
Generating High Coverage Tests for SystemC Designs
Using Symbolic Execution

Bin Lin, Zhenkun Yang, Kai Cong, Fei Xie
Department of Computer Science, Portland State University, Portland, OR 97207, USA

{linbin, zhenkun, congkai, xie}@cs.pdx.edu

Abstract— SystemC is a system-level modeling language in-
creasingly adopted by the semiconductor industry. Quality as-
surance for SystemC designs is important, since undetected er-
rors may propagate to final silicon implementations and become
very costly to fix. The errors, if not fixed, can cause major damage
and even endanger lives. However, quality assurance for SystemC
designs is very challenging due to their object-oriented nature,
event-driven simulation semantics, and inherent concurrency. In
this research, we have developed an approach to generating high
coverage tests for SystemC designs using symbolic execution. We
have applied this approach to a representative set of SystemC de-
signs. The results show that our approach is able to generate tests
that provide high code coverage of the designs with modest time
and memory usage. Furthermore, the experiment on a RISC CPU
design with more than 2K lines of SystemC code demonstrates
that our approach scales to designs of practical sizes.

I. INTRODUCTION

The increasingly short time-to-market requirement for elec-

tronic devices, accompanied by the growing complexity of

their designs, pushes designers to model systems at a high lev-

el of abstraction. Among high-level hardware description lan-

guages, SystemC [1] has gained popularity due to its fast sim-

ulation and strong support for hardware/software co-design.

SystemC can effectively describe a design at multiple ab-

straction levels. It enables step-by-step refinement of a high-

level abstract design down to a low-level implementation.

However, errors in the high-level design can also propagate

down to the low-level implementation. Fixing the errors in

high-level designs is critical, since the costs of correcting an

error increases significantly with the refinement of the designs

down to the lower levels. The errors in the final hardware

implementations can cause major damage and even endanger

lives. Thus, SystemC verification is necessary and important.

Verification is not only a key step but also a major bottleneck

of system design [2]. The challenges of SystemC verification

are mainly due to the object-oriented nature, event-driven sim-

ulation semantics, and inherent concurrency of SystemC [3].

SystemC verification has two general paradigms: formal
verification and dynamic validation. Although formal verifi-
cation, particularly model checking [4], has been utilized in

the industrial context for decades, it still remains a unit level

verification technique [5]. The well-known technical limita-

tion of model checking — state space explosion — prevents it

from being applied to complex system-level designs. Dynamic
validation is a simulation-based approach and the “workhorse”

for validating SystemC designs [3]. To this end, designers usu-

ally simulate a design over a set of concrete test cases. Thus,

high quality test cases are critical. However, manual test-case

generation is very time-consuming because it requires deep un-

derstanding of the design under validation (DUV).

This paper presents an approach to automatically generat-

ing test cases that provide high code coverage for SystemC

designs using symbolic execution [6]. Such symbolic execu-

tion is effective because one symbolic input can cover a set of

concrete inputs. In addition, concrete test cases are generated

for all paths through the designs that are exercised along with

symbolic execution. Furthermore, our approach can rerun the

generated test cases on the designs, which helps designers ana-

lyze SystemC designs better. The contributions of this research

are summarized as follows.

• We have developed a framework for generating a test har-

ness for each SystemC design.

• We have developed a symbolic execution engine named

SESC (Symbolic Execution of SystemC) based on

KLEE [7]. We have implemented a scheduler in SESC to

handle SystemC concurrency and other features to han-

dle SystemC hardware specific semantics, such as signal,

FIFO, arbitrary-width data type and clock cycle.

• We have developed a framework for replaying the gener-

ated test cases on SystemC designs. Based on test case

replay, various code coverage statistics are generated.

• We have implemented our approach and evaluated it on 11

SystemC designs. Our experimental results demonstrate

that our approach is able to generate tests that provide

high code coverage of the designs with modest time and

memory usage, and to scale to practical designs with more

than 2K lines of SystemC code.

II. RELATED WORK

There have been several attempts [8, 9, 10, 11, 12] to for-

mally verify SystemC designs by checking safety properties.

In [8], a translation from SystemC designs to UPPAAL timed

automata is proposed. Then the UPPAAL model checker and

the UPPAAL tool suite can be applied to the resulting UPPAAL

978-1-4673-9569-4/16/$31.00 ©2016 IEEE

2B-4

166

models. In [9], a methodology is proposed to translate a Sys-

temC transaction level modeling (TLM) design into a sequen-

tial C model. Then, the induction-based formal method is used

to check for C assertion violations. In [10], a translation from

SystemC designs to threaded C models is proposed and then

the Explicit-Scheduler/Symbolic Threads algorithm is applied.

In [11], a symbolic model-checking technique that formalizes

the semantics of SystemC designs in terms of Kripke structures

is presented. In [12], an intermediate verification language

(IVL) is proposed and a symbolic simulator is developed for

the IVL. All of the aforementioned approaches are focused on

translation of SystemC designs rather than direct SystemC ver-

ification. Furthermore, they only check limited properties and

property formulation is challenging.

There has also been research on dynamic validation [13, 14,

15]. In [13], a methodology is proposed to automatically gen-

erate test cases based on code-coverage analysis. However, to

use this framework, the DUV has to be instrumented manually.

In [14], coverage metrics for SystemC verification using muta-

tion testing are developed. In [15], an approach to generating

RTL test cases from TLM specifications is presented.

We utilize symbolic execution to generate high coverage

tests for SystemC designs. We focus on validating high-level

synthesizable subset of SystemC [17]. High-level synthesis

(HLS) is increasingly used for hardware designs in the industry

over the last decade. However, the quality of high-level syn-

thesizable SystemC designs is critical, since errors in these de-

signs will propagate down to the synthesized designs. The ear-

lier the errors are found, the less expensive to fix them. Thus,

it is important to validate synthesizable SystemC designs.

III. BACKGROUND

A. SystemC

SystemC is a hardware modeling language based on C++.

It includes an event-driven simulation kernel, and extends the

capabilities of C++ by enabling modeling of hardware designs.

In addition, SystemC has clock cycle semantics.

The SystemC library provides powerful mechanisms for de-

signing complex systems. It enables modeling hardware at

multiple levels of abstraction. A SystemC design is modeled

as a set of modules communicating through ports that are con-

nected by channels. A module consists of at least one pro-

cess. Each process is a block of statements that describe cer-

tain behavior of a system. Processes run concurrently and

are managed by a non-preemptive scheduler. The semantics

of SystemC concurrency is co-operative multitasking. A pro-

cess suspends itself when encounters function wait() or runs

to the end, and is resumed by one or more notified events of

its sensitivity list. SystemC provides three types of processes:

SC METHOD, SC THREAD, and SC CTHREAD.

Figure 1 shows a simple SystemC design. It has one mod-

ule containing two processes P1 and P2 that are registered as

SC CTHREAD. They are both sensitive to the positive edge of

the clock, which means that they will be executed at the posi-

tive edge of each clock. The design has three input ports: en,

1 SC_MODULE(example){ 19 void P2() {
2 sc_in<bool> en; 20 int c;
3 sc_in<bool> clk; 21 wait();
4 sc_in<int> din; 22 while(true) {
5 sc_out<int> dout; 23 if(b < 0)
6 24 c = -b;
7 sc_signal<int> b; 25 else if(b % 2)
8 26 c = b / 2;
9 void P1() { 27
10 wait(); 28 dout.write(c);
11 while(true) { 29 wait();
12 if(en.read()) 30 }
13 b = din.read(); 31 }
14 32 SC_CTOR(example){
15 wait(); 33 SC_CTHREAD(P1, clk.pos());
16 } 34 SC_CTHREAD(P2, clk.pos());
17 } 35 }
18 36 };

Fig. 1. A SystemC example

clk, and din; one output port dout; and one shared signal b. P1

reads the input data din according to the signal en, while P2 do

the computation based on the input data and output the result.

The synthesizable subset of SystemC [17] defines some re-

strictions on the standard SystemC [1] so that designs follow-

ing the restrictions are appropriate for input to HLS tools. The

three types of processes are all supported but with restrictions.

Processes cannot be created dynamically. An SC METHOD

process can only describe combinational circuit and its sensi-

tivity list shall be static. Thread processes, SC THREAD and

SC CTHREAD, have the same expressiveness for the synthe-

sis purposes. A thread process shall be statically sensitive to

exactly one clock edge. The thread process body of a design

shall only use wait() or wait(int). The structure sc event
is not supported.

B. Symbolic Execution and KLEE Engine

Symbolic execution [6] exercises a program by taking sym-

bolic values as inputs, which are symbols representing arbi-

trary values allowed by the types of corresponding variables.

Consequently, the results are represented as symbolic expres-

sions over the inputs. A symbolic execution state includes

values of program variables, a path condition, and a program

counter. The path condition is a boolean formula that must be

satisfied to reach current execution state from the initial state.

The program counter denotes the next statement to execute.

KLEE is a symbolic execution engine built upon the LLVM

infrastructure [16]. KLEE exercises C programs symbolically

and generates test cases automatically, aiming to achieve high

code coverage. First, programs are compiled to the LLVM as-

sembly language. Then, KLEE interprets LLVM instructions

directly. We developed our own engine, SESC, to enable sym-

bolic execution of SystemC designs, based on KLEE.

IV. PROPOSED APPROACH

A. Overview

Figure 2 shows the framework of our approach to SystemC

validation. It has three important steps: (1) test-harness gener-

ation, (2) symbolic execution, and (3) test-case generation.

2B-4

167

Test-Harness
Generation

Symbolic
Execution

Test-Case
Generation

LLVM
Bitcode

Test
Harness

Test
Cases

Code
Coverage

Test-Case
Replay

Symbolic
Expressions

SystemC
Design

Fig. 2. Framework for SystemC test generation

For a given SystemC design, its test harness is generated

and compiled with the design together to LLVM bitcode. The

execution engine SESC takes LLVM bitcode as input and exer-

cises designs symbolically to explore as many execution paths

as possible. When an execution path terminates or encounters

an error, SESC sends the path conditions that are represented

by symbolic expressions to a constraint solver, which returns

concrete values that satisfy the expressions. Then SESC gen-

erates a concrete test case for the path. The generated test cas-

es are then rerun on the SystemC design to compute coverage

statistics. We will discuss the detail in the following.

B. Test-Harness Generation

A SystemC design by itself is not a stand-alone program. It

invokes SystemC library and communicates with its environ-

ment in the simulation. SystemC simulation requires the Sys-

temC library that provides predefined structures and simulation

kernel, so does symbolic execution. However, the whole Sys-

temC library is too complex for symbolic execution. Hence,

a test harness that models the environment must be provid-

ed to enable the symbolic execution of SystemC designs. A

key challenge here is how to generate a test harness. The test

harness should be simple enough so that SESC can efficiently

execute a design symbolically.

A test harness includes global variables definitions, synchro-

nization mechanisms, symbolic variables constructions, and

process registrations. Figure 3 shows the skeleton of the test

harness for the design shown in Figure 1. Shared signals are

defined as global structure globalVars. It only has one mem-

ber b in this case. The harness defines two variables of type

globalVars. The variable currState contains the synchronized

value, while LStates is an array that each element is modified

by one process. The function SESC make symbolic(· · ·)
constructs symbolic variables and SESC thread(· · ·) regis-

ters a SystemC process with SESC so that SESC can schedule

it when required. The function SESC start(numCycles)

starts symbolic execution, where numCycles specifies how

many clock cycles to simulate.

C. Scheduler

SystemC is widely used to model concurrent systems con-

sisting of multiple processes. To deal with the SystemC con-

currency, we have implemented a scheduler in SESC to man-

1 typedef struct Globals{
2 int b;
3 }globalVars;
4
5 globalVars currState, LStates[2];
6
7 void PREPROCESS(currState) { }
8 void SYNC(LStates) { }
9
10 int main(int argc, char **argv) {
11
12 SESC_make_symbolic(&en, sizeof(en),);
13 SESC_make_symbolic(&in, sizeof(in),);
14 SESC_thread(1 , &en, &clk, &din, &LStates[1].b, &dout);
15 SESC_thread(2 , &en, &clk, &din, &LStates[2].b, &dout);
16
17 SESC_start(numCycles);
18
19 return 0;
20 }

Fig. 3. Skeleton of the test harness for the design shown in Figure 1

age multiple processes, as shown in Algorithm 1. Currently,

our approach supports two types of processes, SC THREAD

and SC CTHREAD, in the synthesizable subset of SystemC.

Algorithm 1: SYM-EXE-SCHEDULER(P, numCycles)

Data: currState and LStates are global variables.

Result: scheduling the symbolic execution of processes P
for numCycles cycles.

1 cycles← 0
2 runnable← ∅
3 foreach p ∈ P do
4 ENQUEUE(runnable, p)

5 while cycles ≤ numCycles do
6 next runnable← ∅
7 LStates← PREPROCESS(currState)
8 while runnable �= ∅ do
9 q ← DEQUEUE(runnable)

10 SYM-EXE-PROCESS(q)
11 ENQUEUE(next runable, q)

12 runnable← next runnable
13 currState← SYNC(LStates)
14 cycles← cycles+ 1

According to the SystemC specification [1], access to

shared storage should be synchronized explicitly to avoid

non-deterministic behavior, although the scheduler is non-

deterministic. Thus, different scheduling sequences should not

affect the simulation result for a well-formed design, which

means that it is sufficient for the design to execute only one

scheduling sequence for each clock cycle. Therefore, we sim-

ulate designs deterministically using symbolic execution and

synchronize shared storage explicitly. If a design is not well-

formed, such as variables other than signals are used as inter-

process communication, there are potential races. In this work,

we assume that there are no races for the DUV.

As shown in Algorithm 1, before execution starts, the sched-

uler initializes simulation cycle as zero and puts all runnable

2B-4

168

processes into the runnable queue runnable. When execu-

tion starts, for each clock cycle, the scheduler first empties the

queue next runnable. Then PREPROCESS is called to make N
replicas of currState and store them in the array LStates,

where N is the number of processes. After that, the sched-

uler removes each process from runnable, and calls SYM-

EXE-PROCESS to execute the selected process symbolically.

Note that each process modifies its local state. When the

process encounters wait, the scheduler puts the process in-

to next runnable. When runnable is empty, the execution is

finished for this clock cycle. So the scheduler puts every pro-

cess into runnable for the next clock cycle and synchronizes

all local states resulting in a new global state currState, fol-

lowed by advancing the simulation cycles. If the number of

simulation cycles reaches numCycles, the simulation is done,

and the execution engine terminates.

D. Symbolic Execution of SystemC Designs

To symbolically execute SystemC designs, besides the con-

currency addressed in the previous section, SESC needs to ad-

dress the following three technical challenges.

First, the path explosion problem is a major limitation of

symbolic execution to exercise a complex program thorough-

ly. The number of paths is approximately exponential to the

number of branches in a program. Not surprisingly, this prob-

lem also exists with symbolic execution of SystemC designs.

We apply two bounds to address this problem. One is the

time bound that is the maximum time for symbolic execution

engine to run. The time bound ensures that SESC will termi-

nate in a given amount of time. If SESC does not finish within

the given time, there may be unfinished paths. For such paths,

SESC still generates test cases with the path constraints col-

lected before termination. The other bound is the clock cycle

bound that specifies how many clock cycles to simulate.

Second, a SystemC design has a hierarchical modular struc-

ture usually and include the object-oriented features, such as

inheritance and polymorphism. Our framework flattens these

features first by preprocessing SystemC designs. Then, they

are compiled to LLVM bitcode using the clang compiler [21].

Each process is flattened as a function whose name is the same

as the process name. All the input and output ports of the mod-

ule, as well as shared signals among processes, become the

pointer parameters of the function.

Figure 4 illustrates the skeleton of the flattened result for the

design shown in Figure 1. Processes P1 and P2 are interpreted

as function P1 and P2. The input ports en, clk, and din, output

port dout, and shared signal b become the pointer parameters

of the functions.

Third, a SystemC design may contain hardware specific da-

ta structures, such as port, signal, FIFO, arbitrary-width data,

and bit-precise operation. We address these structures by ei-

ther implementing their stubs or adapting the symbolic execu-

tion engine. Ports are interpreted as the function parameters

as described above. Predefined channels, such as sc signal
and sc fifo, the preprocessor replaces these structures with our

implementations. Arbitrary-width data types and bit-precise

1 void P1(*en, *clk, *din, *b, *dout) {
2
3 }
4
5 void P2(*en, *clk, *din, *b, *dout) {
6
7 }

Fig. 4. Skeleton of flattened result for the design shown in Figure 1

operations, such as bit selection and bit set, are ubiquitous in

hardware designs. KLEE does not support such data types and

bit operations. We have implemented the functionalities that

support arbitrary-width data types and bit-precise operations,

such as part selection and part set.
With the aforementioned challenges addressed, a SystemC

design can be executed symbolically now. SESC collects path
constraints along the execution of each path. For the example
shown in Figure 1, suppose we set the clock cycle bound as
three and the corresponding symbolic inputs for three clock
cycles are {en1, in1}, {en2, in2}, and {en3, in3}. After
symbolic execution of the design, SESC can collect constraints
for all explored paths. Three sample constraints are as follows.

Constraint 1 : en2 �= 0 ∧ in2 < 0 ∧ en3 �= 0
Constraint 2 : en2 �= 0 ∧ in2 > 0 ∧ (in2%2 �= 0) ∧ en3 �= 0
Constraint 3 : en2 �= 0 ∧ in2 > 0 ∧ (in2%2 = 0) ∧ en3 �= 0

E. Test-Case Generation

A test case T � I1, I2, . . . , In of a SystemC design is a

sequence of inputs, such that cycle input Ii (1 ≤ i ≤ n) will

be applied to the design at clock cycle i as inputs. A cycle

input I � {〈p, v〉 | p is an input port, v is the concrete value of

p} of a design is a set of concrete inputs.

The path constraints collected by SESC are denoted as sym-

bolic expressions. However, symbolic expressions are hard to

understand for general designers. So when an execution path

terminates, the symbolic expressions are sent to a constraint

solver, which returns concrete values that satisfy the expres-

sions. As the constraints shown at the end of previous section,

the corresponding test cases generated by SESC are as follows.

T1 � I1, I2, I3 where I1 � {〈en1, 0〉, 〈in1, 0〉},

I2 � {〈en2, 1〉, 〈in2,−1〉}, I3 � {〈en3, 1〉, 〈in3, 0〉}.

T2 � I1, I2, I3 where I1 � {〈en1, 0〉, 〈in1, 0〉},

I2 � {〈en2, 1〉, 〈in2, 1〉}, I3 � {〈en3, 1〉, 〈in3, 0〉}.

T3 � I1, I2, I3 where I1 � {〈en1, 0〉, 〈in1, 0〉},

I2 � {〈en2, 1〉, 〈in2, 2〉}, I3 � {〈en3, 1〉, 〈in3, 0〉}.

V. EVALUATION

This section describes our experiments on a benchmark of

10 representative SystemC designs and a design of practical

size. The 10 designs as listed in Table I were collected from

open source benchmarks [18, 19] of hardware designs. All

experiments were performed on a desktop with 4-core Intel(R)

Xeon(R) CPU, 8 GB of RAM, and running the Debian Linux

operating system with 64-bit kernel version 3.16. The time and

2B-4

169

TABLE I

TIME AND MEMORY USAGE, AND COVERAGE RESULTS

Designs # Proc. LoC Time(s) Memory(MB) # TestCases LCov(%) BCov(%)

risc cpu exec 1 126 3.23 46.9 35 100 100

risc cpu mmxu 1 187 11.38 15.6 95 99.4 97.9

risc cpu control 1 826 0.57 17.8 76 100 100

risc cpu bdp 3 148 0.15 17.5 36 100 100

risc cpu crf 5 927 300 61.1 1759 98.2 95.7

usbArbStateUpdate 2 85 0.05 13.7 10 100 100

mips 1 255 178.23 27.6 39 100 97.9

adpcm 1 134 1.88 16.2 25 100 100

idct 1 244 180 134.0 135 100 100

sync mux81 1 52 0.04 13.5 10 100 100

memory usage of our approach is shown in Table I. The first

column gives the names of designs. The second column shows

the number of processes of each design. Lines of code for

each design are listed in the third column. The subsequent two

columns present time and memory usage, respectively. The

sixth column gives the number of generated test cases. As we

can see, the time and memory usage are modest.

A. Coverage Methodology

To measure the effectiveness of SESC-generated test cases,

our framework reruns them on the unmodified SystemC de-

signs by supplying them to a replay harness that we developed.

We use line and branch coverage reported by gcov [20], be-

cause code coverage is widely used in white box testing and

there is a positive relation between code coverage and reliabil-

ity [22]. Note that the coverage results only consider code in

the design itself. We measure sizes in terms of executable lines

of code (LoC) in the SystemC designs.

B. Experimental Results on a Benchmark

The coverage results of our approach on the benchmark

are shown in the last two columns of Table I. As we can

see from the table, our approach can achieve 100% line and

branch coverage for most designs. Our approach does not

achieve 100% coverage for design risc cpu mmxu since one

branch is eliminated by compiler optimization. For design

risc cpu crf, the path explosion problem is severe. After

we set the time bound as 300 seconds, SESC generates 1759

test cases that achieve 98.2% line coverage and 95.7% branch

coverage. There is a dead branch in the design mips, so 100%

branch coverage can never be achieved.

We compared the coverage results of SESC with two groups

of random testing. They are denoted as Random10 and Ran-

dom100 that represent the number of random tests with 10

times and 100 times of the number of test cases generated by

SESC. For each group, we conducted 10 times experiments

and calculated the average. The comparisons of line coverage

and branch coverage are shown in Figure 5 and Figure 6, re-

spectively. As we can see from the figures, SESC gains the

best coverage results. Especially, our approach beats both by a

significant margin for mips, idct and sync mux81.

0

20

40

60

80

100

SESC

Random10

Random100

Fig. 5. Line coverage of SESC testing vs. Random10 and Random100 for 10

SystemC designs. SESC beats both by at most 66%.

0

20

40

60

80

100

SESC

Random10

Random100

Fig. 6. Branch coverage of SESC testing vs. Random10 and Random100 for

10 SystemC designs. SESC beats both by at most 71%.

Based on the comparisons, the SystemC designs can be di-

vided into three groups. In the first group, designs can be eas-

ily achieved high code coverage using random testing, such

as adpcm. Designs in this group contain only a few branch-

es. The second group contains designs that can be achieved

relatively high code coverage by random testing with much

more test cases, such as risc cpu control. Designs in

this group consist of relatively more branches than the first

group, but there are barely any nested branches. In the third

group, it is hard to achieve high code coverage using random

testing even with much more test cases, such as mips. This is

mainly because designs in this group include nested branches

and compound conditions of branches. As we have seen, our

approach can achieve very high coverage for relatively com-

plex designs, while random testing cannot. If designs are more

larger and includes more complex conditions of branches, the

advantage of our approach will be more obvious, which we

will show in the following.

2B-4

170

Fig. 7. Architecture of RISC CPU

TABLE II

COVERAGE RESULTS OF RISC CPU

Method # TestCases LCov(%) BCov(%)

SESC 2,099 96.3 93.2

Random10 20,990 81.2 66.5

Random100 209,900 91.1 76.4

C. Experimental Results on a Design of Practical Size

We also applied our approach on a design of practical size

— RISC CPU [18]. The design consists of 10 modules, 13 pro-

cesses, and 2056 LoC in total. Figure 7 shows the architecture

of the CPU design. The CPU reads in program instructions

and executes them and then writes the results back to regis-

ters or data memory. The instruction set is defined based on

commercial RISC processor together with MMX-like instruc-

tions. BIOS stores system bios data. ICache caches program

instructions, while DCache caches data. Fetch fetches in-

structions from Paging. Control Unit decodes instruc-

tions. Register File models registers. ALU is an integer

execution unit, while FPU is a floating point execution unit.

MMXU is an MMX-like execution unit.

The symbolic execution overhead of the CPU design is still

modest. It takes 169 seconds and 264 MB. SESC generated

2099 test cases. The coverage results of SESC, as well as Ran-

dom10 and Random100 (averaged over 10 runs), are illustrat-

ed in Table II. Our approach achieved 96.3% line coverage and

93.2% branch coverage which is much better than random test-

ing. Moreover, random testing generated more than 200,000

test cases which is very time-consuming to run.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have presented an approach to validat-

ing SystemC designs by generating high coverage tests using

symbolic execution. We have developed the symbolic execu-

tion engine, SESC, to symbolically execute SystemC designs.

We have evaluated the proposed approach on a set of 11 Sys-

temC designs. The results of our experiments demonstrate

that the proposed approach is able to generate test cases that

achieve high code coverage with modest time and memory us-

age. Moreover, our experiment on a RISC CPU design with

more than 2K lines of SystemC code illustrates that our ap-

proach scales to designs of practical sizes.

Currently, our approach is focus on synthesizable SystemC

designs with the assumption that there are no races for

the DUV. The major limitation is that the process type

SC METHOD is not supported yet. Our future research will

explore the following three directions. First, we will support

the process type SC METHOD. Second, we will develop an

algorithm to detect data races. Third, we will enlarge the set of

SystemC designs that can be validated by our framework, such

as transaction level models.

ACKNOWLEDGEMENT

This research received financial support from National Sci-

ence Foundation (Grant #: CNS-1422067).

REFERENCES

[1] IEEE Standards Association, “Standard SystemC Language Reference

Manual,” IEEE Std. 1666-2011, 2011.

[2] J. Bhasker, A SystemC Primer, Star Galaxy, 2002.

[3] M. Y. Vardi, “Formal Techniques for SystemC Verification,” in DAC,

2007.

[4] E. M. Clarke Jr., O. Grumberg and D. A. Peled, Model Checking, MIT

Press, 1999.

[5] Y. Wolfsthal and R. M. Gott, “Formal Verification: Is It Real Enough?”

in DAC, 2005.

[6] J. C. King, “Symbolic Execution and Program Testing,” Communications
of the ACM, 1976.

[7] C. Cadar, D. Dunbar and D. Engler, “KLEE: Unassisted and Automatic

Generation of High-coverage Tests for Complex Systems Programs,” in

OSDI, 2008.

[8] P. Herber, J. Fellmuth and S. Glesner, “Model Checking SystemC De-

signs Using Timed Automata,” in Proc. 6th Int. Conf. Hardware/Software
Codesign and System Synthesis, 2008.

[9] D. Große, H. M. Le and R. Drechsler, “Proving Transaction and System-

level Properties of Untimed SystemC TLM Designs,” in MEMOCODE,

2010.

[10] A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya, and M. Roveri,

“KRATOS: A Software Model Checker for SystemC,” in CAV, 2011.

[11] C.-N. Chou, Y.-S. Ho, C. Hsieh, and C.-Y. Huang, “Symbolic Model

Checking on SystemC Designs,” in DAC, 2012.

[12] H. M. Le, D. Große, V. Herdt, and R. Drechsler, “Verifying SystemC

Using an Intermediate Verification Language and Symbolic Simulation,”

in DAC, 2013.

[13] A. D. Junior and D. J. Cecilio da Silva, “Code-coverage Based Test Vec-

tor Generation for SystemC Designs,” in Proc. IEEE Computer Society
Annu. Symp. on VLSI, 2007.

[14] A. Sen and M. S. Abadir, “Coverage Metrics for Verification of Concur-

rent SystemC Designs Using Mutation Testing,” in HLDVT, 2010.

[15] M. Chen, P. Mishra, and D. Kalita, “Automatic RTL Test Generation

from SystemC TLM Specifications,” ACM Transaction on Embedded
Computing System, 2012.

[16] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation,” in Proc. Int. Symp. Code Gener-
ation and Optimization: Feedback-directed and Runtime Optimization,

2004.

[17] Accellera Systems Initiative, SystemC Synthesizable Subset Version 1.4
Draft, 2015.

[18] http://www.cprover.org/hardware/sequential-equivalence

[19] B. Schafer and A. Mahapatra, “S2CBench: Synthesizable SystemC

Benchmark Suite for High-Level Synthesis,” IEEE Embedded Systems
Letters, 2014.

[20] https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

[21] http://clang.llvm.org/docs/UsersManual.html

[22] Y. K Malaiya, N. Li, J. Bieman, R. Karcich, and B. Skibbe, “The Rela-

tionship between Test Coverage and Reliability,” in Proc. 5th Int. Symp.
Software Reliability Engineering, 1994.

2B-4

171

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /CarbonBlock
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /HelveticaNarrow
 /HelveticaNarrowBold
 /HelveticaNarrowBoldLefty
 /HelveticaNarrowBoldOblique
 /HelveticaNarrowLefty
 /HelveticaNarrowOblique
 /Helvetica-Oblique
 /HGGothicE
 /HGGothicM
 /HGGyoshotai
 /HGKyokashotai
 /HGMaruGothicMPRO
 /HGMinchoB
 /HGMinchoE
 /HGPGothicE
 /HGPGothicM
 /HGPGyoshotai
 /HGPKyokashotai
 /HGPMinchoB
 /HGPMinchoE
 /HGPSoeiKakugothicUB
 /HGPSoeiKakupoptai
 /HGPSoeiPresenceEB
 /HGSeikaishotaiPRO
 /HGSGothicE
 /HGSGothicM
 /HGSGyoshotai
 /HGSKyokashotai
 /HGSMinchoB
 /HGSMinchoE
 /HGSoeiKakugothicUB
 /HGSoeiKakupoptai
 /HGSoeiPresenceEB
 /HGSSoeiKakugothicUB
 /HGSSoeiKakupoptai
 /HGSSoeiPresenceEB
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MingLiU
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /NewCenturySchlbk-Bold
 /NewCenturySchlbkBoldCn
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbkBoldLeftie
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewCenturySchlbkRomanCn
 /NewCenturySchlbkRomanLeft
 /NewGulim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OCRB
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /UnDotum
 /UnDotum-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

