Some Sample Problems from Linear Algebra that a student enrolling in this course should be able to solve.

1. (a) Consider the complex vector space \mathbb{C}^3 and the subsets M of \mathbb{C}^3 consisting of those vectors (α, β, γ) for which:

 (1) $\alpha = 0$
 (2) $\beta = 0$
 (3) $\alpha + \beta = 1$
 (4) $\alpha + \beta = 0$
 (5) $\alpha + \beta \geq 0$
 (6) α is real

 In which of these spaces is M a subspace of \mathbb{C}^3?

2. Consider the complex vector space, \mathbb{P}, of all polynomials with complex coefficients and the subsets M of all those vectors (polynomials) p for which:

 (1) p has degree 3
 (2) $2p(0) = p(1)$
 (3) $p(t) \geq 0$, whenever $0 \leq t \leq 1$
 (4) $p(t) = p(1-t)$ for all t

 In which of these cases is M a subspace of \mathbb{P}?

3. Under what conditions is the set-theoretic intersection of two subspaces a subspace?

4. Is the intersection of infinitely many subspaces a subspace?

5. Under what conditions is the set-theoretic union of two subspaces a subspace?

6. Is the union of more than two subspaces a subspace?

7. Can two disjoint subsets of \mathbb{R}^2, each containing two vectors have the same span?

8. What is the span in \mathbb{R}^3 of $\{(1,1,1), (0,1,1), (0,0,1)\}$?

9. State three properties of the span of a set of vectors.
10. Let $V(x, y)$ denote the span of the set of vectors $\{x, y\}$. Given three vectors x, y, z and we know $x \in V(y, z)$, does this mean that $V(x, z) = V(y, z)$? Explain your answer.

11. Is there any finite set of vectors that span \mathbb{P}?

12. Explain why the set of subspaces of a vector space do not form a group with the operation of addition?

13. Given the vector space, \mathbb{R}^2. Let M be the subspace of \mathbb{R}^2 consisting of all vectors of the form $(\alpha, 2\alpha)$ and let N be the subspace consisting of all vectors of the form $(\alpha, 3\alpha)$. Which vectors can be represented in the form $(\alpha + \beta, 2\alpha + 3\beta)$ as α and β are allowed to range over all real numbers? Let $M + N$ denote this addition.

14. Which of the following are true?
 (1) $M \subset M + N$
 (2) $N \subset M + N$
 (3) $M \cup N \subset M + N$
 (4) $V(M \cup N) \subset M + N$
 (5) $M + N \subset V(M \cup N)$
 (6) $V(M \cup N) = M + N$

Given the following definition of a vector space: A vector space over a field \mathbb{F} (of elements called scalars) is an additive commutative group \mathbb{V} (of elements called vectors) together with an operation that assigns to each scalar α and vector \mathbf{x} a product (scalar multiplication) $\alpha \mathbf{x}$ that is again a vector, satisfying the following laws:

1) $(\alpha + \beta)x = \alpha x + \beta x$
2) $\alpha(x + y) = \alpha x + \alpha y$
3) $(\alpha \beta)x = \alpha (\beta x)$
4) $1x = x$

15. Which of the following are vector spaces?
 (1) Let \mathbb{F} be \mathbb{C}, and let \mathbb{V} also be \mathbb{C} (the set of complex numbers). Define addition in \mathbb{C} in the usual way, and let scalar multiplication (denoted by *) be defined as follows: $\alpha * x = \alpha^2 \cdot x$

 (2) Let \mathbb{F} be a field, let \mathbb{V} be \mathbb{F}^2 (i.e. $\mathbb{F} \times \mathbb{F}$ the set of all ordered pairs of elements from \mathbb{F}). Let addition in \mathbb{V} be the usual one (coordinate-wise) and define a new scalar multiplication by $\alpha * (\beta, \gamma) = (\alpha \beta, 0)$ for all $\alpha, \beta, \gamma \in \mathbb{F}$.

 (3) Let \mathbb{F} be the field of four elements. Let \mathbb{V} be \mathbb{F}^2 with the usual addition and define scalar multiplication by $\alpha * (\beta, \gamma) = (\alpha \beta, \alpha \gamma)$ if $\gamma \neq 0$ and $\alpha * (\beta, 0) = (\alpha^2 \beta, 0)$.
Note: The field with elements is $\mathbb{P}[x]/x^2 + x + 1$, i.e. the field of all polynomials in indeterminate x with coefficients in $\mathbb{Z}_2 = \{0, 1\}$ modulo the polynomial $x^2 + x + 1$. \mathbb{F} has the four elements (polynomials) $\{0, 1, x, x + 1\}$. Addition and multiplication tables are included below.

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>x</th>
<th>$x + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>$x + 1$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>$x + 1$</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>$x + 1$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$x + 1$</td>
<td>$x + 1$</td>
<td>x</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
<th>x</th>
<th>$x + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>$x + 1$</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>x</td>
<td>$x + 1$</td>
<td>1</td>
</tr>
<tr>
<td>$x + 1$</td>
<td>0</td>
<td>$x + 1$</td>
<td>1</td>
<td>x</td>
</tr>
</tbody>
</table>

(4) Let \mathbb{F} be \mathbb{R} and let \mathbb{V} be the set \mathbb{R}_+ of all positive real numbers. Define the “sum” denoted by $\alpha \boxplus \beta$ of any two positive real numbers α and β, and define the “scalar product” denoted by $\alpha \boxdot \beta$ of any positive real number α by an arbitrary (not necessarily positive) real number β as follows: $\alpha \boxplus \beta = \alpha \beta$ and $\alpha \boxdot \beta = \beta^\alpha$.

(5) Let \mathbb{F} be \mathbb{C} and let \mathbb{V} also be \mathbb{C}. Vector addition is defined as the ordinary addition of complex numbers, but the product of a scalar α in \mathbb{C} and a vector x in \mathbb{C} is defined by forming the real part of α first, i.e. $\alpha \ast x = (Re \alpha)x$.

(6) Let \mathbb{F} be \mathbb{Q} (the field of rational numbers) and let \mathbb{V} be the field \mathbb{R} of real numbers. Addition in \mathbb{V} is the usual addition in \mathbb{R} and scalar multiplication is defined to be $\alpha \ast x = \alpha x$ for all $\alpha \in \mathbb{Q}$ and for all $x \in \mathbb{R}$.

16. Which of the following transformations are linear transformations?

(1) The vector space is \mathbb{R}^2. The transformation is $T(x, y) = (y, x)$
(2) The vector space is \mathbb{R}^2. The transformation is $T(x, y) = (x^2, y^2)$
(3) The vector space is \mathbb{R}^2. The transformation is $T(x, y) = (e^x, e^y)$
(4) The vector space is \mathbb{P}. The transformation is $T(p(x)) = \int_1^x p(t)dt$
(5) The vector space is \mathbb{R}^2. The transformation is $T(x, y) = (2x + 3y, 7x - 5y)$

17. Which of the following three transformations on \mathbb{P} give linear transformations?
The equations are intended to hold for all arbitrary polynomials $p(x)$.

(1) $T(p(x)) = p(x^2)$
(2) $T(p(x)) = (p(x))^2$
(3) $T(p(x)) = x^2p(x)$