Discrete Fourier Transform
and
Fast Fourier Transform

Bryant W. York
September 2018
DFT vs Continuous Fourier Transform

- As computer scientists we are more interested in the discrete Fourier transform.
- If you have interest in the continuous Fourier transform, see https://www.youtube.com/watch?v=1JnayXHhjlg

\[F(\nu) = \int_{-\infty}^{\infty} f(t) e^{-2\pi i \nu \cdot t} \, dt \] (forward FT)

\[f(t) = \int_{-\infty}^{\infty} F(\nu) e^{2\pi i \nu \cdot t} \, d\nu \] (Inverse FT)

\[\nu = \frac{\omega}{2\pi} \equiv \text{frequency (cycles per second or Hertz)} \]

Any continuous signal in the time domain can be represented as a sum of sinusoids.
Finite Discrete Functions

- Think of a **finite discrete** function which maps \(n \) points \(\{0, 1, \ldots, n - 1\} \) to \(n \) real or complex numbers as a **vector** in an \(n \)-dimensional vector space.

- Example: \(f(0) = 5, f(1) = 17, f(2) = 12 \)

\[
\begin{bmatrix}
 0 \\
 1 \\
 2
\end{bmatrix} \rightarrow \begin{bmatrix}
 5 \\
 17 \\
 12
\end{bmatrix}
\text{ in 3D space}
\]

- Note: We can consider the domain to be the group \(\mathbb{Z}/n\mathbb{Z} \). The range may be any field (most commonly, we will use \(\mathbb{C} \) as the range; i.e. \(f: \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{C} \)).

- A finite function is defined only for a finite number of values. A discrete function is not defined for values between the values at which it is defined.
Complex numbers

- $z = a + bi$, where $i^2 = -1$ or $z = re^{i\theta}$
- Complex conjugate $\bar{z} = a - bi$
- Unit complex number $|z\bar{z}| = 1$, $\sqrt{a^2 + b^2} = 1$, $r = 1$
- $e^{i\theta} = \cos \theta + i \sin \theta$

- Complex numbers are:
 - A group with addition
 - A commutative ring with addition and multiplication
 - A field with addition and multiplication
 - An algebraically closed field
 - A commutative algebra
An nth root of unity is a number ω in some field F such that $\omega^n = 1$ for some integer n.

A primitive nth root of unity is a number ω in some field such that $\omega^n = 1$ for some integer n and $\omega^m \neq 1$ for any integer $m < n$.

The multiplicative inverses of roots of unity are also roots of unity.

The set of all roots of unity form an abelian group under multiplication.

The set of all nth roots of unity form an abelian group under multiplication.
DFT matrix

The n-point discrete Fourier transform can be realized as a matrix,

$$\frac{1}{\sqrt{n}} [\omega_{ij}], i = 0, 1, \ldots, n - 1; j = 0, 1, \ldots, n - 1$$

where ω is a primitive nth root of unity

For example: the 4-point DFT matrix is

$$\frac{1}{\sqrt{4}} \begin{bmatrix} \omega^{0 \cdot 0} & \omega^{0 \cdot 1} & \omega^{0 \cdot 2} & \omega^{0 \cdot 3} \\ \omega^{1 \cdot 0} & \omega^{1 \cdot 1} & \omega^{1 \cdot 2} & \omega^{1 \cdot 3} \\ \omega^{2 \cdot 0} & \omega^{2 \cdot 1} & \omega^{2 \cdot 2} & \omega^{2 \cdot 3} \\ \omega^{3 \cdot 0} & \omega^{3 \cdot 1} & \omega^{3 \cdot 2} & \omega^{3 \cdot 3} \end{bmatrix} = \frac{1}{\sqrt{4}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 \\ 1 & \omega^2 & 1 & \omega \\ 1 & \omega^3 & \omega^2 & \omega \end{bmatrix}$$

where $\omega = e^{2\pi i/4} = e^{\pi i/2}$
Transformation by matrix multiply

- DFT maps one function into another

Example: Given $f: \mathbb{Z}/4\mathbb{Z} \to \mathbb{C}$ defined by

$f_0 = f(0) = 7; f_1 = f(1) = i; f_2 = f(2) = 2 + 3i; f_3 = f(3) = 4$

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & \omega & \omega^2 & \omega^3 \\
\frac{1}{2} & \omega^2 & \omega & \omega^2 \\
1 & \omega^3 & \omega^2 & \omega
\end{bmatrix}
\begin{bmatrix}
f_0 \\
f_1 \\
f_2 \\
f_3
\end{bmatrix}
=
\begin{bmatrix}
g_0 \\
g_1 \\
g_2 \\
g_3
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & e^{\pi i/2} & e^{\pi i} & e^{3\pi i/2} \\
\frac{1}{2} & e^{\pi i} & e^{\pi i/2} & e^{\pi i} \\
1 & e^{3\pi i/2} & e^{\pi i} & e^{\pi i/2}
\end{bmatrix}
\begin{bmatrix}
7 \\
i \\
2 + 3i \\
4
\end{bmatrix}
=
\frac{1}{2}
\begin{bmatrix}
13 + 4i \\
4 - 7i \\
5 + 2i \\
6 + i
\end{bmatrix}
=
\frac{1}{2}
\begin{bmatrix}
6.5 + 2i \\
2 - 3.5i \\
2.5 + i \\
3 + .5i
\end{bmatrix}
\]
Fast Fourier Transform
Fast Fourier Transform (FFT)

- FFT is an algorithm that computes the discrete Fourier transform (DFT) of a discrete finite function or its inverse (IDFT).
- Fourier Analysis converts a signal from its original domain (often time or space) to a representation in the frequency domain.
- An FFT rapidly computes the DFT by factorizing the DFT matrix into a product of sparse (mostly zero) factors.
- As a result it reduces the complexity of computing the DFT from $O(N^2)$ to $O(N \log N)$.
- There are many different algorithms for FFT, all with $O(N \log N)$ running time for all positive integers N, even prime N.
- Many FFT algorithms only depend on the fact that $e^{2\pi i/N}$ is a primitive N^{th} root of unity.
- Since the IDFT is the same as the DFT, but with the opposite sign in the exponent and a $1/N$ factor, any FFT can be easily adapted.
The Cooley-Tukey FFT (1965)

- Known to Gauss in 1805 and re-discovered several times
- A divide and conquer algorithm that recursively breaks down a DFT of any composite size $N = N_1 N_2$ into two smaller DFTs of sizes N_1 and N_2, along with $O(N)$ multiplications by complex roots of unity, traditionally called \textit{twiddle factors}.
- Cooley Tukey is limited to sizes $N = 2^n$, i.e. powers of 2.
8-Point Radix-2 FFT
Butterfly (FFT) Network

<table>
<thead>
<tr>
<th>000</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fast Fourier Transform (FFT)

Pseudocode

In pseudocode, the below procedure could be written:[8]

\[
\begin{align*}
X_0, \ldots, N-1 & \leftarrow \text{ditfft2}(x, N, s) : \\
& \text{if } N = 1 \text{ then} \\
& \quad X_0 \leftarrow x_0 \\
& \text{else} \\
& \quad X_0, \ldots, N/2-1 \leftarrow \text{ditfft2}(x, N/2, 2s) \\
& \quad X_{N/2}, \ldots, N-1 \leftarrow \text{ditfft2}(x+s, N/2, 2s) \\
& \quad \text{for } k = 0 \text{ to } N/2-1 \\
& \quad \quad t \leftarrow X_k \\
& \quad \quad X_k \leftarrow t + \exp(-2\pi i k/N) X_{k+N/2} \\
& \quad \quad X_{k+N/2} \leftarrow t - \exp(-2\pi i k/N) X_{k+N/2} \\
& \quad \text{endfor} \\
& \text{endif}
\end{align*}
\]

DFT of \((x_0, x_5, x_{2s}, \ldots, x_{(N-1)s})\):

- trivial size-1 DFT base case
- DFT of \((x_0, x_{2s}, x_{4s}, \ldots)\)
- DFT of \((x_5, x_{5+2s}, x_{5+4s}, \ldots)\)
- combine DFTs of two halves into full DFT:
.fft.cpp
*
* This is a KISS implementation of
* the Cooley-Tukey recursive FFT algorithm.
* This works, and is visibly clear about what is happening where.
*
* To compile this with the GNU/GCC compiler:
* g++ -o fft fft.cpp -lm
*
* To run the compiled version from a *nix command line:
* ./fft
*
*
#include <complex>
#include <cstdio>

#define M_PI 3.14159265358979323846 // Pi constant with double precision
FFT in C++ from Wikipedia

/* N must be a power-of-2, or bad things will happen. Currently no check for this condition. N input samples in X[] are FFT'd and results left in X[]. Because of Nyquist theorem, N samples means only first N/2 FFT results in X[] are the answer.(upper half of X[] is a reflection with no new information). */

void fft2 (complex<double>* X, int N) {
 if(N < 2) {
 // bottom of recursion.
 // Do nothing here, because already X[0] = x[0]
 } else {
 separate(X,N); // all evens to lower half, all odds to upper half
 fft2(X, N/2); // recurse even items
 fft2(X+N/2, N/2); // recurse odd items
 // combine results of two half recursions
 for(int k=0; k<N/2; k++) {
 complex<double> e = X[k]; // even
 complex<double> o = X[k+N/2]; // odd
 // w is the "twiddle-factor"
 complex<double> w = exp(complex<double>(0,-2.*M_PI*k/N));
 X[k] = e + w * o;
 X[k+N/2] = e - w * o;
 }
 }
}
// simple test program
int main () {
 const int nSamples = 64;
 double nSeconds = 1.0; // total time for sampling
 double sampleRate = nSamples / nSeconds; // n Hz = n / second
 double freqResolution = sampleRate / nSamples; // freq step in FFT

 result
 complex<double> x[nSamples]; // storage for sample data
 complex<double> X[nSamples]; // storage for FFT answer
 const int nFreqs = 5;
 double freq[nFreqs] = { 2, 5, 11, 17, 29 }; // known freqs for testing

 // generate samples for testing
 for(int i=0; i<nSamples; i++) {
 x[i] = complex<double>(0.,0.);
 // sum several known sinusoids into x[]
 for(int j=0; j<nFreqs; j++)
 x[i] += sin(2*M_PI*freq[j]*i/nSamples);
 X[i] = x[i]; // copy into X[] for FFT work & result
 }
}
// compute fft for this data
fft2(X,nSamples);

printf(" n\tx[]\tX[]\tf\n"); // header line
// loop to print values
for(int i=0; i<nSamples; i++) {
 printf("% 3d\t%+.3f\t%+.3f\t%g\n", i, x[i].real(), abs(X[i]), i*freqResolution);
}

Convolution

- The convolution of f and g is
 \[(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau\]

- Convolution Theorem
 - $\mathcal{F}\{f * g\} = \mathcal{F}\{f\} \cdot \mathcal{F}\{g\}$
 - $\mathcal{F}\{f \cdot g\} = \mathcal{F}\{f\} * \mathcal{F}\{g\}$
 - $f * g = \mathcal{F}^{-1}\{\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}\}$
 - $f \cdot g = \mathcal{F}^{-1}\{\mathcal{F}\{f\} * \mathcal{F}\{g\}\}$
Convolution Theorem for Discrete Periodic Signals

- Given two discrete and periodic signals, \(x[m], y[m] \), \(m = 0, 1, \ldots, N - 1 \), then the discrete convolution is:

\[
 x[m] * y[m] = \sum_{n=0}^{N-1} x[n]y[m - n]
\]

- Convolution Theorem

\[
 F(x[m] * y[m]) = X[n]Y[n] = F(x[m])F(y[m])
\]

Where \(X[n] = \frac{1}{T} \sum_{k=0}^{N-1} x[k]e^{-2\pi ink/N} \) (\(n = 0, 1, \ldots, N - 1 \))

and \(Y[n] = \frac{1}{T} \sum_{k=0}^{N-1} y[k]e^{-2\pi ink/N} \) (\(n = 0, 1, \ldots, N - 1 \))
Videos

- Fourier Transform
 - https://www.youtube.com/watch?v=1JnayXHhjlg
- DFT
 - https://www.youtube.com/watch?v=mkGsMWi_j4Q
 - https://www.youtube.com/watch?v=r18Gi8lSkfM&t=44s
- FFT
 - https://www.youtube.com/watch?v=htCj9exbGo0
- Convolution Theorem for FT
 - https://www.youtube.com/watch?v=N-zd-T17uiE
- Discrete Convolution and Polynomial Multiplication
 - https://www.youtube.com/watch?v=T-OwClOlbm0
 - https://www.youtube.com/watch?v=f_M8nyYOPzU
 - https://www.dailymotion.com/video/x560jbg
End