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Abstract—Linux kernel is pervasive in the cloud, on mobile
platforms, and on supercomputers. To support these diverse
computing environments, the Linux kernel provides extensibility
and modularity through Loadable Kernel Modules (LKM), while
featuring a monolithic architecture for execution efficiency. This
architecture design brings a major challenge to the security of
Linux kernel. Having LKMs run in the same memory space
as the base kernel on Ring 0, a single flaw from LKMs may
compromise the entire system, e.g., gaining root access. However,
validation and debugging of LKMs are inherently challenging,
because of its special interface buried deeply in the kernel, and
non-determinism from interrupts. Also, LKMs are shipped by
various vendors and the public may not have access to their
source code, making the validation even harder.

In this paper, we propose a framework for efficient bug
detection and replay of commercial off-the-shelf (COTS) Linux
kernel modules based on concolic execution. Our framework
automatically generates compact sets of test cases for COTS
LKMs, proactively checks for common kernel bugs, and allows to
reproduce reported bugs repeatedly with actionable test cases. We
evaluate our approach on over 20 LKMs covering major modules
from the network and sound subsystems of Linux kernel. The
results show that our approach can effectively detect various
kernel bugs, and reports 5 new vulnerabilities including an
unknown flaw that allows non-privileged users to trigger a kernel
panic. By leveraging the replay capability of our framework, we
patched all the reported bugs in the Linux kernel upstream,
including 3 patches that were selected to the stable release of
Linux kernel and back-ported to numerous production kernel
versions. We also compare our prototype with kAFL, the state-
of-the-art kernel fuzzer, and demonstrate the effectiveness of
concolic execution over fuzzing on the kernel level.

I. INTRODUCTION

Linux kernel is widely used, e.g., 90 percent of the public
cloud workloads were running on Linux in 2017 [1]; in the first
quarter of 2019, 75 percent of smart-phones were equipped
with Android which uses Linux as its core [2]; all of the
top 500 supercomputers use Linux at the end of 2018 [3].
To support these diverse computing environments, the size
of the Linux kernel has been steadily growing, reaching over
24.7 million LOC [1], and is continually changing to improve
security, performance or maintainability, as well as to support
new devices, file systems, and hardware architectures [4].

Linux kernel is typically split into two parts, e.g., the base
kernel and Loadable Kernel Modules (LKM) [5]. The base
kernel provides essential services for user applications and
LKMs, such as process management, memory management,
and inter-process communication. Other functionalities are
offloaded into separate LKMs, such as supporting a new

device or file system. The use of LKMs significantly improves
the extensibility and modularity of Linux kernel and reduces
the memory usage of Linux kernel, by allowing dynamic
loading and unloading of LKMs on demand. The security
and reliability of LKMs are critical to the entire computer
system, as they are part of the trusted computing base of
many systems [6]. Bugs and vulnerabilities in LKMs can easily
lead to system crashes, and some can be further exploited by
adversaries with normal privilege to bypass kernel-enforced
protections and gain root privilege eventually. A study by
Arnold et al. [7] argues that every kernel bug should be treated
as security-critical, and must be patched as soon as possible.
As a result, systematic and thorough validation and testing for
LKMs are highly desired.

Nevertheless, LKM validation (both functional and security)
and debugging are inherently difficult. First, LKMs are buried
deeply inside the Linux kernel, interacting only with hardware
and base kernel directly. Isolating LKMs for runtime validation
is difficult and labor intensive. Testing LKMs through the
kernel interface, e.g., system calls, is also not effective, as
different inputs issued to the kernel interface need to cross
multiple layers or modules to reach target LKM interfaces.
Second, Linux kernel employs a number of kernel threads, in-
tensively interacting with hardware and user-level applications,
leading to high concurrency and non-determinism. It remains
a challenge to efficiently reproduce discovered kernel bugs.
Furthermore, LKMs are shipped by various vendors which
may not have access to their source code, and interactions
between multiple LKMs are even harder to validate.

There have been many recent approaches to verifying and
testing the Linux kernel and LKMs [8]–[21]. Static analysis is
widely used [8]–[11], yet it faces major challenges, such as
high false positive rates, not capable to detect runtime defects,
and not applicable to COTS LKMs. Symbolic or concolic exe-
cution has been applied to Linux kernel and drivers [12]–[14].
However, they either need to instrument and recompile the
kernel [13], or do not produce actionable test cases [12] which
are essential for reproducing and debugging detected kernel
bugs. Recently, fuzzing has been trending in detecting security
vulnerabilities in OS kernels [15]–[21]. Most of the work [18]–
[20] focuses on fuzzing through system call interfaces of Linux
kernel which is often far away the target LKMs and cannot
effectively analyze target LKM behaviors. Many of other work
is not applicable to COTS LKMs [16], [17]. In summary,
existing approaches have two major limitations: (1) lack of
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effective analysis over COTS LKMs by manipulating LKM
interfaces directly; (2) lack of infrastructures to generate and
replay test cases that can steadily reproduce detected kernel
vulnerabilities, under the kernel non-determinism.

We present a novel approach to thoroughly testing COTS
LKMs and steadily reproducing discovered bugs. Our ap-
proach includes two major techniques: (1) automated test case
generation from LKM interfaces with concolic execution; (2)
automated test case replay that repeatedly reproduces detected
bugs. Our approach starts with a concrete execution of target
LKMs triggered by a test harness that is a sequence of user-
level application commands. Along this concrete execution,
we inject symbolic values to the LKM interface and perform
concolic execution to exercise different paths of target LKMs
and generate test cases for each explored path. A generated
test case is a sequence of LKM interface invocations that
contains inputs or outputs values of LKM entry functions and
kernel APIs invoked from target LKM. To minimize the non-
determinism of the sequence of LKM interface invocations
under the same test harness, for test case generation and
replay, we exclude LKM interface invocations if the kernel
is handling interrupts, and only include LKM invocations
triggered by non-concurrent user-level commands from the
test harness. Together with the capability of detecting and
tolerating inconsistencies of LKM invocations while test case
replay, we achieve high replayable rate of generated test cases,
and enable automated reproduction of detected bugs.

We have implemented a prototype of our approach in COD,
based on an open-source concolic engine CRETE [22]. To-
gether with kernel dynamic instrumentation via Kprobe [23],
COD automatically generates compact sets of test cases from
COTS LKMs, proactively checks for common kernel bugs with
embedded checkers, and provides facility to repeatedly replay
detected vulnerabilities with actionable test cases. We have
evaluated COD on over 20 LKMs which cover major modules
from the network and sound subsystems of Linux kernel. The
results show that our approach can effectively identify various
kinds of kernel bugs, and reports 5 previously unreported
vulnerabilities including an unknown flaw that allows non-
privileged user to trigger kernel panic. By leveraging COD’s
test case replay capability, we were able to fix all the detected
flaws in a short time without any domain knowledge, and
patched all these bugs in the Linux kernel upstream, including
3 patches were selected to the stable release of Linux kernel
and back-ported to numerous production kernel versions.

In summary, our paper makes three key contributions:

• We proposed an approach to automatically generating
compact sets of test cases for COTS LKMs. The gener-
ated test cases can thoroughly exercise the target LKMs
by manipulating LKM interfaces directly and precisely.

• We designed a system to automatically replay test cases
of COTS LKMs and proactively check for common kernel
bugs, which allows to repeatedly reproduce detected
kernel vulnerabilities. We believe this system has major
potential in helping LKM debugging and patching.
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Fig. 1. The interface of LKMs: (a) interactions between user application,
base kernel and LKMs, and (b) a concrete example based on ifconfig and
e1000. The interactions between hardware and LKMs are omitted.

• We implemented a prototype of our approach in COD,
and evaluated it with over 20 COTS LKMs covering
network and sound subsystems of Linux kernel. COD
discovered various kernel vulnerabilities, including null-
pointer de-reference and resource leak. By leveraging the
replay facility of COD, we also patched all the detected
bugs in the Linux kernel upstream.

II. BACKGROUND

A. Interfaces of LKMs

A program communicates and interacts with users or other
programs through interfaces. With different interface inputs,
a program exhibits different behaviors and exercises different
paths. The purpose of test case generation is to produce a set of
interface inputs that covers as many program paths as possible.
User applications normally have clean interfaces, e.g., strings
for command-line programs, and files for editors.

LKMs have a more complex interface than user applications,
because they are buried in kernel and only works with the base
kernel directly. As shown in the green box of Figure 1 (a),
LKMs interacts with base kernel through entry functions and
kernel APIs, which are the LKM interfaces. Entry functions
are defined in LKMs and are exposed to base kernel as
interfaces to fulfill requests from user applications, while
LKMs utilize kernel functionalities by calling kernel APIs.
Different paths of LKMs can be exercised with either different
entry function calls with different arguments from base kernel,
or different side effects from kernel APIs, e.g., return values
of kernel APIs, and data exchanged with pointer arguments
passed to kernel APIs. For example, Figure 1 (b) shows the
interactions between LKM e100.ko and the base kernel,
triggered by the user application ifconfig. Note that LKMs
also interact directly with hardware, e.g., reading and writing
hardware interface registers. It is also a part of the LKM
interface, but is omitted as it is not the focus of this paper.

B. Concolic Execution and the CRETE Engine

Concolic Execution [24], which combines concrete and
symbolic execution, has become an important technique for
automated software analysis [25], [26]. It has advantages over
concrete execution [27] since it explores each execution path
based on path constraints, while it is more scalable than
symbolic execution [28] because it leverages information from
concrete execution to augment symbolic execution.
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Fig. 2. The architecture of CRETE.

We adopt the CRETE engine [22] in this paper, as it is open-
source, works on unmodified x86 binaries, and features a mod-
ular design for easy extension. As shown in Figure 2, CRETE
consists of three components. (1) Its front-ends are Virtual
Machines (VMs), namely QEMU [29], augmented with tracing
capabilities, the CRETE Tracer, which produce replayable
traces for the target binary running inside the VM guest
OS. To scale the engine to real word applications, CRETE
employs a Dynamic Taint Analysis (DTA) [30] engine in the
Tracer for reducing the size of captured runtime traces. Its
DTA engine tracks the propagation of tainted values, normally
specified by users, during the execution of a program, and
only captures basic blocks that operate on tainted values [22].
(2) Its back-end is a symbolic execution engine, namely
KLEE [28], augmented with the CRETE Trace Replayer,
which takes captured traces as inputs and generates test cases
to cover new paths of the target software. (3) Its manager is
a coordinator that maintains pools of test cases and traces,
and communicates with both front-end and back-end through
sockets to exchange test cases and traces.

C. Kernel Dynamic Instrumentation

We leverage Kprobe [23], a debugging mechanism provided
by Linux kernel, to perform kernel dynamic instrumentation.
Kprobe allows users to insert a set of handlers on a certain
instruction address. By using Kprobe, we introduce concolic
values at the interface of LKMs for test case generation,
replay generated test cases repeatedly, and collects run-time
information for detecting kernel bugs.

III. APPROACH

A. Methodology

While designing the COD framework for analyzing LKMs,
we have identified the following design goals:
• Binary-level In-vivo Analysis. It should be applicable to

COTS LKMs, and require no recompilation or modifica-
tion to the rest of kernel stack.

• Effective Bug Detection. It should detect various types
of kernel bugs with minimal false alarms.

• Automated Bug Replay. It should enable developers to
reproduce bugs easily, which helps locate and fix the
reported bugs.

• Multiple LKMs. It should be capable of analyzing
multiple LKMs and their interactions at the same time.

To achieve the goals above, we adopt and extend the
versatile concolic testing approach of CRETE in the design
of the COD framework as follows.
• We introduce a kernel shim to intercept interactions

between base kernel and target LKMs, and use it along
with a kernel hypercall interface to dynam-
ically inject concolic values at LKM interfaces while
capturing runtime traces (Section IV-C). Also, we build
COD tracer by augmenting CRETE tracer to support
multiple applications and kernel modules, through which
we capture run-time execution traces of target LKMs
from unmodified guest OS stack (Section IV-D).

• We build COD Trace Replayer for symbolic anal-
ysis and test case generation over the captured traces,
by extending the CRETE trace replayer with trace
checkers and constraint editors for checking
common kernel bugs and imposing constrains on gener-
ated test cases (Section IV-E).

• We provide COD TC Replayer, which allow users
to replay generated test cases repeatedly, out of test
generation environment and on both virtual and phys-
ical platforms (Section V). It is embedded with kAPI
checkers (Section V-B) to detect common kernel bugs
and produce informative reports to boost bug analysis.

B. Test Cases for LKMs

The core of our approach is to generate effective test cases
from LKM interfaces for bug detection and replay. We now
introduce the definition of the test case for LKMs.

Let an LKM entry function or a kernel API be function
f : ~α→ τ , where ~α represents the inputs and τ represents the
return of function f . An invocation of function f is denoted
by a triple k , 〈fi, ~A, t〉, where fi is one instance of the
invocation of function f , ~A contains the concrete values for
the inputs, and t is the concrete return value. Note that we
treat the invocations of f at different locations in the LKM
as different instances. A test case π , (k0, k1, · · · , kn) is a
sequence of entry function or kernel API invocations.

Informally, when we run a test harness with multiple user
commands, it triggers a sequence of LKM entry functions or
kernel APIs. A test case is defined as the observed behavior
on the interfaces, i.e. inputs and return values of LKM entry
functions and kernel APIs, upon running the test harness. COD
distinguishes each instance of function invocations with a TC
Identifier that consist of function name, invocation site,
LKM name, and index of user commands in the test harness.

C. Handling Kernel Non-determinism

Our approach involves tracing the execution of LKMs and
replay of LKM test cases, both of which face major challenges
from kernel’s non-determinism. The major cause of kernel’s
non-determinism is from interrupts and the concurrent nature
of the kernel itself [31].
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Fig. 3. The architecture of COD for automated test case generation.

To handle this challenge, we first monitor the start and end
of interrupts and exclude the execution of interrupt handler
from the tracing and test case generation process (details in
Section IV-D). Second, we require the user-level test harness
only contains commands with no concurrency, and all com-
mands are executed sequentially. Meanwhile, in test case gen-
eration and replay, we only include LKM interface invocations
from the test harness, while excluding other invocations from
other process or interrupts. Third, in test case replay with the
given test harness, we detect and tolerate the inconsistencies of
interface invocations from target LKMs (details in Section V).

IV. TEST CASE GENERATION

A. Architecture and Workflow

As shown in figure 3, the COD architecture for test case
generation is split into two domains, VM guest OS and host
OS. A user-land Agent and two custom kernel modules,
kernel shim and kernel hypercall interface,
together with target LKMs and native OS stack are running
within VM guest OS. A virtual machine augmented with COD
Tracer, a symbolic engine augmented with COD Trace
Replayer, and a Manager are running on host machine.

We now outline the events and communications that take
place during the test case generation process. When the
manager is started, (1) it sends a message to Agent through
sockets, and (2) sends an initial test case to the VM. The
message contains a list of target LKMs, and a sequence of
commands as test harness. (3) The Agent loads two custom
kernel modules, kernel shim and kernel hypercall
interface, and pass them the list of LKMs as parameters.
(4) The Agent then executes the commands of the test harness
sequentially to trigger functionalities of target LKMs through
base kernel. (5) The custom kernel module kernel shim
intercepts the interactions between base kernel and target
LKMs. (6) It also communicates with the VM through the
other module kernel hypercall interface, to add
new tainted values to the taint analysis engine in the VM,
report kernel panics to the VM, and retrieve values of test
case from VM to modify the interactions between target LKMs
and base kernel if needed. (7) When all commands in the test
harness are finished, the COD Tracer captures the runtime
execution trace into a file, and sends it to symbolic engine

through the manager over sockets. (8) The COD Trace
Replayer performs symbolic analysis over the captured
trace, and sends the generated test cases back to the VM. The
iteration of test case generation repeats from step (4) to step
(8), and stops when user specified conditions are met, e.g.,
time limits.

B. COD Agent

The Agent is a user-mode application running in the VM
guest OS, which receives commands from the Manager and
sets up the guest OS for test generation. The Agent inserts
the two custom kernel modules of COD along with the list of
the target LKMs as parameters, and launches the commands
from test harness one by one. It also monitors the crash and
time-out of executed commands, and reports to VM when
needed. The Agent also passes user-level information to the
kernel through system calls, including the PID and index of
the running command.

C. Kernel Shim and Hypercall Interface

COD provides two custom kernel modules running in Ring
0 to inject concolic values at the interface of target LKMs for
capturing runtime traces. The module kernel shim defines
a set of Kprobe handlers to intercept interactions between base
kernel and LKMs, including calls to the entry functions of
target LKMs from the base kernel and calls to kernel APIs
from target LKMs. It also takes as input a list of target LKM
names, and maintains the user-level information sent from the
Agent, including the PID and index of the running command
from the test harness. Based the PID and list of names, the
Kprobe handlers modify the interactions between base kernel
and target LKMs only if they are triggered by the command
from the test harness. Each Kprobe handler defines where to
inject concolic values to the current LKM entry function or
kernel API. The module hypercall interface defines
interface functions for VM guest kernel to communicate
with the underlying VM. An important interface function
is cod_make_concolic(), which is used to inform the
VM to inject concolic values to the VM guest memory. This
function takes as inputs a TC Identifier, the address and
size of the piece of kernel memory in the VM guest for
injecting concolic values. The TC Identifier is generated
by each Kprobe handlers based on the information passed
from the Agent. With the call to this function, the underline
VM first marks the given range of guest memory as tainted
values which is used for taint analysis and selective tracing,
and then tries to retrieve values from a given test case by
matching the TC Identifier. When a match is found,
the values from test case overwrite the values in the given
range of guest memory, modifying the current LKM interface
invocation. Another important hypercall interface function is
cod_kernel_oops, which reports the kernel panic to the
VM for logging detected issues and rapid restarting for the
next iteration of runtime tracing. For example, with these
two custom kernel modules, COD introduces concolic values
(and finally generates test cases) to the kernel memory whose
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value is from copy_from_user(), selected arguments of
e1000_ioctl(), and return value of __kmalloc().

D. COD Tracer

The Tracer produces runtime traces of COTS LKMs.
Like traces of CRETE, the captured trace is a self-contained
LLVM [32] module with injected custom callbacks to inject
symbolic values for test generation in Trace Replayer.
We extend the Tracer of CRETE to capture COTS LKM
runtime traces. CRETE is designed for user-level binaries and
is not applicable to LKMs. First, CRETE is limited in injecting
concolic values to the interface of user-level applications, e.g.,
command-line, file and stdin which are all statically known
before the execution of given applications. COD extends the
Tracer to support concolic values from LKM interfaces
that are dynamically added on-the-fly during the execution of
given test harness. Second, CRETE is designed to analyze
a single application. COD extends the Tracer to capture
traces from a sequence of applications. The COD Tracer
turns on capturing when the PID is sent from the Agent,
and turns off capturing when the process of the given PID
exits. Also, COD extends the DTA engine in the Tracer to
track the propagation of tainted values in the kernel across
different processes, instead of only tracking a single process.
As the design of the split virtual memory layout
used in common x86 OS, Linux kernel is mapped to virtual
address space of all processes, and is located always at the
same virtual address. We pass the tainted memory in the
virtual address of the kernel in the previous target process
to the coming target process, and use it as the initial tainted
values to start taint analysis. Third, COD added an interrupt
monitor to the Tracer. COD intercepts the procedure of
CPU transition from normal execution to interrupt handler
in the VM, which covers both the synchronous interrupts
raised from software, e.g., interrupt from a page fault, and the
asynchronous interrupts raised from hardware, e.g., interrupt
from network card. At the same time, the COD Tracer
interleaves the procedure of handling iret instruction in the
VM to detect the end of interrupts. By maintaining a call stack
structure of interrupt starts and ends, the Tracer handles
nested interrupts. When the CPU is executing code of interrupt
handlers, the Tracer turns off tracing and ignores hyper-
calls of cod_make_concolic(). This alleviates the non-
determinism of the kernel for tracing and test case generation.

E. COD Trace Replayer

The Trace Replayer introduces symbolic values to the
captured trace based on the callbacks embedded in the trace,
replays the trace symbolically, and generates test cases by
negating constraints of the branches encountered. We extend
the Trace Replayer of CRETE with a Constraint
Editor and a Trace Checker to generate more compact
set of test cases, and detect more bugs with lower false alarm
rates for LKMs. The Constraint Editor defines a set
of rules to add predefined constraints to the symbolic values
while they are introduced to the captured trace. These rules
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Fig. 4. The architecture of COD for automated test case replay.

are to refine the symbolic values related to the kernel APIs
and impose valid constraints to the test case generated. For
example, the symbolic value of pci_enable_device’s
return is restricted to be in range [−128, 0], which respects
that this function returns 0 on success, returns negative on
failure and never return positive values; the symbolic value
of __kmalloc’s return is restricted to be 0 (null), which
respects that memory allocation functions either return 0 on
failure or return non-zero on success. These rules are crucial
to produce compact sets of test cases and reduce false alarms
from generating test cases with invalid values of kernel APIs.
What’s more, the KAPI Checkers define a set of custom
assertions to proactively check common bugs of LKMs. If
an assertion failed, a test case is generated for users to
reproduce the same assertion failure later, and the bug is
reported to the Manager for logging. One example assertion
is “__kmalloc() != 0”. During the symbolic replay of
captured traces, this assertion is checked for every memory
operation (both read and write) whose operand address is
composed of the return from __kmalloc().

V. TEST CASE REPLAY

A. Architecture and Workflow

COD allows user to reproduce generated test cases repeat-
edly on both physical and virtual machines, and generates
crash log to assist developers to debug and fix reported
bugs. As shown in Figure 4, the architecture of test case
replay in COD is composed of a user-mode program TC
Replayer with an extensible plugin kAPI Checker, and
three custom kernel modules, namely Kernel Shim, TC
Element Supplier, and kAPI Tracer.

We now illustrate the workflow of this design. (1) The TC
Replayer is started by users with inputs of a set of test
cases and a configuration file. The configuration file contains
a list of target LKMs, and a sequence of commands as the
test harness. Then the TC Replayer (2) loads the three
custom kernel modules and passes them the list of target
LKMs as parameters, (3) picks one test case and pass it to
the custom kernel module TC Element Supplier, and
(4) executes the commands in the test harness sequentially to
trigger functionalities of target LKMs. (5) The custom kernel
module Kernel Shim intercepts the interactions between
base kernel and target LKMs. (6) The callbacks in Kernel
Shim either call into TC Element Supplier to modify
the interactions between kernel and target LKMs, or call
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into kAPI Tracer to capture kernel API usage information.
When all commands in the test harness are executed, the TC
Replayer (7) retrieves the kernel API usage information
from the custom kernel module kAPI Tracer, and (8)
checks for potential bugs with kAPI Checker. The loop
repeats from (3) to (8) for all input test cases.

B. COD TC Replayer and kAPI Checker

The TC Replayer is a user-mode application that takes
user inputs, and manages the test case replay loop. It lever-
aging Kdump [33] to collect system log and kernel dump
image when kernel fails, such as kernel panic, oops or hang.
TC Replayer also automatically retries on the same kernel
failure, and reports to users only kernel failures that can be
consistently reproduced. At the end, it outputs a set of detected
bugs along with the corresponding test cases, system logs, and
kernel dump images. Additionally, like the COD Agent, the
TC Replayer passes user-level information, including PID
and index of the running command from the test harness, to
the kernel to assist the test case replay. The TC Replayer is
also embedded with kAPI Checker which contains a set of
assertions to check common bugs related to kernel API usages,
e.g., detecting resource leak with paired function [34].

C. Custom Kernel Modules

The custom kernel module Kernel Shim is reused from
the COD’s design of test case generation, and is extended
with KS-new which contains additional set of Kprobes on
kernel API functions. With the Kprobes, function invocations
of target LKMs are intercepted. TC Element Supplier
provides a set of interface functions with the same signature as
its counterpart in test case generation Kernel Hypercall
Interface which is used by Kprobe handlers. But it is used
to replay test case instead of communicating with VM to inject
concolic values. In TC Element Supplier, the interface
function cod_make_concolic() still takes as inputs a
TC Identifier, the address and size of a piece of kernel
memory. With the input TC Identifier, this function
checks whether the current LKM function invocation matches
the one from the test case under replay. If matched, the
current invocation is modified with the corresponding values
of function inputs or outputs from the test case, replaying the
matched invocation from the test case. Otherwise, a mismatch
of the test case replay is detected, indicating non-determinism
occurs, which stops the replay of the test case for the current
running command and resumes on the next command. The
custom kernel module kAPI Tracer is used by the Kprobes
defined in KS-new. It captures runtime information of the
probed kernel APIs, including kernel API name, input values,
return values, target LKM name and call site information that
is the offset from the .text section of target LKM.

D. Measurement of Test Case Replay

In general, a test harness triggers a sequence of LKM
function invocations that are intercepted by Kernel Shim.
This in turn triggers a sequence of calls to function

cod_make_concolic() in TC Element Supplier,
and generates a sequence of TC Identifier representing
the sequence of LKM function invocations from the current
execution of the test harness. We measure the replayable
rate of a test case by measuring the similarity score of
the new TC Identifier sequence and TC Identifier
sequence from the test case under replay. We define the
similarity score of two sequences as follows.

Definition 1: Sequence Similarity Score: Let p and q be
two sequences, and let LCP(p, q) be the longest common prefix
of p and q. The similarity score of p and q is defined as
ξ(p, q) = |LPC(p,q)|

max(|p|,|q|) .
For example, if p = abcd, and q = abcex, the longest

common prefix of p and q is abc, so the similarity score of
ξ(p, q) is 60%(3/5).

Since the new TC Identifier sequence, denoted as π1,
is triggered by x commands in the test harness, we can further
partition π1 into sub-sequences based on which command
triggered which sub-sequence, denoted as

π1 , ((

c10︷ ︸︸ ︷
k00, · · · , k0m), (

c11︷ ︸︸ ︷
k10, · · · , k1n), · · · , (

c1x︷ ︸︸ ︷
kx0 , · · · , kxp )),

or π1 , (c10, c
1
1, c

1
x) in short. Similarly, the TC Identifier

sequence from the test case under replay is denoted as π2 ,
(c20, c

2
1, c

2
x). Since π1 and π2 are sequences of sub-sequences,

we measure the similarity of π1 and π2 as ξ(π1, π2) =∑x
i=0 |LCP(c1i ,c

2
i )|∑x

i=0 max(|c1i |,|c2i |)
.

VI. IMPLEMENTATION

We built a prototype of COD based on CRETE [22]. We
extended its front-end, the VM QEMU [29], with 1.1k LOC
for supporting concolic interface of LKMs, tracing multi-
ple processes, and monitoring interrupts. We also extended
CRETE back-end, the symbolic engine KLEE [28], with
0.7k LOC code for supporting Constraint Editor and
Trace Checker. We wrote a set of custom kernel modules
based on Linux kernel v3.13 (default kernel for Ubuntu 14.04)
and v4.4 (default kernel for Ubuntu 16.04). There are roughly
2.2k LOC, which defines 154 Kprobes [23] for test case
generation, and another over 78 Kprobes for tracing kernel API
usage during test case replay. We also wrote a set of checkers
for 113 pairs of kernel API detecting resource leak bugs, and a
checker for detecting redundant usage of netif_napi_del,
which is a common problem in network drivers we learned
from existing patches. The TC Replayer has 1.5k LOC
code. It supports replaying a batch of test cases, collects
bug reports (e.g., kernel dump image and system log), and
resumes replay from kernel panics automatically by leveraging
Kdump [33]. We also defined interfaces for users to easily add
new Kprobes and checkers in the format of C macros.

VII. EVALUATION

In this section, we present the evaluation result of COD.
First, we present the evaluation results of bug detection of
COD in Section VII-A. It includes all new vulnerabilities
that were found by COD, and evaluation of COD’s ability to
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TABLE I
LIST OF LKMS EVALUATED BY COD

Subsystem Main LKM Dependent LKMs

Network

e100 mii
e1000 -
pcnet32 mii
ne2k-pci 8390
8139too(cp) mii
tg3 ptp, pps core

Sound
snd intel8x0 snd-ac97-codec, ac97 bus, snd-pcm,

snd-timer, snd, soundcore

snd hda intel
snd hda codec generic,snd hda codec,
snd hda core, snd hwdep,snd pcm,
snd timer, snd, soundcore

snd ens1370 snd rawmidi, snd seq devicesnd pcm,
snd timer, snd, soundcore

TABLE II
LIST OF TEST HARNESSES

Idx. Test Harness Target

1

insmod xxx
ifconfig ens4 up
dhclient ens4
ip route add xxx dev ens4
ethtool xxx ens4 xxx
ping -I ens4 -c 1 -W 1 xxx
curl --interface ens4 xxx
rmmod xxx

LKMs from
network
subsys.

2
insmod xxx
speaker-test -l 1
rmmod xxx

LKMs from
sound subsys.

find known vulnerabilities. Second, we measure the replayable
rate of test cases generated by COD on both virtual and
physical platforms in Section VII-B. Third, based on the
patches we submitted to Linux kernel upstream, we elaborate
on how to leverage COD’s capability of test case replay to
locate and fix Linux kernel bugs efficiently in Section VII-C.
Finally, we present the comparison of bug detection capability
with kAFL, the state-of-the-art fuzzing engine capable of
testing unmodified Linux kernels. If not stated otherwise, the
evaluations were performed on a desktop system with an Intel
i7-4770 processor @ 3.40GHz and 16GB DDR3 RAM @
1600MHz running 64-bit Ubuntu 14.04.6 operating system.

A. Bug Detection

To highlight the effectiveness of our engine, we applied
COD to LKMs that are widely used and validated both in
industry and academia. Table I shows the list of LKMs we
evaluated with COD, and Table II shows the test harnesses
we used in our experiments. All the main LKMs have been
released at least 14 years [35]. They are also being actively
maintained by the Linux kernel community and large vendors,
such as RedHat, SUSE, Broadcom, and Intel. This is because
those LKMs are providing important functionality to modern
computer systems, such as Ethernet device drivers, network
middleware, HDA codec, and core sound module, etc. For the
same reason, many of the LKMs, e.g., E1000, PCNet32,
8139too and snd_ens1370, have been studied and used
as benchmarks for evaluation by numerous previous research
prototypes [13], [15], [16].

TABLE III
NEW LINUX KERNEL VULNERABILITIES DETECTED BY COD

Index LKM Bug Description Patch hash
1 E1000 Resource Leak ee400a3
2 E1000 Null-pointer dereference cf1acec
3 Pcnet32 Resource leak d7db318
4 8139too(cp) Kernel API misuse a456757
5 hda intel Null-pointer dereference a3aa60d

We applied COD for test generation with a time-out of 24
hours on each main LKM along with their dependent LKMs
as listed in Table I. By replaying all generated test cases with
COD on both virtual and physical machines, COD reported a
total of 5 new distinct vulnerabilities from 4 different kernel
module. As shown in Table III, COD detected various kinds
of vulnerabilities, including null-pointer dereference, resource
leak, and kernel API misuse. All the bugs were reported to
the Linux kernel community, and were patched immediately.

We now take Bug 1 as an example to explain why COD
is able to generate test cases from COTS LKMs to trigger and
report the new flaws in Table III. Bug 1 is detected by TC
Replayer during the replay of COD generated test cases,
where kAPI checker reported a piece of memory allocated
by function __kmalloc is not paired with any memory de-
allocation function. By examining test cases triggering this
bug, we found COD only flipped a single kernel API return
from the initial test case. COD can explicitly flip these single
API returns because there are conditional branches in the target
LKM depending on the flipped API returns. By leveraging
concolic execution, COD was able to negate these branch
conditions precisely, generate a compact set of test cases to
explore new code in the LKM and finally catch the bug with
TC Replayer and kAPI checker. For the similar reason,
COD flipped more kernel APIs, generated LKM test cases with
the right kernel API combination to reach error paths, and
finally reported these vulnerabilities with TC Replayer.

We also evaluated COD’s ability to find previous known
vulnerabilities. We chose an older version of the Linux kernel
v3.13, which was released on Jan 2014 and was the default
kernel for Long-term-support release of Ubuntu 14.04. We
selected two LKMs that COD did not report new issues
as target main LKMs, namely E100 and NE2K-PCI. By
running COD to generate test cases for 24 hours on each
LKM set, 3 bugs were detected, including 1 null-pointer
dereference, 1 resource leak from E100, and 1 resource leak
from ne2k-pci. To the best of our knowledge, by manually
browsing the patches of the target LKMs since version v3.13,
we believe COD covered all known vulnerabilities of target
LKMs related to null-pointer deference and resource leak.

B. Test Case Replay

In this section, we measure the replayable rates (Section
V-D) of test cases generated by COD. We selected two ex-
amples from Table I, namely e1000 and snd-hda-intel
along with their dependent LKMs, and used the test harness as
shown in Table II. We also evaluated each example with test
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TABLE IV
AVERAGE REPLAYABLE RATE OF TEST CASE REPLAY

Test Harness Complete Harness ‘insmod/rmmod’ Only
Platforms VM PM VM PM

snd-intel-hda 100% 100% 100% 100%
E1000 95.31% 96.76% 100% 100%

harnesses that only contains ‘insmod/rmmod’, considering
LKM complexity stems mostly from initialization and cleanup
code [36]. We performed evaluations on both virtual platform,
using QEMU v2.3 in KVM mode, and physical platform, using
a desktop system with Intel Pentium processor @ 3.2GHz with
1GB RAM. For each set of LKMs, we first run its test harness
once to record a test case, and then replay the test case with
the same test harness to measure the replayable rate.

Table IV shows the average replayable rate for running each
set of LKMs repeatedly for 1000 times with different test
harness. The results show that the replayable rate is 100%
for snd-intel-hda with all test harness and e1000 with
test harness of ‘insmod/rmmod’ only, on both virtual and
physical platforms. Also, inconsistencies are observed from
the experiments on e1000 with complete test harness. This
is mainly caused by non-determinism from communications
with remote machines when executing commands ping and
curl. An interesting observation is that the replayable rate
from physical machine is higher than virtual machine for
e1000. We believe the reason is that the network vitalization
of virtual machine depends on the host machine’s network
which has a more dynamic environment and brings extra
non-determinism. We also want to point out that, with the
test harness of ‘insmod/rmmod’ only, the replayable rate is
always 100% for both sets of LKMs evaluated on both virtual
and physical platforms, which shows the potential of COD in
testing various LKMs’ initialization and cleanup code.

C. Bug Patching Example

By leveraging COD’s capability of automated test case
replay, we were able to reproduce, debug, analyze and finally
fix all the detected bugs listed in Table III. We are all new
to network and sound subsystem of Linux kernel, especially
have no previous knowledge and experience of the specific
LKMs that COD reported new bugs. Despite of that, we fixed
all the bugs efficiently. The total time to fix each bug was
ranging from 1 hour to 3 hours. We submitted all our patches
to the Linux kernel upstream, and all patches were accepted
immediately by the subsystem maintainers. Especially, three
of our patches were selected and merged to the stable tree of
Linux kernel. These patches are back-ported to various long-
term-support release of Linux OS, e.g., Ubuntu 16.04/18.04
and Debian 8/9, and are now running on numerous machines.

We now elaborate on a few examples of how COD assisted
us to patch the reported vulnerabilities. For Bug 1 in table III,
we took three steps to fix it. Figure 5 shows the code excerpt
related to this bug.

Step 1: locate the ‘allocation site’. We started with the
bug report produced by kAPI checker in TC Replayer.

1 // Allocation site
2 int e1000_alloc_queues
3 (struct e1000_adapter *adapter, ...) {
4 ...; adapter->tx_ring = kcalloc(...);
5 }
6 // Branch Negated by COD
7 int e1000_setup_rx_resources
8 (struct e1000_adapter *adapter, ...) {
9 ...; rxdr->buffer_info = vzalloc(size);

10 if (!rxdr->buffer_info) return -ENOMEM;
11 ...; return 0;
12 }
13 // Deallocation site
14 int e1000_set_ringparam(...) {
15 ...; tx_old = adapter->tx_ring; ...;
16 if (netif_running(adapter->netdev))
17 {...; kfree(tx_old); ...;}; ...; }

Fig. 5. Excerpt of LKM E1000 related to Bug 1 from Table III.

The report looks like the following:
[Resource leak]
address: 0xf1717ac0,
alloc site: __kmalloc @ 0x47aa (e1000),
command in harness: ‘ifconfig ens4 up’,

which means that the kernel memory with virtual address
0xf1717ac0 was allocated by function __kmalloc from
offset 0x47aa of LKM E1000 during the execution of
command ‘ifconfig ens4 up’, and it was never paired
with a corresponding memory de-allocation function. The
linux-image-dbgsym package [37] on Ubuntu allows
mapping an offset from stripped LKMs to their source code.
In this way, we located the allocation site that was in function
e1000_alloc_queues as shown in line 4 of Figure 5.

Step 2: find the ‘de-allocation site’. The major challenge
to fix a resource leak bug is to find the right place in the
code to de-allocate the leaked memory. Fixing this bug is
practically more challenging considering no prior knowledge
and the size of the module E1000 (over 11k lines of code).
COD also contributed to tackle this problem by providing not
only the test case π′ that can be used to reproduce the current
bug, but also providing a reference test case π from which
the test case π′ is generated from. Root-causing the issue
would be easier by cross-referencing the execution of π and
π′. The test case π′ is generated by concolic execution engine
from π by flipping the branch condition b along exercising
the test case π. In this example, COD flipped the return value
of the kernel API in line 9 of Figure 5 and generated test
case π′. By replaying test case π with COD and checking
its kAPI trace captured by kAPI Tracer, we located the
same ‘allocation site’ and its pair de-allocation function. We
now have a reference ‘de-allocation site’ that is from function
e1000_set_ringparam as show in line 17 of Figure 5.

Step 3: analyze the reason of resource leak and
write a patch. To understand why test case π′ triggered
the resource leak while its reference test case π did not,
we checked the code near the negated branch in function
e1000_setup_rx_resources. This function returns on
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success with test case π, and returns on error with test case π′.
It is invoked during the execution of command ‘ifconfig
ens4 up’ as part of the initialization of E1000 network
interface. Returning on error of this function leads to the
failure of the initialization and notifies the base kernel that the
current network interface is not up. By checking the ‘free site’,
we noticed the de-allocation function is guarded by a condition
that is true only when the network interface is running, as
shown in line 16 of Figure 5. Finally, we fixed the bug by
moving the de-allocation function out of the condition check.
The whole process of debugging and fixing the bug took us
less than one hour by using COD.

Kernel vulnerabilities involving pointer operations, e.g., the
null-pointer dereference in Bug 5 in table III, are among the
most common and critical bugs, while is notoriously difficult
to debug and fix. As elaborated in Charm [38], the debugging
process usually starts from the crash site to backtrack the usage
of vulnerable pointer by using GDB (breakpoint, watch-point,
single-step, etc.). With the help of COD, we not only quickly
pinpointed the crash site, but also easily located the source
of the null-pointer dereference that is the location of negated
branch. Starting from the source of the bug and tracing down,
we were able to fix the Bug 5 within three hours.

D. Comparison with kAFL

To have an apple-to-apple comparison with kAFL [19], we
adopted the example in their evaluation for comparing with
other state-of-the-art kernel fuzzers. It is a custom kernel
module that is a JSON parser, decodes user inputs, and
contains a known vulnerability. They demonstrated that kAFL
was able to learn correct JSON syntax, and finally trigger
the known vulnerability in around 8 minutes, while other
fuzzers failed. The vulnerability was triggered by matching
string "kAFL" byte by byte. To further challenge both kAFL
and COD, we modified the crashing condition which now
computes a hash value [39] from multiple JSON tokens of
the parsed input string and matches the hash value with the
hash value of "LKM"(see Figure 6).

As kAFL requires special CPU features, e.g., Intel VT-x
and Inte-PT, all experiments are conducted on a system with
an Intel 3.76GHz Xeon E-2176G processor and 32GB RAM.
We run kAFL in single process mode, as the multi-process
mode of kAFL does not show much efficiency benefit and
sometimes is even less efficient as showed in their evaluations.
We performed 3 repeated experiments for both kAFL and COD
with a timeout of 24 hours. We measured the time and the
number of test cases being exercised to find the known crash.

In the experiments, on average, COD triggered the crash
within 16 hours after exercising 52K test cases, while kAFL
failed to detect the crash within 24 hours and exercised 5500
times more test cases (around 290M) than COD. Actually,
kAFL stops finding new paths after about 100 minutes of
running. This indicates that fuzzing, even with advanced
coverage feedback algorithm and speed boost from newest
hardware features, is not capable of finding vulnerabilities
that requires complicated and precise conditions. It aligns

1 // Robert Sedgewick Hash function
2 unsigned int RSHash(const char* str,
3 unsigned int len);
4
5 jsmn_parser p;
6 jsmntok_t tokens[5];
7 jsmn_init(&p);
8
9 int res = jsmn_parse(&p, input, len, tokens, 5);

10 if(res != 3 &&
11 tokens[0].type == JSMN_PRIMITIVE &&
12 tokens[1].type == JSMN_PRIMITIVE &&
13 tokens[2].type != JSMN_PRIMITIVE ) return;
14
15 char arr[3] = {input[tokens[0].start],
16 input[tokens[1].start],
17 input[tokens[2].start]};
18 if(RSHash(arr, 3) == RSHash("LKM", 3))
19 panic(KERN_INFO "LKM...\n");

Fig. 6. Excerpt of JSON parser kernel module used for comparing with kAFL.

with the discussion of kAFl’s limitations in their paper, which
concluded that it remains an open research problem how to
deal with these situations on the kernel level [19]. Our work on
COD is attacking this research problem by extending concolic
execution to kernel modules. The experiment results show
that concolic execution is still a very effective technique to
detect kernel vulnerabilities on binary-level, and is a strong
complimentary testing approach to fuzzing on kernel level.

VIII. RELATED WORKS

A. Kernel Vulnerability Detection

Static analysis [8] on Linux kernel source code is very
popular, because it normally has no requirement for hardware
devices, can be applied to a broad range of the kernel code,
and is promising to deliver verification (at least on a specific
property of the kernel). Its effectiveness has been demonstrated
by many recent tools, e.g., LDV [9], WHOOP [40] Dr.
Checker [10], DSAC [11], DEADLINE [41], DCNS [42].
However, static analysis is facing major challenges, including
(1) prone to false positives because of the pointer-heavy nature
of kernel code, (2) ill-suited for detecting run-time errors
involving multiple modules, (3) requiring access to source
code, and (4) not easily usable by general developers on new
kernel modules [43].

In recent years, dynamic analysis over Linux kernel has
received increasingly attention. Especially, feedback-driven
fuzzing is proved to be a very effective technique to unveil var-
ious vulnerabilities in systems software. Many recent efforts
were spent on extending fuzzing on user-level applications
(especially AFL [27]) to kernel level, e.g., TriforceAFL [18],
kAFL [19], syzkaller [20], DIFUZE [17], and Razzer [21].
Robustness testing of Linux kernel with fault injection is also
an effective technique. Two examples are ADFI [15] and EH-
Test [16]. Many of these tools either still heavily rely on
the source code availability [16], [17] that is not applicable
to COTS kernel and LKMs, or perform blindly fuzzing and
explore the same execution path repeatedly [15], [18]–[20]
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that is inefficient to detect bugs. Also, most of these tools are
limited to fuzzing the system call interface of Linux kernel
and do not support LKM interfaces.

B. Symbolic and Concolic Execution

Symbolic execution [44] is a program analysis technique
that takes symbolic inputs, maintains different execution states
and constraints of each path in a program, and utilizes
scheduling heuristics [45] to effectively explore the execution
tree of the target program. Concolic execution [24] leverages
a concrete execution path to guide symbolic execution to
achieve better scalability [46]. Both of them have been largely
adopted for automated test case generation and bug detection
of software on both source and binary level [28], [47]–[55].
Some representative work of applying symbolic or concolic
execution to kernel code are DDT [12], SymDrive [13], and
CAB-Fuzz [14]. They heavily rely on source-level instrumen-
tation to perform effective dynamic analysis [13], or do not
produce actionable test cases [12], [14] that are crucial for
efficient replay and debugging on detected problems [56].

C. Kernel Bug Patching and Mining

Our work is also related to automated kernel patching [4].
The Coccinelle project [57] allows software developers to
write code manipulation rules with a generalization of the
patch syntax [58], and have automatically generated over
6, 000 commits to the Linux kernel. Instead of generating
patches to fix kernel bugs automatically, our work tries to
improve the process of kernel bug patching by generating
actionable test cases for COTS LKMs and enabling automated
replay of detected bugs. Additionally, The assertions we de-
fined in COD’s kAPI Checker (for proactively detecting
common kernel bugs) were inspired by previous works on
repository mining of Linux kernel [59]–[61], e.g., detecting
resource leak with paired function [34].

IX. DISCUSSION

We have demonstrated COD can generate compact sets of
test cases from COTS LKM interfaces, detect various kinds of
kernel vulnerabilities, and enable automated test case replay
to assist efficient debugging and patching of detected bugs.
However, there are limitations of this approach and directions
for future work, which we will discuss in this section.

Hardware inputs to LKMs. Our approach focuses on the
software interactions within the Linux kernel, and does not
analyze the effects from hardware inputs [62] to the LKMs. As
a result, COD cannot detect bugs of LKMs related to hardware
inputs. Also, without a symbolic model to emulate missing
hardware modules in the VM (specifically QEMU [29]),
COD cannot effectively analyze LKMs requiring unsupported
hardware in the VM. Symbolic device [13] is a potential
solution to support hardware inputs, and can be incorporated
into COD.

Bottleneck of concolic execution. As a concolic testing
approach, COD’s performance for test case generation is
bounded by theoretical limits such as state explosion and

expensive constraint solving. We believe fuzzing provide an
effective complimentary to concolic testing. We are planning
to swap CRETE, the concolic engine in COD’s prototype, with
state-of-art fuzzers, e.g., kAFL, to perform fuzzing on LKM
interfaces [63].

Manual efforts. While COD is mostly automated, develop-
ers’ manual efforts are still needed in three situations. First,
as Linux kernel chose not to adopt a stable interface for
LKMs [64], users need to pay attention to the changes of ker-
nel APIs when applying COD to a new version of kernel, and
may need to adjust the Kprobes defined in COD. Second, users
need to double check all reported bugs because COD can have
false alarms. False alarms mainly stem from invalid kernel
API models or kernel non-determinism, as kernel API keeps
changing, and COD alleviates and tolerates non-determinism,
but not removing it. Third, users’ manual efforts are required
to extend COD to detect new category of bugs, e.g., adding
assertions on new kernel API usages, or defining properties
about concurrency to detect race conditions, etc. We believe
repository mining over Linux kernel [59] can be leveraged to
automate the process of tracking kernel API change across
different versions and extracting the valid constraint of kernel
APIs.

Improvement on the prototype. COD now only supports
x86 architecture, but we would like to explore its potential
on analyzing COTS LKMs from embedded systems. Also, the
current workflow of COD for test case generation does not
exploit the potential of multiprocessing and parallelism, and
exchanges data through slow socket communication across dif-
ferent components. We are planning to optimize the workflow
of COD to improve efficiency.

X. CONCLUSION

In this paper, we presented COD, an automated testing
framework for COTS LKMs in Linux kernel. COD generates
compact sets of test cases from LKM interfaces using concolic
execution, proactively checks for common kernel bugs with
embedded checkers, and allows to reproduce reported bugs
repeatedly with actionable test cases on both virtual and phys-
ical platforms. We evaluated our prototype of COD on more
than 20 LKMs covering the network and sound subsystems
of Linux kernel. The experiments showed that COD detected
various kinds of kernel bugs, including 5 new vulnerabilities
from LKMs that have been maintained and validated for over
14 years. Through patching all the detected flaws in the Linux
kernel upstream, we demonstrated the potential of COD’s
automated test case replay in assisting efficient debugging
and fixing of kernel bugs. With the comparison between COD
and kAFL, the state-of-the-art kernel fuzzer, we showed that
concolic execution remains as an effective complementary
testing technique to fuzzing on the kernel level.
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