Some Sample Problems from Linear Algebra that a student enrolling in this course should be able to solve.

1. Consider two distinct non-trivial proper subspaces, M and N, of \mathbb{R}^2. Is it possible that $M + N = \mathbb{R}^2$, the trivial subspace (i.e. the subspace spanned by the 0-vector)? Is it possible that $M \cap N = \mathbb{R}^2$?

2. A polynomial $p(x)$ is said to be even if $p(x) = p(-x)$ and it is said to be odd if $p(x) = -p(x)$. What do the odd polynomials in \mathbb{P}_5 (the vector space of polynomials of degree not more than 5 over the reals)? Can a polynomial be both even and odd?

3. Show how every polynomial in \mathbb{P} can be written as a sum of an even polynomial and an odd polynomial.

4. If $L, M,$ and N are subspaces of a vector space \mathbb{V}, is it true that $L \cap (M + (L \cap N)) = (L \cap M) + (L \cap N)$?

5. A subset E of a vector space \mathbb{V} with the property that the only subspace of \mathbb{V} that includes E is \mathbb{V} is called a total set. Since the only subspace of \mathbb{V} that includes E is \mathbb{V}, then the intersection of all subspaces that include E is just \mathbb{V} and hence $\bigvee E = \mathbb{V}$ (i.e. the span of E is \mathbb{V}). List a total set for \mathbb{P}_2. List a total set for \mathbb{P}. List a total set for \mathbb{O}.

6. If E is a total set for some vector space \mathbb{V}, and if M is a subspace of \mathbb{V}, does it follow that some subset of E is total for M?

7. A finite set of vectors is called linearly dependent if some non-trivial linear combination of them vanishes. Is the set consisting of the 0-vector linearly dependent? Is the set consisting of any non-trivial vector x and the 0-vector, say $\{0, x\}$ linearly dependent? If x and y are arbitrary vectors, is the set $\{x, y, x + y\}$ linearly dependent? If $x, y, u,$ and v are arbitrary vectors, is the set $\{x, y, x + y, u, v\}$ linearly dependent?

8. An (linearly) independent total set in a vector space is called a basis. Does every finite dimensional vector space have a finite basis?
9. If M is a subspace of vector space \mathbb{V}, a **complement** of M is defined as a subspace N of \mathbb{V} such that $M \cap N = \{0\}$ and $M + N = \mathbb{V}$. For subspaces this is equivalent to saying that $\mathbb{V}(M \cup N) = M + N$. Thus, a subspace *can* have more than one complement. It is possible for several subspaces to have a complement in common (a **simultaneous** complement). Under what conditions does a finite collection of subspaces of a finite-dimensional vector space have a simultaneous complement?

10. For which real numbers x is it true that the vectors x and 1 are linearly independent in the vector space \mathbb{R} (the real numbers) over the field \mathbb{Q} (the field of rational numbers)?

11. Under what conditions on the scalar α are the vectors $(1 + \alpha, 1 - \alpha)$ and $(1 - \alpha, 1 + \alpha)$ in \mathbb{R}^2 (over the field \mathbb{Q} of rational numbers) linearly independent?

12. Is there a subset of \mathbb{R}^3 that is independent over \mathbb{Q} but dependent over \mathbb{R}?

13. Under what conditions on the scalars α and β are the vectors $(1, \alpha)$ and $(1, \beta)$ in \mathbb{C}^2 linearly independent?

14. Is there a set of three linearly independent vectors in \mathbb{C}^2?

15. Do there exist two bases in \mathbb{C}^4 such that the only vectors common to them are $(0,0,1,1)$ and $(1,1,0,0)$?

16. Do there exist two bases in \mathbb{C}^4 that have no vectors in common so that one of them contains the vectors $(1,0,0,0)$ and $(1,1,0,0)$ and the other contains the vectors $(1,1,1,0)$ and $(1,1,1,1)$?

17. Under what conditions on the scalar x do the vectors $(0,1,x)$, $(x,0,1)$ and $(x,1,1+x)$ form a basis of \mathbb{C}^3?

18. Under what conditions on the scalar x do the vectors $(1,1,1)$ and $(1,x,x^2)$ form a basis of \mathbb{C}^3?

19. A **maximal linearly independent subset** of X is a subset Y of X that becomes linearly dependent every time that a vector of X not already in Y is adjoined to Y. If X is the set consisting of the six vectors in \mathbb{R}^4
\{(1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1)\},
Do there exist two different maximally independent subsets of X?

20. Every complex vector space \mathbb{V} has an associated real vector space \mathbb{V}^{real}; The space \mathbb{V}^{real} is obtained from \mathbb{V} by refusing to multiply vectors in \mathbb{V} by anything other than real scalars. If the dimension of the complex vector space \mathbb{V} is n, what is the dimension of the real vector space \mathbb{V}^{real}?
21. Can a proper subspace of a finite-dimensional vector space have the same dimension as the whole space?

22. Can every finite independent set in a finite-dimensional vector space be extended to a basis?

23. Is every subspace of a finite-dimensional vector space finite-dimensional?

24. Is every minimal total set independent? Is every independent set a total minimal set?

25. Does every total set have a minimal total subset?

26. A set is called **infinitely total** if it is total and remains total when any finite number of its elements is discarded. Does every infinitely total set E have an infinite subset F such that the relative complement $E - F$ is total?

27. If \mathbb{F} is a finite field with q elements, how many bases are there in \mathbb{F}^n?