
Towards A Formally Verified
Fully Homomorphic Encryption Compute Engine *

Jeremy Casas1, Zhenkun Yang1, Wen Wang1, Jin Yang1, Adwait Godbole2

1Intel Labs, Intel Corporation, 2University of California, Berkeley
jeremy.casas@intel.com, zhenkun.yang@intel.com, wen.wang@intel.com, jin.yang@intel.com, adwait@berkeley.edu

Abstract—We present a scalable approach for formally ver-
ifying the correctness of the Compute Engine (CE) against
its ISA (Instruction Set Architecture) specification in an FHE
(Fully Homomorphic Encryption) accelerator, critical to many
applications where safety and security of information is of vital
importance. It combines algorithmic verification of the micro-
architecture modules in the CE against their functional specifica-
tions and implementation verification of the CE hardware against
its micro-architecture algorithmic specifications. The correctness
of the CE is guaranteed by treating micro-architecture modules
as semantic-preserving program transformations and leveraging
the composability of the semantic-preserving properties well
established in compiler design and verification.

I. INTRODUCTION

The safety and security of critical information – whether it
is sensitive intellectual property, financial information, person-
ally identifiable information, intelligence insight, or beyond
– is of vital importance. Current methods protect data as it
is transmitted across a network, at rest, or while in storage.
Processing or computing on this data, however, requires that
it is first decrypted, exposing it to numerous vulnerabilities
and threats. Fully homomorphic encryption (FHE) [1] offers
a solution to this challenge by enabling computation on
encrypted data to keep data protected at all times.

Despite its potential, FHE requires enormous computation
time to perform even simple operations, making it exceed-
ingly impractical to implement with traditional hardware. For
instance, the training of a 7-layer convolutional neural network
that takes less than an hour for unencrypted data will take years
to complete on encrypted data on the same processor [2].

Several research efforts are underway to accelerate the
FHE computations in response to the DARPA’s challenges
in the Data Protection in Virtual Environments (DPRIVE)
program [2]. One primary goal is to dramatically accelerate
FHE calculations to within one order of magnitude of current
performance on unencrypted data. Fig. 1 shows the high-level
architecture of our FHE accelerator, which is partitioned into
one or more compute engines (CE) with a shared cache to
execute SIMD (Single Instruction Multiple Data) polynomial
ring (poly-ring) instructions in parallel on 8k bufferfly com-
pute elements across 128 tiles, and a compiler that translates
a stream of FHE operations into a semantically-equivalent
stream of SIMD poly-ring instructions.

With the wide range of critical applications FHE intends
to support, it is important to formally verify the functional

Compiler

Memory FHE Operations

Cache Compute Engine (CE)

Software
Hardware

FHE Accelerator

56KB
Register File

64x32b
Butterfly
Compute
Elements

Compute Engine

Tile

Inst. Execution

SIMD Instructions

Fig. 1. FHE Accelerator Architecture

correctness of the FHE accelerator, as any bugs in the accel-
erator can undermine the entire system integrity and result in
losses of billions of dollars financially or even catastrophic
effects on human lives or infrastructure. Although formal
verification has been long promised as a solution to ensure
full correctness of a design, existing approaches have fallen
far short to be practical for the end-to-end correctness of
a complex accelerator design due to capacity limitation. A-
QED [3] proposed bounded model checking based approaches
for verification of hardware accelerators, which only handles
relatively small designs with partially captured specifications.
There are also attempts to verify optimized Number Theoretic
Transform (NTT) algorithms [4] using bounded model check-
ing and abstract interpretation. It mainly focuses on numerical
overflows at the algorithm level (C/C++).

We developed a framework for scalable accelerator design
and verification, inspired by composable compiler design and
verification techniques, by treating micro-architecture modules
of an accelerator as meta-programs to perform semantic-
preserving program transformations. In this paper, we show
how to apply this framework to the verification of the FHE
accelerator, focusing on the CE hardware and show an example
on how to extend it to the compiler stack.

II. OVERVIEW OF THE VERIFICATION APPROACH

The end-to-end execution of the FHE accelerator starts
from a sequence of FHE operations that are converted into
equivalent but more hardware friendly micro-operations (e.g.,
via a compiler stack), and ultimately executes on the CE hard-
ware. Fig. 2 shows six meta-program modules that perform a

Fig. 2. Accelerator hardware (CE) and software (everything else) stages. The
blue region represents the areas formally verified at this time.

sequence of semantic-preserving program transformations on
FHE operations and an array of 8k butterfly module that car-
ries out 32-bit modular arithmetic operations. These modules
are interspersed with an example of an FHE multiplication
operation going through the sequence of transformations:
• FHE-to-Poly Translation transforms an FHE operation into

a sequence of poly-ring operations.
• RNS Decomposition transforms a poly-ring operation into

a sequence of smaller poly-ring operations based on the
Residue Number System (RNS) theory (e.g., 512-bit into
16 x 32-bit coefficients supported natively in hardware).

• Number Theoretic Transform (NTT) transforms a poly-
ring multiplication operation into a sequence of two NTT
operations for the two operands, followed by an element-by-
element poly-ring multiplication operation and an inverse
NTT (iNTT) operation on the result.

• SIMD Assembler transforms poly-ring operations to a se-
quence of SIMD instructions to load the data from memory
to the register file of a CE, carry out the computation, and
save the result back from the register file back to the mem-
ory. Further optimizations are done on the SIMD instruction
stream to minimize computation and data movement.

• NTT Micro-sequencer performs an additional transforma-
tion to decompose an NTT/iNTT instruction to a sequence
of micro NTT/iNTT stage-wise operations.

• SIMD Controller transforms SIMD instructions into a vec-
tor of parallel element-wise modular-arithmetic instructions
to be executed on the 8k 32-bit butterfly modules.
With the FHE accelerator execution viewed in this way,

the end-to-end proof of correctness can be achieved by
proving that each module is semantics preserving and the
composition of these modules down to the butterfly units
is semantically equivalent to the original FHE operations by
transitivity. Among the six modules, the first five modules are

implemented through a front-end compiler and only the SIMD
Controller is implemented in hardware. At this time, we have
fully formally verified the CE hardware and the NTT micro-
sequencer module that will be presented in the rest of the
paper. We also plan to verify the remaining modules in the
near future to complete the end-to-end proof covering both
hardware and software components.

This view of accelerator design and verification is very
similar to compiler passes where each pass applies different
code optimizations. Furthermore, each module (pass) can be
verified individually and once verified, these modules can
be composed in any order (where it makes sense) while
maintaining overall correctness.

III. MICRO-ARCHITECTURE ALGORITHM VERIFICATION

For performance reasons, real-world implementations of
FHE designs often involve complicated optimizations, e.g.,
RNS and NTT are employed in modular polynomials mul-
tiplications. Optimization tricks such as picking NTT-friendly
primes [5] can reduce the computation complexity by a
huge factor. Unfortunately, designers often make assumptions
and decisions about the optimization process that are often
not formally documented. This makes the verification more
difficult by introducing gaps between the algorithmic speci-
fication and the real implementation. This section proposes a
solution to formally capture and verify each of the algorithmic
optimization steps using the Dafny program verifier [6].

A. Dafny Program Verifier

Dafny is a programming language that allows users to
write specification, implementation, and proofs of programs.
The Dafny static program verifier uses Satisfiability Modulo
Theories solver to verify the correctness of the programs.

1 function MultiplicativeInv(a: int, n: int): (a’: int)
2 requires 0 < a ∧ 0 < n ∧ coPrime(a, n) ▷precondition
3 ensures a * a’ % n == 1 % n ▷postcondition
4 {
5 ...// implementation of Multiplicative Inverse omitted
6 }

The above code shows an example of the modular mul-
tiplicative inverse function in Dafny. It takes an integer a
and modulus n, and returns an integer, say a′, such that
a · a′ ≡ 1 (mod n). Line 2 and line 3 are the pre- and post-
condition of the function, which serves as the specification
of the function. The pre-condition requires that a and n are
positive numbers, and a and n are coprime, only under which
the multiplicative inverse exists. Dafny will statically verify
that the implementation (function body) indeed satisfies the
post-condition for all satisfying inputs. We are using Dafny to
model and verify the key algorithms and their optimizations
that are implemented in our FHE accelerator design.

B. NTT Algorithm Verification

Multiplications of large-degree polynomials are pervasive in
FHE, therefore efficient algorithms for polynomial multiplica-
tion are critical for FHE accelerators. Fast Fourier Transform
(FFT) [7] is often used reduce the complexity of polynomial

multiplication from O(n2) to O(n log n). NTT [8] is essen-
tially FFT defined over a finite ring. Mathematically, they
are efficient algorithms to compute discrete Fourier transform
(DFT) of the polynomial coefficient vector. Fig. 3 (a) shows
the dataflow chart of the schoolbook NTT algorithm of 8
inputs (a), where array a is in a bit-reversal permutation of the
indices. The computation is performed in 3 stages. It is easy to
see that the routing structure among stages are different, i.e.,
the indexing pattern to the input and output array is different
among stages. Fig. 3 (b) shows the constant geometry NTT,
with each stage shares the identical routing structure, which
makes it more hardware implementation friendly.

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

ω𝑁
0

ω𝑁
0

ω𝑁
0

ω𝑁
0

ω𝑁
0

ω𝑁
2

ω𝑁
0

ω𝑁
2

ω𝑁
0

ω𝑁
1

ω𝑁
2

ω𝑁
3

a[0]

a[4]

a[2]

a[6]

a[1]

a[5]

a[3]

a[7]

y[0]

y[1]

y[2]

y[3]

y[4]

y[5]

y[6]

y[7]

y1 y2 y3a Stage s = 1 Stage s = 2 Stage s = 3

(a)

ω𝑁
0

ω𝑁
0

ω𝑁
0

ω𝑁
0

a[0]

a[4]

a[2]

a[6]

a[1]

a[5]

a[3]

a[7]

y[0]

y[1]

y[2]

y[3]

y[4]

y[5]

y[6]

y[7]

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

ω𝑁
0

ω𝑁
0

ω𝑁
2

ω𝑁
2

ω𝑁
0

ω𝑁
1

ω𝑁
2

ω𝑁
3

Stage s = 1 Stage s = 2 Stage s = 3𝑦1
′ 𝑦2

′ 𝑦3
′a

(b)

Fig. 3. NTT dataflow chart with 8 inputs: (a) schoolbook 3-loop version [7].
(b) constant geometry 2-loop version.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

i

p(i)

(a)

p(i) =

{
i
2 , i is even
i
2 + N

2 i is odd

(b)

Fig. 4. (a). The perfect shuffle of an 8-element vector. (b). The mathematical
definition of perfect shuffle of index i in a N -element (power of 2) vector.

Although the schoolbook FFT or NTT has been verified
in the past, we want to formally verify that the optimized
NTT we implement in the hardware is indeed correct. The
verification strategy involves 1) verifying that the schoolbook
NTT is equivalent to DFT, and 2) verifying that the constant
geometry NTT is a refinement of the schoolbook NTT. The
intuition behind the algorithm is that we can rearrange the
order of the intermediate nodes at each stage (y1, y2, and y3)
in Fig. 3 (a), so that the “routing structure” is identical among
stages. It turns out that this “rearrangement” algorithm is based
on a “perfect shuffle” [9]. Fig. 4 (a) shows an example of the
perfect shuffle of an 8-element vector. The shuffling operation1

p(i) of index i of range [0, N) is shown in Fig. 4 (b), where N
is power of 2. Careful examination of the definition shows that
this operation is equivalent to the right rotation of the binary
form of i, i.e., p(i) = RIGHTROTATE(i,N). One nice property
of bit rotation is that rotating index i (s-bit long) s times leaves
i unchanged, i.e., i = APPLY(RIGHTROTATE(i,N), logN).
With this definition, we can easily reason that constant geom-
etry NTT is equivalent to the schoolbook NTT. In Fig. 3, the
invariant for the equivalence reasoning is y′s[i] = ys[i

′], where
i′ = APPLY(RIGHTROTATE(i, 8), s), for i = 0, 1, . . . , 7, and
s = 1, 2, 3. We can see that y3 = y′3 (indices are 3-bit long).

1As the input to NTT are in a bit-reversal permutation of the original input
vector, this is the inverse of the definition of perfect shuffle published in [9].

C. Modular Multiplication Algorithm Verification

At the high level, NTT algorithm helps us bring the
complexity of polynomial multiplication from O(n2) to
O(n log n), where n is the degree of the polynomial. At
low level, we still need to multiply numbers in the form of
modular multiplication, i.e., in the form of a · b (mod q).
Efficient algorithms have been invented in the the past, e.g.,
Montgomery reduction [10] algorithm. This algorithm requires
the inputs a and b to be in Montgomery form, i.e., aR (mod q)
and bR (mod q), where the auxiliary modulus R is coprime to
q. As a result, when we perform modular multiplication of the
two inputs, we get (abR)R (mod q). Thus, a reduction step
is needed to remove the extra factor of R. Listing 1 shows the
multi-word Montgomery reduction algorithm [10]. This allows
us to use smaller multipliers to reduce long-bitwidth inputs.

Listing 1. Montgomery Reduction algorithm: Given number T to be reduced
that has n words of base B, modulus q and q′, auxiliary modulus R and
R′, it outputs S such that T ·R′ ≡ S (mod q) ∧ S < q

1 method REDC(q: nat, n: nat, R: nat, R’: nat, q’: nat,
2 T: nat) returns (S: nat)
3 requires n > 0 ∧ q > 0 ∧ q’ > 0 ∧ R’ > 0 ∧ T > 0
4 requires 0 < q < Pow(B(), n) ▷ 0 < q < Bn

5 requires R == Pow(B(), n) ▷ R = Bn

6 requires R * R’ % q == 1 % q ▷ R · R−1 ≡ 1 (mod q)
7 requires coPrime(q, B()) ∧ coPrime(R, q)
8 requires q * q’ % B() == -1 % B()▷ q · q′ ≡ −1 (mod B)
9 requires T < q * R

10 ensures S < q
11 ensures S % q == T * R’ % q ▷ T · R−1 ≡ S (mod q)
12 {
13 var a: nat := T;
14 for i: nat := 0 to n { ▷ reduce 1 word per iteration
15 var ui: uint := a % B() * q’ % B();
16 a := a + ui * q;
17 a := a / B();
18 }
19 S := if a ≥ q then a - q else a;
20 }

Note that the listing only shows the specification and imple-
mentation of this algorithm, The actual proof is omitted. Line
3 to 9 are the pre-conditions of function REDC, and line 10 to
11 are the post-conditions that we need to verify.

Proof. a on Line 13 is represented as a list of words of base
B, a = (a2n−1, · · · , a1, a0)B , the loop body is equivalent to

for i: nat := 0 to n {
var ui: uint := a[i] * q’ % B();
a := a + ui * q * Pow(B(), i);

}
a := a / R; ▷ R = Bn

After the loop iterations, a is divisible by R. For every loop
iteration, a is incremented by uiqB

i, so at the end of the
loop, a = T + q

∑n−1
0 uiB

i. Let a′R = a, then a′R ≡ (T +

q
∑n−1

0 uiB
i) (mod q). Therefore a′R ≡ T (mod q), and

a′ ≡ TR−1 (mod q).
Now, we need to prove that a′ is in the range from 0 to

2q, so that after then range correction on line 19, the final
output S is in the range from 0 to q. We know T < qBn, and∑n−1

0 uiB
i < Bn (e.g., 999 < 103 for n = 3 and B = 10),

so a/Bn < 2q after the loop iterations, and S < q.

Notice that we can choose arbitrary modulus q in Listing 1
as long as it satisfies the pre-conditions. If we smartly choose
q to be the form [5] of q = kB+1 for some k, we can further

simplify the loop body. Listing 2 shows the optimized Mont-
gomery reduction algorithm with hardware friendly modulus.

Listing 2. Montgomery Reduction algorithm with hardware friendly
modulus: ∃ k, such that q = kB + 1

1 method REDC’(q: nat, n: nat, R: nat, R’: nat, q’: nat,
2 T: nat) returns (S: nat)
3 requires ∃ k: nat · q == k * B() + 1 ▷ hw friendly q
4 ... // omitting same pre/post-conditions as in REDC
5 {
6 ghost var k: nat :| k * B() + 1 == q;
7 var a: nat := T;
8 for i: nat := 0 to n {
9 var ui: uint := a % B() * q’ % B();

10 ghost var ah, a0 := a / B(), a % B();
11 ghost var carry := if a0 == 0 then 0 else 1;
12 a := ah + TwosComplement(a0) * k + carry;
13 }
14 S := if a ≥ q then a - q else a;
15 }

Because q = kB + 1, then (kB + 1)q′ ≡ −1 (mod B),
which further implies q′ ≡ −1 (mod B). Therefore, in the
loop body, ui = a0 · q′ (mod B) (a0 is lowest word in a) can
be simplified into ui = −a0 (mod B). Further, since 0 ≤ a0 <
B, −a0 (mod B) = B−a0 if a0 ̸= 0 else 0. This is essentially
the two’s complement of a0: ui = TWOSCOMPLEMENT(a0).
By partitioning a into two parts (higher words and lowest
word: a = ahB + a0), a ← a + uiq is rewritten to a ← a +
ui(kB+1). After line 17 of Listing 1, a← (ah+uik)+(a0+
ui)/B. Since ui = B−a0 if a0 ̸= 0 else 0, (a0+ui)/B0 = 1
if a0 ̸= 0 else 0. Then a ← ah + TWOSCOMPLEMENT(a0) ·
k + carry, where carry = 1 if a0 ̸= 0 else 0.

IV. HARDWARE IMPLEMENTATION VERIFICATION

Having verified the functionality of the core algorithms,
verifying the RTL implementation boils down to applying
formal equivalence verification between the RTL and the algo-
rithms. Due to stringent performance and area requirements,
the RTL is manually designed which further exemplifies the
need for verification. Despite having refined the algorithms to
be “hardware optimized” and the RTL having a close structural
similarity to the algorithms, RTL equivalence verification was
still not straight-forward for several reasons. Firstly, and not
surprisingly, is due to complexity and scalability management.
Secondly, the RTL has lower-level implementation details
that impact design latency, for example, that is not reflected
in the algorithm. Lastly, specific to NTT micro-sequencer
verification, the RTL only implements “one stage” of the
NTT algorithm and the full NTT functionality is realized
through a sequence of “one-stage instructions” in software.
Consequently, the full end-to-end NTT verification needs to
reason about both the hardware and software sequence.

We use Forte [11], a formal verification environment used
heavily for CPU and floating-point hardware verification, for
this work. We leverage Symbolic Trajectory Evaluation [12]
built into Forte for the primary RTL verification procedure
and the FL programming language to codify the “RTL spec-
ification” and the hardware and software “contract” for NTT
micro-sequencer verification. The specification codified in FL
is the bridge between the algorithms verified in Dafny and the
hardware+software implementation.

A. Butterfly Unit Verification

The butterfly unit is at the core of all polynomial operations
in the accelerator where the actual modular arithmetic com-
putations are done. To verify this unit, an RTL specification is
defined in FL that captures the behaviors expected for different
butterfly operations (e.g., add, sub, mul, mac, etc.) including
the Modular multiplication algorithm verified in section III-C.
Fig. 5 illustrates an abstract view of the butterfly RTL showing
the front-end which does input processing, the middle section
that does the multiplication and Montgomery reduction, and
the back-end that handles addition/subtraction operations and
final modulo adjustments. To mitigate complexity blow-up,
the verification was divided into six parts. This partitioning
was primarily dictated by the need to black-box the mul-
tipliers (boxes with “*”) as these are well-known to cause
computational blow-up. Since standard library multipliers are
used in the design that have been previously proven, we
partitioned the design around the multipliers and applied a
divide-and-conquer approach with assume-guarantee checks
on the multiplier input/output interfaces.

Fig. 5. Butterfly RTL abstract view and verification partitioning.

To avoid having to model the low-level details at the
algorithm level, the bridge specification in FL modeled the
correspondence between the RTL level information and the
algorithm. For example, the multiplication and Montgomery
reduction unit was implemented in carry-save format in RTL.
In this case, details of how the carry and save vectors are
implemented and handled through the entire unit is irrelevant
to the algorithm as long as the sum of the carry and save
vectors matches what the algorithm expects. Similarly, the
final modulo adjustment logic speculatively computes different
values in parallel and picks the right value for the output.
From the verification point-of-view, the details of how the
speculation is done is irrelevant as long as the final value
matches the algorithm. By abstracting the verification target
in terms of the sum (for the carry-save implementation) or
the final output (for the speculation logic), the verification
flow becomes agnostic to these low-level details. Indeed, the
verification partitioning/flow did not need any update when
the speculation logic in partition 6 was modified for timing
reasons.

B. NTT Verification

Verification of the NTT functionality had different chal-
lenges due to 1) model size issues, and 2) verification of the

full NTT algorithm requiring co-verification of the hardware
and micro-sequencer generated instructions. The model size
issue is due to NTT operations requiring inter-tile data ex-
changes and consequently having to reason about the entire
compute engine with all the tiles. The co-verification chal-
lenge, on the other hand, requires that both hardware and
micro-sequencer be modeled and reasoned about in a unified
way. Note that the arithmetic operations involved in the NTT
operation was verified as part of the butterfly unit. As such, the
butterfly units were black-boxed and it is sufficient to verify
1) that the correct data is provided to the butterfly unit inputs,
and 2) the outputs passed from one stage to the next according
to the NTT algorithm.

We use a hierarchical approach to capture the behavior of
the RTL at different levels of hierarchy and a compositional
proof to verify the entire logic. Recall that the CE is built from
an array of tiles. To implement the inter-tile data exchange
required by the constant geometry NTT algorithm, data is
reordered at different sections of the design starting from
inside of a “producer” tile, to the tile outputs, all the way
to the CE level, and similarly when data is routed back as
inputs to the “consumer” tile.

Fig. 6. Compute Engine hierarchical routing for NTT.

Fig. 6 shows an abstract view of the RTL hierarchy with
tiles instantiated. The full NTT data-path includes the RF
(register files) that holds the input/output data, the butterfly
units, and the reordering logic (shown as vertical bars) that
implements the inter-tile data exchange. To create a scalable
proof, specifications for each of the reordering logic was first
captured in FL and verified against the RTL. In the abstract
view above, the reordering specification for A, B, and D was
verified with a single tile instance. Similarly, the reordering
specification for C was verified using a model of the CE but
with all the tiles black-boxed. At no time was the entire CE
RTL, with all the tiles, required to be built.

Having verified the different reordering specifications, they
are then composed to model the entire routing network. The
verification then ensures that for all coefficients, the composed
routing specification matches the algorithm. Specifically, the
composition of (D ◦C ◦B ◦A) is a mapping from (producer
tile, coefficient x) to (consumer tile, coefficient y), where x and
y are coefficient indices within the respective tiles, according
to the algorithm. Fig. 7 illustrates this mapping where the
boxed-in regions represent one stage of the NTT algorithm
that is implemented in hardware. As the RTL implements the

NTT operation over a static number of tiles and coefficients,
it then suffices to check that the composition over all tiles and
coefficients corresponds to the behavior of one stage of the
constant-geometry NTT algorithm.

for inst | SW instructions
for tout | all tiles
for x | tout, poly inst.arg coeffs
(tin, y) = (D ∘ C ∘ B ∘ A)(tout, x)

==

ω𝑁
0

ω𝑁
0

ω𝑁
0

ω𝑁
0

a[0]

a[4]

a[2]

a[6]

a[1]

a[5]

a[3]

a[7]

y[0]

y[1]

y[2]

y[3]

y[4]

y[5]

y[6]

y[7]

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

ω𝑁
0

ω𝑁
0

ω𝑁
2

ω𝑁
2

ω𝑁
0

ω𝑁
1

ω𝑁
2

ω𝑁
3

Stage s = 1 Stage s = 2 Stage s = 3𝑦1
′ 𝑦2

′ 𝑦3
′a

Execute all stages via SW

One NTT stage

Fig. 7. Specification composition and mapping to NTT algorithm. Boxed-in
region represents the mapping for a single NTT stage.

The same framework was then used to extend the proof to
include the NTT micro-sequencer. By composing the software
instruction sequence “contract” over the “one-stage proof”,
the full NTT functionality over multiple stages was verified.
The proof effectively verified that the NTT micro-sequencer
composed with the CE “one-stage” hardware (blue region in
Fig. 2), matches the NTT algorithm.

The RTL also implements the computation of the twiddle
factors used in the NTT instructions. These twiddle factor
updates and usage were verified as part of the NTT verification
based on the NTT algorithm as well. INTT verification is very
similar to NTT with the main differences in the routing and
twiddle update specifications.

C. Other logic
While the butterfly unit and NTT functionality were the

primary targets for formal verification due to their highly op-
timized implementations, verifying all other logic was equally
critical to ensure overall correctness of the hardware. This
includes verifying instruction and data loads into the accel-
erator, RF reads/writes, instruction decode/execution, correct
butterfly unit opcode and data according to the instruction, and
that butterfly unit outputs are sent to the right place.

V. RESULTS

In this work, we formulated a full end-to-end verification
strategy covering both hardware and software components
of the FHE accelerator. At this time, we have completed
the verification of the CE hardware component and NTT
micro-sequencer module. The verification of these components
starts from the mathematical definition of the key algorithms,
through various “hardware friendly” algorithmic refinements,
and finally to the actual RTL implementation with low-
level design details. Verifying the mathematical definition
and equivalence of these key algorithms, despite being well-
known, is critical to establish a baseline proof that incremental
refinements can be compared against. While we did not find
issues in the algorithms (as expected, but even better verified),
the other big benefit of having a hardware optimized algorithm
is that the RTL was structurally similar to it, making the veri-
fication task more manageable. It would be a lot more difficult

to verify the final optimized RTL implementation against the
high-level algorithms due to the the bigger abstraction gap.

TABLE I
BUG COUNT BY RTL UNIT

RTL Unit Butterfly Tile CE
Bug count 5 12 4

Overall, we found 21 issues in the RTL as shown in Table
I. Bugs found range from simple (i.e., would be found with
a reasonable set of test vectors) to ones that would be hard
to detect with random stimulus. For example, we found a
bug in the butterfly logic shown in Fig. 8 where due to the
misinterpretation of the top bits, the output mux selected the
wrong speculative result. This only happens when the input
values for w, b, and q are such that partial product multiplier
generated specific values in bits [33:32] of the carry/save
outputs. This issue was detected by the formal verification
flow despite having running a million random test vectors in
simulation.

Fig. 8. Butterfly unit output selection bug.

In the tile RTL, we found a bug where loading instructions
into the tile also caused data in the RF to be modified due
to the RF write enable signal getting set incorrectly on an
instruction register write in some cases. As the RF write
address bus could have any value at that time, random RF
locations would get updated making this bug hard to detect
or reproduced with random simulation. In general, these type
of “non-interference” issues would need explicit checks in
the model to be caught immediately. With formal verification,
we found this issue by detecting unexpected write conditions
during the RF verification. In the CE RTL, we found a bug
in the twiddle factors update logic for polynomials of size
≥ 32k. The verification flow detected the discrepancy resulting
from the incorrect twiddle factor index getting updated while
evaluating higher numbered stages generated by the NTT
micro-sequencer for these larger polynomials.

An additional benefit of doing the formal verification work
is the detection of unnecessary logic activity. Specifically, we
found conditions when the RF is read but the resulting data
is not used. Avoiding these RF reads helped improve power
consumption without impacting functionality.

The full algorithm and RTL equivalence verification com-
pletes in one hour using about 10GB of memory. By using
a composition-based divide-and-conquer strategy, we built a
scalable verification flow that can be extended as needed (e.g.,
to support proofs for bigger polynomials, more tiles, etc.).
All proofs are codified and used for both verification and

regression checks (depending on the complexity of changes).
We were able to provide immediate feedback that a proposed
bug fix indeed resolved an issue but also broke previously
working logic, for example. With the butterfly unit being
quite mature at this point, we expect at most some local
tweaks (e.g., for timing) that should not impact the verification
partitioning and flow. For NTT, different data exchange routing
configuration continue to be investigated and due to the way
we captured the various reordering steps, all that’s needed
is to update the reordering specification and re-use the same
composition proof to verify the new design as before.

VI. CONCLUSION

In this paper, we presented a scalable approach for formally
verifying the correctness of the compute engine against its ISA
specification in an FHE accelerator, based on the composabil-
ity of program transformations well established in compiler
verification. To our best knowledge, this is the first time such
an idea is applied to hardware verification to make it scalable.
For the future work, we plan to auto-generate the behavioral
specification for RTL verification in Forte from the algorithmic
specification in Dafny. We also plan to extend the scope of
verification to cover the entire compiler stack, and to other
programmable accelerators.

REFERENCES

[1] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford university, 2009.

[2] “DARPA Selects Researchers to Accelerate Use of Fully Homomorphic
Encryption,” https://www.darpa.mil/news-events/2021-03-08, Mar 2021.

[3] E. Singh, F. Lonsing, S. Chattopadhyay, M. Strange, P. Wei, X. Zhang,
Y. Zhou, D. Chen, J. Cong, P. Raina, Z. Zhang, C. Barrett, and S. Mitra,
“A-qed verification of hardware accelerators,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC), 2020, pp. 1–6.

[4] J. A. Navas, B. Dutertre, and I. A. Mason, “Verification of an optimized
ntt algorithm,” in Software Verification, M. Christakis, N. Polikarpova,
P. S. Duggirala, and P. Schrammel, Eds., 2020.

[5] A. C. Mert, E. Öztürk, and E. Savaş, “Design and implementation of a
fast and scalable ntt-based polynomial multiplier architecture,” in 22nd
Euromicro Conference on Digital System Design, 2019, pp. 253–260.

[6] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in Logic for Programming, Artificial Intelligence, and
Reasoning, E. M. Clarke and A. Voronkov, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 348–370.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[8] N. Göttert, T. Feller, M. Schneider, J. Buchmann, and S. Huss, “On the
design of hardware building blocks for modern lattice-based encryption
schemes,” ser. CHES’12, Berlin, Heidelberg, 2012, p. 512–529.

[9] H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans.
Comput., vol. 20, no. 2, p. 153–161, feb 1971.

[10] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[11] R. Jones, J. O’Leary, C. Seger, M. Aagaard, and T. Melham, “Practical
formal verification in microprocessor design,” IEEE Design Test of
Computers, vol. 18, no. 4, pp. 16–25, 2001.

[12] C. Seger and R. Bryant, “Formal verification by symbolic evaluation of
partially-ordered trajectories.” Formal Methods in System Design, vol. 6,
no. 2, p. 147–189, 1995.

