Efficient Reachability Analysis of Blchi Pushdown
Systems for Hardware/Software Co-verification

Juncao Li, Fei Xie!, Thomas Bafl, and Vladimir Levir?

! Department of Computer Science, Portland State University
Portland, OR 97207, USA
{j uncao, xie}@s. pdx.edu
2 Microsoft Corporation
Redmond, WA 98052, USA
{tbal |, vl adl ev}@ri crosoft.com

Abstract. We present an efficient approach to reachability analysiBiathi
Pushdown System (BPDS) models for Hardware/Software (WW(®-verificat-
ion. This approach utilizes the asynchronous nature of i3V interactions to
reduce unnecessary HW/SW state transition orders beirlgrexiin co-verificat-
ion. The reduction is applied when the verification modebisstructed. We have
realized this approach in our co-verification tool, CoVerd applied it to the
co-verification of two fully functional Windows device devs with their device
models respectively. Both of the drivers are open sourcetaidoriginal C code
has been used. CoVer has proven seven safety propertieetuted seven pre-
viously undiscovered software bugs. Evaluation showstheateduction can sig-
nificantly scale co-verification.

1 Introduction

Hardware/Software (HW/SW) co-verification, verifying Harare and software together,
is essential to establishing the correctness of complexpaben systems. In previous
work, we proposed a Biichi Pushdown System (BPDS) as a faepa¢sentation for
co-verification [1], a Buchi Automaton (BA) represents adweare device model and
a Labeled Pushdown System (LPDS) represents a model of stensysoftware. The
interactions between hardware and software take placaghrthe synchronization of
the BA and LPDS. The BPDS is amenable to standard symboliehubecking algo-
rithms [2].

In this paper, we exploit the fact that hardware and softwaare mostly asyn-
chronous in a system to reduce the cost of model checkingjtiirgly, when hardware
and software transition asynchronously (i.e. there areWB3W interactions), it is un-
necessary to explore all the possible state transitionrsré@rthermore, we prove that
special cases of the transition orders preserve the redigh@boperties in question.
Partial order reduction identifies such special transitiiers, so there are fewer inter-
leaving possibilities to be explored during model checkg base our approach on
the concept of static partial order reduction [3], whereagessary transition orders are
pruned during the construction of the verification modelriby the model construc-
tion, unnecessary transition orders are largely reduceshwlardware and software are
asynchronous. On the other hand, all the synchronousti@rsare preserved.

We implemented our approach in the co-verification tool Gaved applied it to the
co-verification of two fully functional Windows device devs (C programs for which
source code is publically available) with their device mied&Ve specify the device
models based on the HW/SW interface documents that areyopeailable. Concep-
tually, a driver and its device model together form a BPDS ehoQoVer converts the
driver and the device model into a C program and utilizes th&Ns engine [4] to
check reachability properties of the program. The abstattfinement process is car-
ried out by SLAM. CoVer proved seven properties and deteséxen real defects in
the two drivers. All of these defects can cause serious syfddures including data
loss, interrupt storm, device hang, etc.

The rest of this paper is organized as follows. Section Zmsirelated work. Sec-
tion 3 introduces the background of this paper. Section degres our reachability anal-
ysis algorithm for BPDS models. Section 5 discusses how weifypa device model as
well as the implementation details of CoVer. Section 6 presthe evaluation results.
Section 7 concludes and discusses future work.

2 Related Work

Kurshan, et al. presented a co-verification framework thatlels hardware and soft-
ware designs using finite state machines [5]. Xie, et al.reled this framework to hard-
ware and software implementations and improved its sdiiabia component-based
co-verification [6]. However, finite state machines arefediin modeling software im-
plementations, since they are not suitable to represetviaaf features such as a stack.

Another approach to integrating hardware and softwareinithe same model is
exemplified by Monniaux in [7]. He modeled a USB host con&olievice using a
C program and instrumented the device driver, another Cramgin such a way as
to verify that the USB host controller driver correctly irdets with the device. The
hardware and software were both modeled by C programs asdatieiformally PDSs.
However, straightforward composition of the two PDSs to eldde HW/SW concur-
rency is problematic, because it is known, in general, tlesification of reachability
properties on concurrent PDS with unbounded stacks is unhalde [8].

Bouajjani et al. [9] presented a procedure to compute pessee reachability of
PDS and apply this procedure to linear/branching-time @rypverification. This ap-
proach was improved by Schwoon [2], which results in a toobpkld, for checking
Linear Temporal Logic (LTL) properties of PDS. A LTL formuis first negated and
then represented as a BA. The BA is combined with the PDS tdtordts state tran-
sitions; therefore the model checking problem is to comuke BA has an accepting
run. The goal of the previous research was to verify softwalg; however, our goal is
to co-verify HW/SW systems.

Our previous work [1] did not exploit the fact that hardwane @oftware are mostly
asynchronous in a system. Techniques such as partial erdection [10] can be ap-
plied to reduce the verification complexities via the conifpms (Cartesian product) of
the BA and LPDS. Furthermore, our co-verification implenag¢ion in our earlier work
was not automatic since it depends on two abstraction/renéengines (for hardware
and software specifications respectively) that were notatetaly integrated.

3 Background

3.1 Bichi Automaton (BA)

A BA B, as defined in [11], is a non-deterministic finite state awttum accepting infi-
nite input strings. Formally3 = (X, Q, 4, qo, F'), whereX' is the input alphabety is
the finite set of stateg, C (Q x X' x Q) is the set of state transitiong € Q is the
initial state, andF" C @ is the set of final state€3 accepts an infinite input string iff
it has a run over the string that visits at least one of the Btates infinitely often. A
run of B on an infinite strings is a sequence of states visited Byvhen takings as the
input. We use; 5 ¢’ to denote a transition from stageto ¢’ with the input symbob.

3.2 Labeled Pushdown System (LPDS)

A LPDSP, as defined in [1], is a tuplél, G, I', A, {go,wo)), wherel is the input
alphabet(7 is a finite set of global state$, is a finite stack alphabet C (G x I') x
I x (G x I'*) is afinite set of transition rules, ar{gh, wo) is the initial configuration.
LPDS is an extension of PDS [2] in such a way that a LPDS canitgkés. A LPDS
transition rule is written agg, v) <> (¢’,w), wherer € I and((g,7), 7, (¢, w)) € A.
A configuration ofP is a pair(g,w), whereg € G is a global state and» € I'* is
a stack content. The set of all configurations is denoted’by f(P). The head of a
configurationc = (g,~v) is (g,7) and denoted aBead(c), wherey € I',v € I'*;

the head of a rule : (g,~) <+ (¢,w) is (g,~) and denoted aBead(r). The head

of a configuration decides the transition rules that areiegiple to this configuration,
where the deciding factors are the global state and the &mi stymbol. Given a rule
r o {g,7) N (¢',w), for everyv € I'*, the configurationg,yv) is an immediate

predecessor ofg’, wv) and(g’,wv) is an immediate successor @f, yv). We denote

the immediate successor relation in PDS@syv) = (g’,wv), where we say this state
transition follows the PDS rule. The reachability relation=*, is the reflexive and

transitive closure of the immediate successor relationath pf’? on an infinite input

string, 771 ... 7i . . ., iS Written ascy =% ¢ = ... ¢; = ..., wherec; € Conf(P),i >

0. The path is also referred to as a tracéPdf ¢y = (go, wo) is the initial configuration.

3.3 Biuchi Pushdown System (BPDS)

A BPDSBP, as defined in [1], is the Cartesian product of a BAand a LPDSP. To
constructBP, we first define (1) the input alphabet Bfas the power set of the set
of propositions that may hold on a configuration72f(i.e. a symbol inY' is a set of
propositions); (2) the input alphabet #f as the power set of the set of propositions
that may hold on a state &f (i.e. a symbol in/ is a set of propositions); and (3) two
labeling functions as follows:

— Lpog : (G x I') — X, associates the head of a LPDS configuration with the
set of propositions that hold on it. Given a configuratioa Con f(P), we write
Lpog(c) instead ofLpop(head(c)) for simplicity in the rest of this paper.

— Lpop : Q — I, associates a state Bfwith the set of propositions that hold on it.

BP =((GxQ), A {(g0,90),wo), F") is constructed by taking the Cartesian prod-
uct of B andP. A BPDS rule((g,q),7) —sp ((¢',¢),w) € A'iff ¢ 5 ¢ € 0,
o C Lpas({g,7)) and(g,7) < (¢, w) € A, 7 C Lpap(q). A configuration of3P is
referred to as(g, q),w) € (G x Q) x I'*. The set of all configurations is denoted as
Conf(BP). The labeling functions define hot andP synchronize with each other.
{(go, q0),wo) is the initial configuration{(g, q),w) € F'if g € F.

Given a BPDS rule' : ((g,q),v) —spr ((¢',¢),w) € A', for everyv € I'* the
configuration((g, ¢), yv) is animmediate predecessor¢§’, ¢'), wv), and((¢’, ¢'), wv)
is an immediate successor {f, ¢), vv). We denote the immediate successor relation
in BPDS as((g, q),vv) =5p {(¢',¢),wv), where we say this state transition follows
the BPDS rule. The reachability relations-%, is the reflexive and transitive closure
of the immediate successor relation. A path3d is a sequence of BPDS configura-
tions,co =pp c1... =Bp ¢; =5p ..., Wheree; € Conf(BP),i > 0. The path is
also referred to as a trace BP if ¢o = ((go, q0), wo) is the initial configuration.

We define four concepts to assist us in analyzing the Cant@s@aduct of3 andP:

Enabledness A BPDS BP is constructed by synchronizing a BA and a LPDSP
through the labels on their state transitions. A Biichisiton ¢z : ¢ = ¢’ is enabled
by a LPDS configuration (resp. a LPDS rule : ¢ N) iff o C Lpag(c) ; otherwise
ts is disabled by (resp.r). The LPDS rule- is enabled/disabled by the Biichi state
(resp. the Biichi transitioty) in a similar way.

Indistinguishability . Given a Buichi transitiong : ¢ = ¢’ € 6, two LPDS configura-
tionsc, ¢ € Conf(P) are (resp. a LPDS rule: ¢ < ¢’ is) indistinguishable tays iff

o C Lpop(c) N Lpap(c), i.e.tp is enabled by both andc’. On the other hand, given
aLPDSruler : ¢ 5 ¢ € A, two Biichi stateg, ¢’ € @ are (resp. a Biichi transition
ts : ¢ > ¢ is) indistinguishable te iff 7 C Lgap(q) N Lpap(q'), i.e.r is enabled by
bothq andq’.

Consider a BPDS state transitiogy : ((g,q),vv) =8p ((¢',¢),wv) (v € I'*),
which is the combination ofs : ¢ > ¢ € ¢ andtp : (g,7v) = (¢’,wv) that
follows a LPDS ruler € A. If the Bichi stateg; andq’ (resp. LPDS configurations
(g,vv) and{g’, wv)) are both indistinguishable to(resp3), tgp can be rewritten as a
BPDS path(g, q), vv) =8P ((9,4'),) =8P (¢, 4),wv) (resp.{(g,q),v) =5p
(¢, q),wv) =pp ((¢',q),wv)), where the concurrent state transitiond3cindP are
represented in an interleaved fashion with one intermediaite used.

Independence Given a Biichi transitiofiz and a LPDS rule, if they are indistinguish-
able to each othetg andr are called independent; otherwise if eitligror r is not
indistinguishable to the other but they still enable eatlentz andr are called depen-
dent. The independence relation is symmetric. Furthernifotg andr are dependent,

(1) the BAB and LPDSP are called synchronous on them; and (2) the corresponding
BPDS transitions are called synchronous transitions;ratise if ¢tz andr are indepen-
dent, (1)B andP are called asynchronous on them; and (2) the correspondiSB
transitions are called asynchronous transitions.

Commutativity . Without affecting the reachability property, if a BPDStstransition,
tep : ((9,9),vv) =8P ((¢',¢),wv) can be rewritten respectively as two BPDS paths

such that<(gv Q)a ’}/1}> =BP <(ga q/)a ’}/1}> =BP <(g/7 q/)v (.(.JU> and <(gv Q)a ’}/1}> =BP
(¢, q),wv) =pp ((¢',4q"),wv), the corresponding Buichi transitiep and LPDS rule

r are called commutative. By definition, commutativity is aglent to independence
but seen under a different light, which will help the presdion of the paper.

3.4 Static Partial Order Reduction

One common method for reducing the complexity of model checksynchronous
systems is partial order reduction [10], which is based endisservation that proper-
ties often do not distinguish among the state transitioeiadlraditional partial order
reduction algorithms use an explicit state representatimhdepth first search, where
both the states and transitions to be explored are seleat@ugdhe model checking
process. Kurshan et al. [3] developed an alternative approalled static partial or-
der reduction, where the key idea is to apply partial ordducgon when a model is
generated from the system specification. Thus, no modificati the model checker is
necessary. The model is reduced during the compilationepbp®&xploring the struc-
ture of the system specification. Any model checker that@atsagis kind of model can
then be applied to solve the verification problem.

4 Reachability Analysis of BPDS

4.1 Reachability Analysis of BPDS without Reduction

For reachability analysis, we have demonstrated [1] thaPBSB5P can be converted
into a PDSP’, which we refer to as the verification model, so that modekkbes
for PDS (or PDS-equivalent models) can be readily utilizéds important to note
that P’ is a standard PDS in the sense tfRitdoes not have inputs. GivefP =
(G xQ), A", {(90,90),wo), F"), we construcP’ = (Gp:, I'p/, Apr, o) such that
Gp = (GxQ), I'p =T, co = {(g0,q0), wo), andAp. is converted fromA\’ = § x A,
wherevt = ¢ % ¢ € 6 andvr = (g,7) S (¢’,w) € A, if t andr are dependent, add
arule{(g,q),v) — {((¢',q),w) to Ap, i.e. B andP must transition synchronously;
else ift andr are independent, add three rulesde.: (1) {(9,9),7) — {(9,¢),7),
i.e. B transitions andP loops; (2){((g,q),v) — ((¢',q),w), i.e. P transitions and3
loops; and (3)(g,q),v) < ((¢',d),w), i.e. B andP transition together. Rules (1)
and (2) represent the non-deterministic delays that mayrdeetween3 andP. Non-
deterministic delays do not affect reachability propertigule (3) can be represented
by Rules (1) and (2) together becausandP are asynchronous; however we include
Rule (3) here to help the presentation of Section 4.2. Theectress of the conversion
thatP’ preserves the reachability property®® is proved in [1].

4.2 Efficient Reachability Analysis based on Static PartiaDrder Reduction

As discussed above, when a BPB® is converted to a PD®’ by the naive approach,
both the size of the state space and the number of the t@msities remain the same.
For example, the set of transition rules is the product tfat belongs t& and A that

belongs taP. However, a complete product is not necessary whemdP are asyn-
chronous. Without affecting the verification result, statartial order reduction can be
applied to reduce the transition rules generated by theyatod@ihe reduced PDS model
P, will have a smaller set of transition rulep, C Ap: and fewer state transition
traces while still preserving the reachability properti¢sP’. Figure 1 illustrates the
verification process that supports the reduction.

BPDS2PDS
BPDS—> with Static Partial Rpeggcgi' Model checker
BP Order Reduction ’

Fig. 1. Reachability analysis of BPDS with static partial orderuetebn.

Our reduction is based on the observation that wBeand P transition asyn-
chronously, one can run continuously while the other ong@dodigure 2 illustrates
the idea of reducing a BPDS state transition graph thatssfeoin the configuration
co,0- Figure 2(a) is a complete state transition graph. Theréhaee types of transition

Coo Cio Cao Cmo Coo Cipo Cap Cmo Coo Cio Cap Cmo
@®—>0—>e0 -t ° @®—>0—>e0 -t ° @®—>e0—>e0 - °
ANy O A e SO
Core —>0—>e® .- 0C2 Coe) ° ®Cp2 Co20 —> @ —> @ -nnn °Ch2
o—re—r0-® . e o . [N .
Con Cin Con Cmn Con Cin Con Cmn Con Cin Can Cun

(a) Complete transition graph (b) Reduce hori./diag. edges (c) Reduce vert./diag. edges

Fig. 2. Reducing state transition edges without affecting thehrabitity from co,o when BA and
LPDS are asynchronous.

edges: (1) a horizontal edge represents a transition vithgansitions andP loops,
which follows a BPDS rule in the form df(g, q),v) —gsr ((9,¢'),7); (2) a vertical
edge represents a transition whEntransitions and3 loops, which follows a BPDS
rule in the form of((g, q),v) —spr {(¢',q), w); and (3) a diagonal edge represents a
transition wher3 andP transition together, which follows a BPDS rule in the form of
((9,9),v) —Br ((¢',¢),w). For every configuration; ; = ((g,¢q),vv) (0 < i <m
and0 < j < n) as well as the Biichi transitiofs : ¢ = ¢ and the LPDS rule
r: {g,7) < (¢',w) that are both enabled an, if ¢z andr are independent, we can
reduce many state transitions in Figure 2(a) without afigahe reachability frona, o

to other configurations in the graph. Figure 2(b) and Figc® Bustrate two reduc-
tions that reduce horizontal/diagonal transition edges \artical/diagonal transition

edges respectively. This kind of reduction can signifigargbduce the transition rules
of BP, where Biichi transitions and LPDS rules are independent.

Now we present an optimization of our previous approach revtiee reduction is
applied during the rule generation phase of constructiag/érification modeP... We
define a set of headSensitiveSet, onConf(P) as follows:

Definition 1. SensitiveSet = { head({go,wo)) } U { head(<) | Ir = ¢ < ¢ € A,
Jtg € §, r andip are dependeny, where(gg, wy) is the initial configuration ofP.

The concept oSensitiveSet is similar to that of sleep set [10]. However, instead of
identifying transitions that are not necessary to be exet(ite. reducible) at a state,
SensitiveSet identifies transitions that should be kept (i.e. irredugjbAlgorithm 1
applies the reduction following the idea illustrated in trig 2(b), where the horizon-
tal/diagonal edges are reduced. If the LPDS rubnd the Biichi transitions are de-

Algorithm 1 BPDS2PDSSPOR§ x A)

L Asyne < 0, Avert < 0, Apori <0

2: forall r: (g,7) < (¢’,w) € Ado

3: foralltg:q > ¢ €dando C Lpas({g,7)) andT C Lgap(q) do

4: if r andtz are dependerthen
5: {WhenB and P are synchronous onand¢s}
6: Asyne + Asyne U{{(9,0),7) = ((¢',d),w)}
7 else
8: {For vertical edges (see Figure 2(b)), whntransitions ands3 loops}
o: Avert + Duert U{{(9,9),7) = (¢, 0),)}
10: if (g,7) € SensitiveSet then
11: {For horizontal edges (see Figure 2(b)), whBrransitions andP loops}
12: Anori = Anori U{{(9:0),7) = {(9.4),7)}
13: end if
14: end if
15: end for
16: end for

17: A’P; — Async U A’ue'r't U Ahori
18: return Ap,

pendent3 andP? must transition synchronously as the set of rulés,,., generated
in line 6; otherwise, asynchronous transitions are geadrathe set of rules), ¢,
generated in line 9 represent the vertical edges, i.e. Whémransitions and3 loops.
The set of rulesAy,,.4, representing the horizontal edges, i.e. wifetmansitions and
P loops, are generated in line 12 onlyhiad(r) belongs taSensitiveSet.

In Algorithm 1, a diagonal rule is reducedifandP are asynchronous on the cor-
responding Buichi transition and LPDS rule. This kind ofuetibn does not affect any
reachability property, because the diagonal rule can beesepted by one horizontal
rule and one vertical rule respectively. A horizontal ridegeduced if the head of the
corresponding LPDS rule iR does not belong t8ensitiveSet. There is a special set

8

of heads,DivideSet = { h | h € SensitiveSet,Vr = ¢ e andVig € 6,

if head(c) = h thenr andtp are not dependerit Informally, DivideSet describes

a set of configurations that can be considered as divids-(imethe traces of? pro-
jected from the traces d#P) for two adjacent LPDS transitions that are respectively
synchronous and asynchronous with the state transitiois Given a trace of?). in

the form of ((go, q0),wo) = ... = ((95.¢5),w;) = ... = {(9k, k), wk) = ...

(0 < j < k), if head({gj,w;)) € DivideSet and((gx, qx),ws) is the first configura-
tion satisfyinghead({gi,wy)) € SensitiveSet after{(g;,q;),w;), we can infer that
no horizontal transition occurs betweé,+1, ¢j+1),w;+1) and{(gx, gx), wx) in the
trace (i.eq;+1 = qx), because the horizontal transitions have been reduced.

Theorem 1. P/ preserves the reachability ' from the initial configuration.

Proof. It is easy to observe th® andP’ have the same state space and initial config-
uration, so the question is to prove that (1) given a configuma and a trace of’ in
the form of T : ¢o = ¢1 ... = ¢; = ¢, there is a corresponding trace®f such that
T":co=cy... = ¢ = c; and (2) vice versa.

Two types of transitions are reduced®), compared t&’. As explained above, the
reduction of diagonal transitions does not affect any rahittty property. We prove that
the reduction of horizontal transitions does not affectdbeectness of (1) by induc-
tion. If |T'| = 0, i.e.c = ¢, the reachability trivially holds of®,. If |T'| = 1, because
there is no horizontal transition reduced on the initialfaguration, for any transition
cop = c of P’ there must be a corresponding tracéPfthat preserves the reachability.
Givenatracd : co = ¢1 ... = ¢; = ¢ (i > 0) of P’ where|T| = i+ 1, if there exists
atracel” : co = ¢j... = ¢j = ¢/ (j > 0) of P/ where|T"| = j + 1, we show that
forall ¢ € Conf(P’) andtp: : ¢ = c of P’, there is a trace dP,. such thaty, =* c.
Recall that the horizontal transitions are reduce®frexcept at configurations whose
heads belong t&'ensitiveSet, SO we need to prove that this reduction does not affect
the reachability it involves a horizontal transition that is reduceddfi In the trace
T', we can always find a configuratief) = ((gx, qx),wx) (0 < k < j) such that}, is
the last configuration satisfyingead({gx, wr)) € SensitiveSet. Thus, the path from
¢, to ¢ has the form of(c), : ((gx,qx),wr)) = ((Gr+1,qk); Wkt1) = ... = (¢ :
((gj+1,qr),w;+1)), whereB always loops at the statg afterc),. Because the horizon-
tal transitions are reduced on the configurations aftefP, cannot directly have the
transition(c’ : ((gj+1,qx),w;j+1)) = (¢ : {(gj+1,qk+1),w;+1)), i.€. the corresponding
BPDS rule((g;+1, k), vj+1)) =P ((gj+1,qk+1),7j+1) (vj+1 is the top stack sym-
bol of w;1) does not exist after the reduction. According to the conatinity between
independent Biichi transitions and LPDS rules, we can gtifftransition backward to
the position right afte) where the horizontal transitions are not reduced. In thég ca
the path is(cj, : ((gx, qr)s W) = ((grs Get1), Wr) = (Ght1s Qo) Wht1) = -0 =
(¢:{(gj+1,qk+1),w;j+1)), SO we proved that there is a trage=" c of P..

On the other direction, (2) always holds becadse C Ap.. For every rule ofP/,
P’ has the same rule. Thus for every tracé?f P’ has the same trace. 0

Complexity analysis.Letngg be the number of LPDS rules (i) whose heads belong
to SensitiveSet, andngsy,. be the number of PDS rules (idp.) where 3 and P
transition synchronously on the corresponding Bichiditeans and LPDS rules. We

have|Apori| = ngr x|0] and| Agyne| = nsyne. As illustrated in Figure 2, asynchronous
))

transitions can be organized as triples where each onedesla vertical transition, a

horizontal transition, and a diagonal transition, so weehaV,.,;| = [0xAl—nsyne

3
The number of rules generated in Algorithm 1|ip: | = ngync + Mﬂ +
ngr X |0] = 3n5ync + "”A‘ + nsr x |6]. The size of transition rules reduced is
|A'] = |Ap: | = 210 x Al = Zngyne — nsr X |6]. We can infer from this expression

that the fewer pIaces that andP transition synchronously the more transition rules
Algorithm 1 can reduce.

DiscussionsAlgorithm 1 makes a product of the transition relations eztpely from
the BA and LPDS, where all the transition rules are explo@ukiously, this process
could be inefficient if the BA and LPDS are represented in agfitetd approach, since
the sizes of the transition relations can be exponentiaityd. Symbolic representations
are efficient to model transition relations; therefore thstof Algorithm 1 can be ex-
ponentially smaller on symbolic representations than ehaflattened representations.
However, the symbolic rules should be properly separatethéoreduction to be effec-
tive. For example, if there is only one giant symbolic tréinsi rule for each transition
relation, Algorithm 1 will have no reduction effect. Symlwolules are commonly dif-
ferentiated by their control locations. This explains whg tdea in Figure 2(b) is used
instead of that in Figure 2(c), because LPDS usually hastareintrol-flow structure
than BA.

5 Implementation

We apply the BPDS model in the verification of Windows devicweats with their
formal hardware interface models as illustrated in Figure/3ere software is repre-
sented as LPDS and hardware is represented as BA. From theoVigoftware, we

Driver Hardware Interface Model

Fig. 3. Driver-centric co-verification.

specify both the HW/SW interface and the hardware modelchtdgether we refer to
as a hardware interface model. The HW/SW interface deshbe hardware and soft-
ware should transition synchronously when they interactuh their interfaces. The
hardware model describes the desired hardware behaviers drdware and software
transition asynchronously, i.e. when there is no HW/SWratdtgon.

First, we present several preliminary definitions for ouplementation. Second,
we elaborate on the specification of the HW/SW interface dedhiardware model
respectively by examples. Third, we illustrate our autooat-verification tool, CoVer.

10

5.1 Preliminary Definitions

We use Transaction Level Modeling (TLM) to specify the haadsvinterface model.
TLM is acommonly used approach to hardware system-leveifspegion, and we have
designed a specification language, modelC, for our TLM djpation. The modelC
language uses C semantics with two extensions to suppodei@nminism and relative
atomicity (see definitions below). In modelC, (1) we treatnfers as bounded integers,
so hardware registers can be properly modeled; and (2) tibaghardware state space
is static, i.e. there is no dynamic memory allocation.

Hardware transaction. In co-verification, the interaction between hardware arft so
ware is relevant rather than the implementation detailstedraware device; therefore
it is unnecessary to preserve the clock-driven semantiaifeaWe define a hardware
transaction to represent a hardware state transition inlaitraily long but finite se-
guence of clock cycles. Hardware transactions are atonsoftavare. The concept of
hardware transaction preserves hardware design logidshasible to software, but
hides details only necessary for synthesizable Registarster Level (RTL) design.

Hardware transaction function. We define a transaction function as a C function that
describes a set of hardware transactions (i.e. statetiarsi Because transactions are
atomic, the intermediate states of hardware during a trdioseis not visible to soft-
ware. We define the current-states and next-states of attims function respectively
asp C @ representing the hardware states when entering the furentidp’ C @ repre-
senting the hardware states when exiting the function. Btiyna transaction function
F : @ x @ describes a set of state transitions. Following this dé&fimjiany terminating

C function can be treated as a transaction function.

Relative atomicity. Relative atomicity has two key ideas: (1) hardware transast
are atomic from the view of software; and (2) Interrupt SeeviRoutines (ISRs) are
atomic to other lower-priority software routines. In des/fdriver applications, when
hardware fires an interrupt, the Operating System (OS) ttedltSRs that are registered
in the interrupt vector table sequentially until an ISR amkledges its ownership of
the interrupt. During this process, only one ISR can run &ne &ind other hardware
interrupts are suppressed [12]. The interrupted threadcoatinue its execution only
after the interrupting ISR terminates.

Software synchronization points.As the concrete counterpart of ti¥ensitiveSet
concept, we define software synchronization points as & pebgram locationswhere
the program statements right before these locations magerdient with some of the
hardware state transitions. In general, there are thregstgp software synchroniza-
tion points: (1) the point where the program is initializ€®) those points right after
software reads/writes hardware interface registers; anh¢se points where hardware
interrupts may affect the verification results. The first aadond types are straightfor-
ward for hardware and software to transition synchronoty may understand the
third type in such a way that the effect of interrupts (by e ISRs) may influence
certain program statements, e.g. the statements thatsagioésl variables.

1 Assuming the program is preprocessed to ensure that ewgeyrsnt is atomic from the view of hardware.

11

5.2 Specifying Hardware Interface Model

In the specification of the hardware BA mod8l,= (X, Q, d, qo, F), the alphabef”

is the power set of the set of propositions induced by sofiwaterface events (see
definition below); the set of staté€yis defined by global variables; the initial statgis
given by an initialization function; and the transitionagbn R = R.,; U R,04e; haS
two parts:R..:, is a set of transitions that are dependent with at least bihe coftware
LPDS transition rulesR,..q4c1, IS @ set of transitions that are not dependent with any
of the LPDS transition rules. Informally?..; is described by the HW/SW interface
andR,,.q¢; is described by the hardware model. In this paper, we arecisted only in
safety properties; therefore the Biichi constréiris not necessary to be specified.

Specifying the HW/SW interface. The HW/SW interface, as the abstraction of the
HW/SW layers between the target device and driver, progaghie hardware (resp.
software) interface events to software (resp. hardware).

Figure 4 illustrates an example of a software interface eftgrction in response
to a register write operation. The keywaret oni ¢ indicates thai¥ i t ePor t Ais
a transaction function atomic from the view of software.sltnansaction function de-
scribes a set of state transitiord®,,, C R.,:, when the driver writes to the interface

register, PortA, of the Sealevel PIO-24 digital I/0O devised Section 6). Figure 5 il-

_-atomic VOID WritePortA(UCHAR ucRegDataj

/I 'If Port A is configured as an “input” port VOID WRITE_.REGISTERUCHAR

if (g-DIORegs.CW.CWD4 == 1] (PUCHAR Register, UCHAR ucDatd)
/I Write to the output register instead of the port switch (Register X
g-DIOState.OutputRegA.ucValue = ucRegData; case REGPORTA: WritePortA(ucData); return;

case REGPORTB: WritePortB(ucData); return;
} else{ // Otherwise, configured as an “output” port

/I Update both the port and the output register case REGCONFIG: WriteConfig(ucData); return;
g-DIORegs.A.ucValue = ucRegData; case REGSTATUS: WriteStatus(ucData); return;
g-DIOState.OutputRegA.ucValue = ucRegData; default: abort “Register address error.”; return;
} }
} }

Fig. 4. An implementation of a software interface event. Fig. 5. Relating register calls to software interface events.

lustrates an example how function calls to a software watgster function (originally
provided by the OS) are related to interface event functidrsoftware interface event
happens when the entry stack symbol of the interface eventitin is reached.

When hardware fires an interrupt, the ISR should be invokesttaice this inter-
rupt. The HW/SW interface simulates this process as showigare 6. The variable
I sr Runni ng represents the software status and the variabteer r upt Pendi ng
represents the hardware status. The fund®ionl sr has three parts, (1) check/prepare
the precondition before invoking the ISR; (2) invoke the j&Rd (3) set both the hard-
ware and software to proper status after ISR. The first and {tarts describe syn-
chronous state transitions of both hardware and softwamen&lly, when hardware
(the BA) fires an interrupt, i.e. the interrupt pending statuset to be true, the corre-
sponding state transitions in software (the LPDS) will batded, so the BA and the
LPDS will transition synchronously in the next state tréosi.

12

VOID Runlsr(){
_-atomic {
/I Make sure only one ISR is invoked
if ((IsrRunning == TRUE)||

(InterruptPending == FALSE)) _atomic VOID Run.DIO() { VOID HWinstr() {
return;
IsrRunning = TRUE; /I non-deterministic choices /I non-deterministic choices
} switch (choice() while(choice()){
/l'nvoke the ISR I/ Port /O Management /I Run hardware transaction
IsrFoo(); case 0: RunPorts(); break; Run.DIO();
—-atomic { /I Interrupt Management I1'f interrupt has been fired
IsrRunning = FALSE; case 1: Runinterrupt(); break; Runlsr();
InterruptPending = FALSE; ..
} }
}
) o) Fig. 7. The transaction function of the Fig.8. The hardware instrumenta-
Fig. 6. Interrupt monitoring function. Sealevel PI0-24 card. tion function.

Specifying the hardware model.The hardware model describes the desired hardware
behaviors when hardware works asynchronously with soéwarealize system func-
tionalities. Conceptually, the behavior of the hardwarelgids represented as a set of
state transitionsR,,.qc;, Where all the transitions are labeled by a set of propasstio
that hold when no software interface event happens. Figiliiessttates an example of a
transaction functiorRun_DI O, that specifies the set of state transitiaRg,q.;, for the
digital I/0 device. WherRun_DI Ois executed multiple times, the stub-functions such
asRunPor t s andRunl nt er r upt are non-deterministically invoked to simulate the
concurrent sub-modules of the hardware device.

Hardware instrumentation function. We define a C function to invoke independent
hardware transaction functions (for the hardware moded) BRs. Figure 8 illus-
trates such an example, wheRanl sr is invoked right after every hardware trans-
action,Run_DI Q. If an interrupt is fired due to a hardware state transitioekgcuting
Run_DI O, the context-switch to the ISR is modeled as a function edikre the exe-
cution privilege switches back to the interrupted threaly after the ISR returns. This
approach is correct to simulate the context-switches Iseck&Rs are relatively atomic
to other driver routines. The non-deterministic whilep@mulates the delays of either
software or hardware. This is correct when only safety pridgseare verified.

5.3 Co-verification Tool, CoVer

Our co-verification tool, CoVer, has two automatic stepssti-the frontend instruments
(i.e. make the product of) the driver with the hardware ifiatee model to generate
a C program, which conceptually is the reduced verificatiardeh P,. discussed in
Section 4.2. Second, the SLAM engine checks the reachapitiperty (in the form of
a SLIC rule [4]) of the C program.

The instrumentation step has two parts. First, the deparnddfiSW transitions
when driver writes hardware registers are modeled by remabe implementation of
the driver programming interfaces (see Figure 5), whichravided in the harness of

13

Static Driver Verifier [4]. Second, CoVer inserts functiaals to the hardware instru-
mentation functiorHW nst r into the C code of the driver, between the driver state-
ments. Without reductions, the function calls need to beries after every driver state-
ment. Using our reduction algorithm, CoVer first detectsgbftware synchronization
points in the driver code and then inserts the function caillg at those detected points.
Conceptually, the instrumentation lets hardware run ocoitisly for all the possibili-
ties after every HW/SW synchronous transition. Comparetiédrivial approach that
insertsHW nst r after every software statement to simulate the HW/SW caeatr
state transitions, our approach can significantly redueetimplexity of the verifica-
tion model, because the number of software synchronizatoints are usually very
small in common applications.

6 Evaluation

We have applied our approach to the verification of two fullpdtional Windows de-
vice drivers: (1) the Sealevel PCI (Peripheral Componetetrtonnect) PIO-24 Digital
I/0 card driver from Open Systems Resources (OSR), and &)nttel 82557/82558
based PCI Ethernet adapter driver from Microsoft Windowis&Kit (WDK) samples.
We developed hardware interface models respectively fodtivers and verified two
kinds of properties: (1) whether a driver callback functiancesses the hardware inter-
face registers in correct ways, e.g. a command should nasbied when the hardware
is busy; and (2) whether a driver callback function can caumseut-of-synchronization
between the driver and the device. In other words, we chetheifreturn value of a
driver callback function correctly indicates the curreatdware state. Because both of
the drivers have been provided to public as samples for ye@rdid not expect to find
many bugs. However, CoVer detected seven real bugs. Alethags can cause mal-
function of the devices/drivers, where the symptoms inglddta loss, interrupt storm,
device hang, etc. Our evaluation runs on a Lenovo ThinkP#sbook with Dual Core
2.66GHz CPU and 4GB memory. We set the timeout and spacemshtbld as 3000
seconds and 2000MB respectively.

Table 1 presents the statistics on the verification of the ®4@river with its hard-
ware interface model. CoVer detected four bugs and provegtaperties of the driver.
For example, the driver has two global variables to maintaénl/O request status and
the device I/O port status respectively. The values of tleevaviables become inconsis-
tent when the ISR interrupts the callback functi®nt Devi ceCont r ol at a specific
program location. This inconsistency will cause the drieereturn invalid data to user
applications later, which violates the ruleval i dRead. Another serious bug (de-
tected by the rulér oper | SR1) of this driver can cause interrupt storm. The design
of the device expects interrupts being repeatedly gergtimteertain configuration,
however the driver does not handle the interrupts corredtligh will cause interrupts
being fired more frequently than that can be consumed, terrimpt storm. As a com-
parison, the Ethernet adapter driver disables the intefingpand re-enables it after the
interrupt processing is completed later in DPC (DeferrextBdure Call). This prevents
the situation when interrupts overwhelm the PCI bus.

2 Windows OS invokes the predefined driver callback functtonservice the I/O requests from user applications.

14

Table 1. Statistics on the co-verification of the Sealevel P1O-24aigdriver.

[1724)

[Size of the driver (# of lines)
[1232]

|Size of the hardware interface model (# of lines)

No Reduction Reduction
Rule Description Time [Mem]Time[Mem.| Result
(Sec) |(MB) |(Sec) (MB)

DevDOEntny Driver and device will not go out-of-synchronization whearting. | 391.3 | 293 [214.3 181 |Passef
DevDOEXxit | Driver and device will not go out-of-synchronization wheéapping] 71.1 | 69 | 38.4| 43 [Passefl
IsrCallDpc [ISR will not queue DPC without reading specific hardwarestegs| Timeout N/A |[700.5 218 | Failed
InvalidRead Driver will not read any invalid input data. 589.4 | 132 [91.3| 66 [Failed
ProperISRIISR will clear the device interrupt-pending status befeteim. 58.9 | 58 | 35.2] 43 [Failed
ProperISRZISR will not acknowledge the interrupt fired by other devices 741 | 62 |28.7| 37 |Failed

Table 2 presents the statistics on the verification of thel IB2557/82558 based
PCI Ethernet adapter driver with its hardware interface eho@oVer detected three
bugs and proved five properties of the driver. For examplé/eCdetects a bug that
violates the ruledbevDOENt r y and reports an error trace where the callback function
Evt Devi ceDOEnNt ry returnsTRUE even if the driver fails to initialize the device
correctly. This is a direct violation of Windows device deivprogramming standards
and will cause the device unusable without the OS being edtifihe error trace also
illustrates that the driver continues its attempts to atite the device even after the
previous device operations have failed. This may causeeahiee permanently unac-
cessible. Compared to the PIO-24 device/driver, the Ethewtapter device/driver have
more comprehensive functionalities and implementatidmens the static partial order
reduction is clearly necessary for most of the rules to be geeified.

Table 2. Statistics on the co-verification of the Intel PCI Etherrddgter device/driver.

[14408)

[Size of the driver (# of lines)
[3518]

[Size of the hardware interface model (# of lines)

No Reduction | Reduction
Description Time | Mem. | Time [Mem|Resul
(Sec) | (MB) | (Sec)|(MB)

DevDOEntry Driver and device will not go out-of-synchronization whearting. | 1328.3| 758 |367.1| 182 |Failed
DevDOEXxit [Driver and device will not go out-of-synchronization wheapmping{Timeou{ N/A |206.6| 143 | Failed
IsrCallDpc |ISR will not queue DPC without reading specific hardwarestegs| 64.1 99 39.9 | 79 |Passefl
ProperISRIISR will clear the device interrupt-pending status befeteim. 48.9 59 32.6 | 52 |Passefl
ProperISRZISR will not acknowledge the interrupt fired by other devices 779.3| 291 [407.4] 199 [Passefl
DoubleCU(Driver will not issue a command while the command unit is busyTimeou{ N/A | 602.4] 238 [Failed
DoubleRU(Driver will not issue a command while the receiving unit ispu N/A |Spaceoytl797.3 231 |Passefl
ProperResgDriver uses a correct sequence to reset the device. Timeou{ N/A 86.9 | 71 |Passefl

Rule

7 Conclusion and Future Work

We have presented an efficient approach to reachabilitysisadf BPDS models for
HW/SW co-verification. The key idea of this approach is toumdlunnecessary state
transition orders between hardware and software, so therewaer possibilities to be
explored in verification. We have implemented this appraaciur co-verification tool,

15

CoVer, and successfully applied it to co-verify two Windogdeyvice drivers with their
device models. CoVer proved seven properties and deteetesh previously undis-
covered software bugs which can cause serious systemefilEraluation shows that
the reduction can significantly scale co-verification. hessults demonstrate that our
approach is very promising in ensuring the correct intévastbetween hardware and
software. For the next step, we plan to apply our approachoie mevices and drivers.

Acknowledgement. This research received financial support from National i8ze
Foundation of the United States (Grant #: 0916968). We tlaamk McGarvey, Onur
Ozyer, and Peter Wieland for evaluating our findings of deddver bugs.

References

1. Li, J., Xie, F., Ball, T., Levin, V., McGarvey, C.: An aut@ta-theoretic approach to hard-

ware/software co-verification. In: Proc. of FASE. (2010)

. Schwoon, S.: Model-Checking Pushdown Systems. PhDst(2802)

3. Kurshan, R.P., Levin, V., Minea, M., Peled, D., Yenighth;, Static partial order reduction.
In: Proc. of TACAS. (1998)

4. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberty, McGarvey, C., Ondrusek, B.,
Rajamani, S.K., Ustuner, A.: Thorough static analysis efaedrivers. In: Proc. of EuroSys.
(2006)

5. Kurshan, R.P., Levin, V., Minea, M., Peled, D., Yenigtt, Combining software and hard-
ware verification techniques. FMSD (2002)

6. Xie, F., Yang, G., Song, X.: Component-based hardwafte/ace co-verification for building
trustworthy embedded systems. JB¥b) (2007)

7. Monniaux, D.: Verification of device drivers and inte#ligt controllers: a case study. In:
Proc. of EMSOFT. (2007)

8. Ramalingam, G.: Context-sensitive synchronizatiamsie analysis is undecidable. ACM
Trans. Program. Lang. Syst. (2000)

9. Bouajjani, A., Esparza, J., Maler, O.: Reachability gsial of pushdown automata: Appli-
cation to model-checking. In: Proc. of CONCUR. (1997)

10. Godefroid, P.: Partial-Order Methods for the Verifioatbf Concurrent Systems - An Ap-
proach to the State-Explosion Problem. PhD thesis (1994)

11. Kurshan, R.P.: Computer-Aided Verification of Coordiimg Processes: The Automata-
Theoretic Approach. Princeton University Press (1994)

12. Microsoft: Synchronizing interrupt code. In: MSDN: msghicrosoft.com/en-
us/library/aa490313.aspx. (2009)

N

