtual devices and silicon
devices are developed according to the same specification,
whether they conform to each other is still a major concern.

To address the above two challenges, we have extended our
approach to support coverage computation and conformance
checking after the silicon device is ready. We first reset
the silicon device, and then capture run-time data, including
all silicon device states SS = {ss0, ss1, ..., ssn} and the
device event sequence seq = e1, e2, ..., en, from the concrete
execution of a silicon device within a physical machine. For
a silicon device, interface registers are observable while the
internal registers are not observable in general. Therefore it
is only possible to record all silicon device interface states
SSI = {ssI0, ssI1, ..., ssIn} due to the limited observability.
Algorithm 2 shows the extended algorithm for replaying SSI

and seq on the virtual device.

Algorithm 2 EXTENDED_REPLAY_EVENTS (SSI , seq)

1: k← 0; //loop iteration
2: s← Reset_Virtual_Device (); //s = 〈sI , sN 〉
3: while k < seq.size() do
4: sI ← ssIk; //Load captured silicon device interface state
5: e← seq[k + 1];
6: 〈t, s′〉 ←Execute_Virtual_Device (s, e); //s′ = 〈s′I , s′N 〉
7: T.save(t);
8: Check_Conformance (s′I , ssI(k+1));
9: sN ← s′N ;

10: k← k + 1;
11: end while
12: Generate_Report (T);

In Algorithm 2, we first reset the virtual device to get
the initial device state s. We assume that the internal states
between the silicon device and its virtual device are the
same after resetting devices. Even if both internal states are
not exactly the same, a few differences should not cause a
large number of functional differences according to device
specifications. We take the captured device state ssIk and ek+1

as inputs to replay one event. The virtual device is executed
with s and ek+1 to compute the execution information and
the state s′ after processing ek+1. Then conformance checking
is conducted between the computed interface state s′I on the
virtual device and the captured interface state ssI(k+1) on
the silicon device to detect inconsistencies. After replaying
one event, we keep the internal state and load next interface
state captured to compose the device state. After replaying all
events, we can get coverage reports and inconsistency report.

We utilize the coverage evaluation and conformance check-
ing results in three aspects to assure the coverage estimation
accuracy. First, we compare Cs and Cv to detect differences.
If we can verify that there is no difference or few differences
between Cv and Cs, we can better trust that Cv can be a good
approximation of Cs. Second, the number of inconsistencies
provides basic measurement how many differences there are
between the silicon device and the virtual prototype. After
analyzing the inconsistencies, we further evaluate whether
these inconsistencies cause different device behaviors. If there
are few inconsistencies found and there is no significant effect
on the device, it can increase our confidence on coverage
estimation. Third, it is easy to fix the detected inconsistencies
on the virtual device so that the fixed virtual device conforms
with the silicon device. Then we compute coverage again
on the fixed virtual device using the same test cases. By
comparing the coverage report on the fixed virtual device with
that on the silicon device, we further verify that the differences
in coverage caused by the inconsistencies are removed.

IV. IMPLEMENTATION

A. Coverage Metrics

Computing test coverage requires appropriate coverage
metrics. In our approach, we use virtual prototype coverage to
estimate silicon device functional coverage. A virtual prototype
is not only a software program, but also models the character-
istics of the silicon device. Therefore we have employed two
kinds of coverage metrics: we have adopted the typical soft-

ware coverage metrics and developed two hardware-specific
coverage metrics: register coverage and transaction coverage.

1) Code Coverage: Code coverage is a typical measure
used in software testing. Virtual devices are software models.
We can apply all code coverage metrics to virtual devices.
We select four common coverage metrics: function coverage,
statement coverage, block coverage and branch coverage.

2) Register Coverage: A hardware register stores bits of
information in such a way that systems can write to or read
out from it all the bits simultaneously. High-level software
can determine the state of the device by reading registers,
and control and operate the device by writing registers. It
is critical for engineers to know what registers have been
accessed so they can check whether the device is accessed
correctly according to the specification. Virtual devices provide
complete observability, therefore we can capture accesses on
both interface and internal registers. Actually in our approach,
we capture all register accesses and deliver different kinds of
register coverage reports according to user configuration.

3) Transaction Coverage: Devices and, therefore, virtual
devices are transactional in nature: they receive interface
register requests and environment inputs, and process them
concurrently without interference. Thus, an interesting and
useful metric is transaction coverage. For a virtual device
(which is a C program), given a state s and a device request r, a
program path of the virtual device is executed and the device
is transitioned into a new state. Each distinct program path
of the virtual device represents a distinct device transaction.
When computing coverage, the impact of a test case on the
virtual device in term of what transactions it hits and how
often they are hit are recorded. The impact of a test suite
can be recorded the same way. The coverage statistics can be
visualized using pie or bar charts in term of what and how
many requests were made, what and how many transactions
were hit, and what percentages they account for among all
requests. Moreover, the details of a transaction is recorded,
such as registers accessed and interrupt status.

B. Coverage on Different Levels

To generate coverage reports, we first analyze virtual
devices statically to get program information, such as the
position of branches and the number of functions, and then
generate all kinds of coverage reports based on the execution
traces computed by the replay engine. Our approach provides
flexibility to generate reports on two different levels:

1) Event Level: Given an event, a user can check what
transaction is explored, what registers are accessed and
whether any interrupt is fired. Moreover, the user can debug
the execution trace step by step using the replay engine.

2) Test Case/Suite Level: A test case/suite issues a sequence
of requests to a device. Simultaneously, the device may receive
environment inputs and read DMA data. Given a test case/suit-
e, all device events are captured. The replay engine replays all
captured events and generates the code coverage, the register
coverage and the transaction coverage for the test case/suite.

C. Implementation Details

We implement our approach on the QEMU virtual plat-
form. The event capture mechanism is implemented as a

QEMU module which can be used for hooking QEMU virtual
devices. Device interface functions are invoked by the QE-
MU framework. For instance, a driver issues a read register
request, the QEMU invokes the corresponding read register
function defined in the virtual device. Our module hooks all
the interface functions when the virtual device registers these
functions to QEMU. In this way, the module captures the
device events when there is an interface register request, an
environment input or a DMA access. This module provides
capability to hook different virtual devices without modifying
virtual devices. For capturing events on silicon devices in
physical machines, we modified device drivers to achieve it.

We construct our replay engine using the symbolic exe-
cution engine KLEE [9]. We modify KLEE in three aspects.
First, we implement some special function handler for loading
events and DMA data. Second, we capture execution trace
during execution of virtual devices. Third, we realize our own
module for coverage generation.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We have applied DCA to QEMU-based virtual devices for
five popular network adapters: Intel E1000, Broadcom Tigon3,
Intel EEPro100, AMD RTL8139 and Realtek PCNet. While
our tool currently focuses on QEMU-based virtual devices,
the principles also apply to other virtual prototypes. The
experiments were performed on a desktop with an 8-core
Intel(R) Xeon(R) X3470 CPU, 8 GB of RAM, 250GB and
7200RPM IDE disk drive and running the Ubuntu Linux OS
with 64-bit kernel version 3.0.61.

B. Online-capture and Offline-replay Overhead

In order to evaluate our approach, we capture a request
sequence triggered by a test suite. The test suite includes
most common network testing programs, such as ifconfig and
ethtool [10]. DCA needs to capture the initial device state
and device events at run-time, which brings overhead to run-
time QEMU environment. With the capture mechanism, both
QEMU and virtual devices work normally.

550

419

510

177

365

570

434

538

191

382

0

100

200

300

400

500

600

E1000 EEPro100 Tigon3 RTL8139 PCNet

No capture

Capture

Fig. 4: Time Usage (Seconds) for Online Capture

To evaluate the overhead of online capture mechanism, we
illustrate the time usage for the whole test suite under the
capture configuration and no-capture configuration in Figure 4.
Between the capture and no-capture configurations, there is
low running time overhead introduced. For example, the over-
head for E1000 is about (570 - 550) / 550 = 3.6%.

We further evaluated time and memory usages for the
offline replay process. As shown in Table I, time and memory
usages of the offline replay are modest. It only takes a few
minutes to process tens of thousands events.

TABLE I: Time and Memory Usages for Offline Replay

Events(#) Time(Minutes) Memory(Mb)
E1000 65530 10.5 268.24
Tigon3 89032 12.0 336.35
EEPro100 30112 6.0 213.18
RTL8139 43228 7.0 225.26
PCNet 54016 8.5 254.60

C. Coverage Results

We demonstrate our coverage results in three aspects: code
coverage (statement/block/branch/function coverage), register
coverage and transaction coverage. Due to space limitation,
we only illustrate coverage results for E1000 below although
we have finished coverage evaluation on all five devices.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Statement Block Branch Function

Remove Driver

Extra Programs

Basic Programs

Load Driver

Fig. 5: Code Coverage Results for E1000

Figure 5 uses a stack to show incremental coverage of
different test programs on E1000 under different code coverage
metrics. We evaluate the coverage for both a test case, such as
sending a ping packet, and a test suite including most common
testing programs. These coverage results can give engineers
basic measurement of the quality of test cases.

0x8, 21927, 33%
0xC0, 2616, 4%

0xC8, 2616, 4%

0xD0, 2616, 4%

0x5400, 2024, 3%

0x20, 1872, 3%

0x100, 1379, 2%

0x0, 1351, 2%

0x38, 1227, 2%

0x2818, 1036, 1% others, 28602, 42%

Fig. 6: Top Ten Accessed Registers for E1000

Figure 6 shows partial register coverage results for E1000.
Each register is identified using the register offset, such as 0x0
and 0x8. The figure shows that how many times and how much
percentage top ten registers are accessed. For instance, the
most accessed register is register 0x8 (status register), which is
accessed 21927 times. The system software reads this register
very frequently to query the device state.

Figure 7 shows partial transaction coverage results for
E1000. Each transaction is identified using a hash value, such
as 0xd4e4d3ed. It shows that how many times and how much
percentage top ten transactions are accessed. By analyzing
transaction coverage, engineers can know what functionalities
have been tested. By analyzing execution information of each
transaction, engineers can further observe register accesses.

0xd4e4d3ed, 23762,
37%

0xf6cb33f0, 10952,
17%

0xfe65f8c3, 5746, 9%

0x2ed522b1, 4351, 7%

0x707cb781, 3616, 5%

0xf64476c8, 3212, 5%

0x1f621846, 2431, 4%

0x9ee8b197, 1873, 3%

0xc66fc8cf, 1768, 3%

0x4f0eba6a, 953, 1%

others, 6172, 9%

Fig. 7: Top Ten Transactions for E1000

D. Coverage and Conformance Results in Post-silicon Stage

With the same test suite, we instrumented drivers to capture
run-time data on two silicon devices: E1000 and Tigon3, and
computed the coverage on the corresponding virtual devices.
We compare the results with these results shown in Sec-
tion V-C. The coverage results are very similar for both E1000
and Tigon3 in terms of code and register coverage. One major
difference is reflected on transaction coverage. Due to different
speeds of physical machine and virtual platform, several trans-
actions are affected. For example, while transmitting network
packets, silicon devices can transmit more packets than virtual
devices in the transmit transaction since the speed of silicon
devices is much higher than virtual devices. We conclude such
differences in coverage are acceptable.

We applied conformance checking to detect inconsistencies
between E1000 and Tigon3 and their corresponding virtual
devices. There are 13 inconsistencies discovered between the
two network adapters and their virtual devices under the given
tests: 7 in Intel E1000 and 6 in Broadcom BCM5751. We
modified 21 lines of code in virtual devices to fix all 13
inconsistencies. Then we rerun coverage tools on fixed virtual
devices to generate new coverage reports. After comparing the
new reports with the post-silicon coverage reports, we found
no differences except the known transaction differences.

E. Remarks

Coverage evaluation in the post-silicon stage often requires
instrumenting the device driver and comes too late. Coverage
evaluation on virtual prototypes can be available much earlier;
therefore, it can guide improvement of post-silicon tests. From
conformance checking results and coverage report comparison,
it is clear the more conforming the virtual and silicon devices
are, the more accurate the coverage evaluation on the virtual
device. Even if there exist inconsistencies, conforming check-
ing facilitates quick correction of coverage estimate in the post-
silicon stage by conveniently detecting these inconsistencies.

VI. RELATED WORK

One common approach to post-silicon coverage evaluation
is to use in-silicon coverage monitors [11]–[13]. However,
adding coverage monitors to the silicon is costly in terms
of timing, power, and area [14]. In order not to introduce
too much overhead, developers can only add a small number
of coverage monitors in the design. Consequently, the effec-
tiveness of coverage evaluation highly relies on what kinds
of device signals are captured by in-line coverage monitors.
Moreover, such approach of using coverage monitors can take

effect only after silicon devices are ready. Another approach
to coverage evaluation of test cases before silicon devices
are available is RTL emulation. However, emulating hardware
design has some limitations as we discussed in III-A. Our
approach takes the obvious advantages of virtual devices: com-
plete observability and traceability, and is applicable without
silicon devices. We utilize test coverage over virtual devices
to estimate silicon device functional coverage.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an approach to early coverage evalu-
ation of post-silicon validation tests with virtual prototypes,
which fully leverages the observability and traceability of
virtual prototypes. We have applied our approach to evaluate
a suite of common tests on virtual prototypes of five network
adapters. We have also established high confidence in fidelity
of coverage evaluation by further conducting coverage evalu-
ation and conformance checking on silicon devices.

Our future research will explore the following directions.
(1) We will research on how to define new coverage metrics
which can be used for better evaluating hardware coverage.
(2) We will investigate how to utilize the coverage results to
measure the validation completeness and guide test generation.

VIII. ACKNOWLEDGMENT

This research received financial support from National
Science Foundation (Grant #: 0916968). A pending patent filed
on this research by Portland State University has been licensed
to Virtual Device Technologies (VDTech) where Fei Xie is a
partner.

REFERENCES

[1] E. Singerman, Y. Abarbanel, and S. Baartmans, “Transaction based pre-
to-post silicon validation,” in DAC, 2011.

[2] S. Mitra, S. Seshia, and N. Nicolici, “Post-silicon validation opportu-
nities, challenges and recent advances,” in DAC, 2010.

[3] P. Sampath and B. Rachana Rao, “Efficient embedded software devel-
opment using QEMU,” in 13th Real Time Linux Workshop, 2011.

[4] S. Nelson and P. Waskiewicz, “Virtualization: Writing (and testing)
device drivers without hardware,” in Linux Plumbers Conference, 2011.

[5] “Synopsys virtualizer,” 2013. [Online]. Available: http://www.synopsys.
com/Systems/VirtualPrototyping/Pages/Virtualizer.aspx

[6] F. Bellard, “QEMU, a fast and portable dynamic translator,” in USENIX
ATEC, 2005.

[7] L. Lei, F. Xie, and K. Cong, “Post-silicon conformance checking with
virtual prototypes,” in DAC, 2013.

[8] J. Keshava, N. Hakim, and C. Prudvi, “Post-silicon validation chal-
lenges: How EDA and academia can help,” in DAC, 2010.

[9] C. Cadar, D. Dunbar, and D. Engler, “KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
OSDI, 2008.

[10] K. Cong, F. Xie, and L. Lei, “Automatic concolic test generation with
virtual prototypes for post-silicon validation,” in ICCAD, 2013.

[11] K. Balston, M. Karimibiuki, A. Hu, A. Ivanov, and S. J. E. Wilton,
“Post-silicon code coverage for multiprocessor system-on-chip designs,”
IEEE Transactions on Computers, 2011.

[12] T. Bojan, M. Arreola, E. Shlomo, and T. Shachar, “Functional coverage
measurements and results in post-silicon validation of CoreTM2 duo
family,” in HLVDT, 2007.

[13] X. Liu and Q. Xu, “Trace signal selection for visibility enhancement
in post-silicon validation,” in DATE, 2009.

[14] A. Adir, A. Nahir, A. Ziv, C. Meissner, and J. Schumann, “Reaching
coverage closure in post-silicon validation,” in HVC, 2010.

