Lecture 5: DRAM Basics
DRAM Evolution
SDRAM-based Memory Systems

Zeshan Chishti
Electrical and Computer Engineering Dept.
Maseeh College of Engineering and Computer Science

Sources: Lecture based on materials provided by Mark F. Jacob’s DRAM Systems article
Memory component datasheets
Outline

- Taxonomy of Memories
- Memory Hierarchy
- SRAM
 - Basic Cell, Devices, Timing
- DRAM
 - Basic Cell, Timing
- Memory Organization
 - Multiple banks, interleaving
- DRAM Evolution
- DDR3 SDRAM
- DRAM modules
- Error Correction
- Memory Controllers
Dynamic RAM (DRAM)
DRAM Technology

- **Write**
 - Drive bit line
 - Select desired word ("row")

- **Read**
 - Pre-charge bit line
 - Select desired word ("row")
 - Sense charge
 - Write value back (restore)

- **Refresh!**
 - Periodically read each cell
 - (forcing write-back)

DRAM Cell

1 transistor

Read is destructive → must restore value
Charge leaks out over time → refresh

Bit state (1 or 0) stored as charge on a tiny capacitor

Word line

Bit line
Volatile Memory Comparison

SRAM Cell
- Larger cell
 - lower density, higher cost/bit
- Non-destructive Read
- No refresh required
- Simple read \Rightarrow faster access
- Standard IC process \Rightarrow natural for integration with logic
- Non-multiplexed address lines
 - Density “low enough” to keep the number of address lines reasonable

DRAM Cell
- Smaller cell
 - higher density, lower cost/bit
- Destructive Read
- Needs periodic refresh
- Complex read \Rightarrow longer access time
- Special IC process \Rightarrow difficult to integrate with logic circuits
- Multiplexed address lines
 - Density $>>$ SRAM density so would require lots of address lines
DRAM Device Pin Outs

- **Cost Rules!**
 - Fewer pins, smaller package, less $.

- **So Multiplex**
 - **Data (In/Out)**
 - /WE asserted (low) for write
 - /OE asserted (low) to enable output buffers
 - **Address (Row/Column)**
 - /RAS (Row Address Strobe) asserted after row placed on address pins
 - /CAS (Column Address Strobe) asserted after column placed on address pins

256K = 18 address bits
9 row address bits
9 column address bits

- **2Mb (256K x 8) DRAM**
- **Data (DQ)**
- **Address**
- **/RAS**
- **/CAS**
- **/WE**
- **/OE**

![Diagram of DRAM address and data pins]

- **Address**
 - Row Address
 - Col Address

- **RAS**
- **CAS**

Portland State University
We want to keep row/column organization (square is good) but get devices of more than x1 bit wide

(from Bruce Jacob)
Square keeps the wires short:
Power and speed advantages
Less RC, faster pre-charge and discharge → faster access time!

Internal DRAM Organization 2Mb as 256K x 8

Read 512 bits at a time

Select the addressed bit

Do this 8 times
DRAM Timing
DRAM Timing

- **Read cycle - RAS + CAS**
 - (RAS asserted) Entire row is latched in a data register
 - (CAS asserted) Data in register is multiplexed to output
 - (RAS de-asserted) Data in data register is rewritten to row in array
 - (CAS de-asserted) Output is released

- **Write cycle - RAS + WE + CAS**
 - (RAS asserted) Entire row is latched in data register
 - (WE asserted) Data to be written is stable
 - (CAS asserted) Write Data to register
 - (WE de-asserted) Data to be written is no longer stable
 - (RAS de-asserted) Data in data register is rewritten to row in array
 - (CAS de-asserted) Operation complete

- **Refresh cycle - RAS Only**
 - (RAS asserted) Entire row is latched in data register
 - (RAS de-asserted) The data in the register is rewritten to row in array
DRAM Read Timing

- Every DRAM access begins at:
 - The assertion of the /RAS

- Two ways to read: early or late v. /CAS

Early Read Cycle: /OE asserted before /CAS Late Read Cycle: /OE asserted after /CAS
DRAM Write Timing

Early WR Cycle: /WE asserted before /CAS
Late WR Cycle: /WE asserted after /CAS
Key DRAM Timing Parameters

- **t_{RCD}**: RAS to CAS Delay
 - Minimum time between RAS asserted and CAS asserted

- **t_{CAC}**: Column Access Time
 - Delay from falling /CAS to valid data out

- **t_{RAC}**: Random Access Delay
 - Minimum time from /RAS falling to valid data output
 - Quoted as the speed of a DRAM
 - $t_{RAC} = t_{RCD} + t_{CAC}$

- **t_{RAS}**: Row Address Strobe
 - Minimum time /RAS must be maintained

- **t_{RP}**: Row Pre-Charge Delay
 - Minimum time to pre-charge before /RAS can be asserted again

- **t_{RC}**: Row Cycle Time
 - Minimum time between successive row accesses
 - $t_{RC} = t_{RAS} + t_{RP}$
DRAM Evolution
By 2002 most PCs were shipping with SDRAM and DDR SDRAM
By 2010 PCs were shipping with DDR3 in volume...and still are
Conventional DRAM Read Timing

(from Bruce Jacob & David Wang)
Fast Page Mode DRAM Read Timing

- Innovation – Hold entire row (page) in sense amplifiers
- Benefit – CPU can access each column in row without providing row address (and pre-charging) each time

(from Bruce Jacob & David Wang)
Extended Data Out DRAM Read Timing

- Innovation – Add latch between sense amplifiers and output pins
- Benefit – Can begin pre-charging sooner (data from prior access remains valid)

(from Bruce Jacob & David Wang)
Burst EDO DRAM Read Timing

- Innovation – DRAM provides column data sequentially
- Benefit – No need to transfer column address on each read

(from Bruce Jacob & David Wang)
Synchronous DRAM Read Timing

- Innovation – Pipeline access, command interface (vs. individual signals)
- Benefit – Simplified timing, command interface,

(from Bruce Jacob & David Wang)
SDRAM (Synchronous DRAM)

- Adopted for Pentium use
- Synchronous (clocked) interface
- RAS, CAS, WE, CS signals combined to make “command”
- Burst read/write
 - Initial latency, then data every clock cycle
- Internal interleaved banks allow multiple rows (pages) to be “open” for read/write
- Ideal for cache line fill when bus width < cache line size
SDRAM Details

- Multiple “banks” of cell arrays are used to reduce access time:
 - Ex: Each bank is 4K rows by 512 “columns” by 16 bits
 - Read and Write operations are split into row access followed by column access
- These operations are controlled by sending commands
 - Commands are sent using the RAS, CAS, CS, & WE pins.
- Address pins are “time multiplexed”
 - During RAS operation, address lines select the bank and row
 - During CAS operation, address lines select the column.
- “ACTIVATE” command “opens” a bank/row for operation
 - Transfers contents of the entire row to a buffer
- Subsequent “READ” or “WRITE” commands access the contents of the row buffer
- For burst reads and writes during “READ” or “WRITE” the starting address of the block is supplied.
 - Burst length is programmable as 1, 2, 4, 8 or a “full page” (entire row) with a burst terminate option
- Special commands are used for initialization (burst options etc.)
- A burst operation takes ≈ 4 (address/read row) + n cycles (for n words)
Functional Block Diagram
8 Meg x 16 SDRAM

$2^{12} = 4096$ rows (pages)

$2^2 = 4$ banks

$2^9 = 512$ columns
Key SDRAM Timing Parameters

cmd & addr bus
bank utilization
device utilization
data bus

row acc
data sense
bank access
I/O gating
data burst
data restore
array precharge

row act

\(t_{\text{RAS}} \)
\(t_{\text{RC}} \)
\(t_{\text{RP}} \)

\(t_{\text{RCD}} \)

\(t_{\text{CAS}}(t_{\text{CL}}) \)
\(t_{\text{BURST}} \)

row access
column read

precharge

time
Key SDRAM Timing Parameters

- **t_{RCD}**: Determines Latency
 - Minimum time between an ACTIVATE command and Read command
 - Analogous to DRAM parameter t_{RCD}: Row Command Delay (RAS/CAS Delay)

- **CL**: CAS Latency Determines Latency
 - Time between READ command and first data valid
 - Analogous to DRAM parameter t_{CAC}: Column Access Time

- **t_{RAS}**: Time between ACTIVATE command and end of restoration of data in DRAM array
 - Analogous to DRAM parameter t_{RAS}: Row Address Strobe

- **t_{RP}**: Time to pre-charge DRAM array in preparation for another row access
 - Analogous to DRAM parameter t_{RP}: Row Precharge Delay

- **t_{RC}**: Determines Bandwidth
 - Time between successive row access to different rows
 - $t_{RC} = t_{RAS} + t_{RP}$
 - Analogous to DRAM parameter t_{RC}: Row Cycle Time
CL – CAS Latency

(DDR can have CAS latency of 2.5)