
Efficient Reachability Analysis of Büchi Pushdown
Systems for Hardware/Software Co-verification

Juncao Li1, Fei Xie1, Thomas Ball2, and Vladimir Levin2

1 Department of Computer Science, Portland State University
Portland, OR 97207, USA

{juncao, xie}@cs.pdx.edu
2 Microsoft Corporation

Redmond, WA 98052, USA
{tball, vladlev}@microsoft.com

Abstract. We present an efficient approach to reachability analysis ofBüchi
Pushdown System (BPDS) models for Hardware/Software (HW/SW) co-verificat-
ion. This approach utilizes the asynchronous nature of the HW/SW interactions to
reduce unnecessary HW/SW state transition orders being explored in co-verificat-
ion. The reduction is applied when the verification model is constructed. We have
realized this approach in our co-verification tool, CoVer, and applied it to the
co-verification of two fully functional Windows device drivers with their device
models respectively. Both of the drivers are open source andtheir original C code
has been used. CoVer has proven seven safety properties and detected seven pre-
viously undiscovered software bugs. Evaluation shows thatthe reduction can sig-
nificantly scale co-verification.

1 Introduction

Hardware/Software (HW/SW) co-verification, verifying hardware and software together,
is essential to establishing the correctness of complex computer systems. In previous
work, we proposed a Büchi Pushdown System (BPDS) as a formalrepresentation for
co-verification [1], a Büchi Automaton (BA) represents a hardware device model and
a Labeled Pushdown System (LPDS) represents a model of the system software. The
interactions between hardware and software take place through the synchronization of
the BA and LPDS. The BPDS is amenable to standard symbolic model checking algo-
rithms [2].

In this paper, we exploit the fact that hardware and softwareare mostly asyn-
chronous in a system to reduce the cost of model checking. Intuitively, when hardware
and software transition asynchronously (i.e. there are no HW/SW interactions), it is un-
necessary to explore all the possible state transition orders. Furthermore, we prove that
special cases of the transition orders preserve the reachability properties in question.
Partial order reduction identifies such special transitionorders, so there are fewer inter-
leaving possibilities to be explored during model checking. We base our approach on
the concept of static partial order reduction [3], where unnecessary transition orders are
pruned during the construction of the verification model. During the model construc-
tion, unnecessary transition orders are largely reduced when hardware and software are
asynchronous. On the other hand, all the synchronous transitions are preserved.

2

We implemented our approach in the co-verification tool CoVer and applied it to the
co-verification of two fully functional Windows device drivers (C programs for which
source code is publically available) with their device models. We specify the device
models based on the HW/SW interface documents that are openly available. Concep-
tually, a driver and its device model together form a BPDS model. CoVer converts the
driver and the device model into a C program and utilizes the SLAM engine [4] to
check reachability properties of the program. The abstraction/refinement process is car-
ried out by SLAM. CoVer proved seven properties and detectedseven real defects in
the two drivers. All of these defects can cause serious system failures including data
loss, interrupt storm, device hang, etc.

The rest of this paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 introduces the background of this paper. Section 4 presents our reachability anal-
ysis algorithm for BPDS models. Section 5 discusses how we specify a device model as
well as the implementation details of CoVer. Section 6 presents the evaluation results.
Section 7 concludes and discusses future work.

2 Related Work

Kurshan, et al. presented a co-verification framework that models hardware and soft-
ware designs using finite state machines [5]. Xie, et al. extended this framework to hard-
ware and software implementations and improved its scalability via component-based
co-verification [6]. However, finite state machines are limited in modeling software im-
plementations, since they are not suitable to represent software features such as a stack.

Another approach to integrating hardware and software within the same model is
exemplified by Monniaux in [7]. He modeled a USB host controller device using a
C program and instrumented the device driver, another C program, in such a way as
to verify that the USB host controller driver correctly interacts with the device. The
hardware and software were both modeled by C programs and thus are formally PDSs.
However, straightforward composition of the two PDSs to model the HW/SW concur-
rency is problematic, because it is known, in general, that verification of reachability
properties on concurrent PDS with unbounded stacks is undecidable [8].

Bouajjani et al. [9] presented a procedure to compute predecessor reachability of
PDS and apply this procedure to linear/branching-time property verification. This ap-
proach was improved by Schwoon [2], which results in a tool, Moped, for checking
Linear Temporal Logic (LTL) properties of PDS. A LTL formulais first negated and
then represented as a BA. The BA is combined with the PDS to monitor its state tran-
sitions; therefore the model checking problem is to computeif the BA has an accepting
run. The goal of the previous research was to verify softwareonly; however, our goal is
to co-verify HW/SW systems.

Our previous work [1] did not exploit the fact that hardware and software are mostly
asynchronous in a system. Techniques such as partial order reduction [10] can be ap-
plied to reduce the verification complexities via the composition (Cartesian product) of
the BA and LPDS. Furthermore, our co-verification implementation in our earlier work
was not automatic since it depends on two abstraction/refinement engines (for hardware
and software specifications respectively) that were not completely integrated.

3

3 Background

3.1 Büchi Automaton (BA)

A BAB, as defined in [11], is a non-deterministic finite state automaton accepting infi-
nite input strings. Formally,B = (Σ,Q, δ, q0, F), whereΣ is the input alphabet,Q is
the finite set of states,δ ⊆ (Q × Σ × Q) is the set of state transitions,q0 ∈ Q is the
initial state, andF ⊆ Q is the set of final states.B accepts an infinite input string iff
it has a run over the string that visits at least one of the finalstates infinitely often. A
run ofB on an infinite strings is a sequence of states visited byB when takings as the
input. We useq

σ
→ q′ to denote a transition from stateq to q′ with the input symbolσ.

3.2 Labeled Pushdown System (LPDS)

A LPDSP , as defined in [1], is a tuple(I,G, Γ,∆, 〈g0, ω0〉), whereI is the input
alphabet,G is a finite set of global states,Γ is a finite stack alphabet,∆ ⊆ (G× Γ)×
I × (G × Γ ∗) is a finite set of transition rules, and〈g0, ω0〉 is the initial configuration.
LPDS is an extension of PDS [2] in such a way that a LPDS can takeinputs. A LPDS
transition rule is written as〈g, γ〉

τ
↪→ 〈g′, w〉, whereτ ∈ I and((g, γ), τ, (g′, w)) ∈ ∆.

A configuration ofP is a pair〈g, ω〉, whereg ∈ G is a global state andw ∈ Γ ∗ is
a stack content. The set of all configurations is denoted byConf(P). The head of a
configurationc = 〈g, γv〉 is 〈g, γ〉 and denoted ashead(c), whereγ ∈ Γ, v ∈ Γ ∗;

the head of a ruler : 〈g, γ〉
τ
↪→ 〈g′, ω〉 is 〈g, γ〉 and denoted ashead(r). The head

of a configuration decides the transition rules that are applicable to this configuration,
where the deciding factors are the global state and the top stack symbol. Given a rule
r : 〈g, γ〉

τ
↪→ 〈g′, ω〉, for everyv ∈ Γ ∗, the configuration〈g, γv〉 is an immediate

predecessor of〈g′, ωv〉 and〈g′, ωv〉 is an immediate successor of〈g, γv〉. We denote
the immediate successor relation in PDS as〈g, γv〉

τ
⇒ 〈g′, ωv〉, where we say this state

transition follows the PDS ruler. The reachability relation,⇒∗, is the reflexive and
transitive closure of the immediate successor relation. A path ofP on an infinite input
string,τ0τ1 . . . τi . . ., is written asc0

τ0⇒ c1
τ1⇒ . . . ci

τi⇒ . . ., whereci ∈ Conf(P), i ≥
0. The path is also referred to as a trace ofP if c0 = 〈g0, ω0〉 is the initial configuration.

3.3 Büchi Pushdown System (BPDS)

A BPDSBP, as defined in [1], is the Cartesian product of a BAB and a LPDSP . To
constructBP, we first define (1) the input alphabet ofB as the power set of the set
of propositions that may hold on a configuration ofP (i.e. a symbol inΣ is a set of
propositions); (2) the input alphabet ofP as the power set of the set of propositions
that may hold on a state ofB (i.e. a symbol inI is a set of propositions); and (3) two
labeling functions as follows:

– LP2B : (G × Γ) → Σ, associates the head of a LPDS configuration with the
set of propositions that hold on it. Given a configurationc ∈ Conf(P), we write
LP2B(c) instead ofLP2B(head(c)) for simplicity in the rest of this paper.

– LB2P : Q → I, associates a state ofB with the set of propositions that hold on it.

4

BP = ((G×Q), Γ,∆′, 〈(g0, q0), ω0〉, F
′) is constructed by taking the Cartesian prod-

uct of B andP . A BPDS rule〈(g, q), γ〉 ↪→BP 〈(g′, q′), ω〉 ∈ ∆′ iff q
σ
→ q′ ∈ δ,

σ ⊆ LP2B(〈g, γ〉) and〈g, γ〉
τ
↪→ 〈g′, w〉 ∈ ∆, τ ⊆ LB2P(q). A configuration ofBP is

referred to as〈(g, q), ω〉 ∈ (G × Q) × Γ ∗. The set of all configurations is denoted as
Conf(BP). The labeling functions define howB andP synchronize with each other.
〈(g0, q0), ω0〉 is the initial configuration.〈(g, q), ω〉 ∈ F ′ if q ∈ F .

Given a BPDS ruler : 〈(g, q), γ〉 ↪→BP 〈(g′, q′), ω〉 ∈ ∆′, for everyv ∈ Γ ∗ the
configuration〈(g, q), γv〉 is an immediate predecessor of〈(g′, q′), ωv〉, and〈(g′, q′), ωv〉
is an immediate successor of〈(g, q), γv〉. We denote the immediate successor relation
in BPDS as〈(g, q), γv〉 ⇒BP 〈(g′, q′), ωv〉, where we say this state transition follows
the BPDS ruler. The reachability relation,⇒∗

BP , is the reflexive and transitive closure
of the immediate successor relation. A path ofBP is a sequence of BPDS configura-
tions,c0 ⇒BP c1 . . . ⇒BP ci ⇒BP . . ., whereci ∈ Conf(BP), i ≥ 0. The path is
also referred to as a trace ofBP if c0 = 〈(g0, q0), ω0〉 is the initial configuration.

We define four concepts to assist us in analyzing the Cartesian product ofB andP :

Enabledness. A BPDSBP is constructed by synchronizing a BAB and a LPDSP
through the labels on their state transitions. A Büchi transition tB : q

σ
→ q′ is enabled

by a LPDS configurationc (resp. a LPDS ruler : c
τ
↪→ c′) iff σ ⊆ LP2B(c) ; otherwise

tB is disabled byc (resp.r). The LPDS ruler is enabled/disabled by the Büchi stateq

(resp. the Büchi transitiontB) in a similar way.

Indistinguishability . Given a Büchi transitiontB : q
σ
→ q′ ∈ δ, two LPDS configura-

tionsc, c′ ∈ Conf(P) are (resp. a LPDS ruler : c
τ
↪→ c′ is) indistinguishable totB iff

σ ⊆ LP2B(c) ∩ LP2B(c
′), i.e. tB is enabled by bothc andc′. On the other hand, given

a LPDS ruler : c
τ
↪→ c′ ∈ ∆, two Büchi statesq, q′ ∈ Q are (resp. a Büchi transition

tB : q
σ
→ q′ is) indistinguishable tor iff τ ⊆ LB2P(q) ∩ LB2P(q

′), i.e.r is enabled by
bothq andq′.

Consider a BPDS state transition,tBP : 〈(g, q), γv〉 ⇒BP 〈(g′, q′), ωv〉 (v ∈ Γ ∗),
which is the combination oftB : q

σ
→ q′ ∈ δ and tP : 〈g, γv〉

τ
⇒ 〈g′, ωv〉 that

follows a LPDS ruler ∈ ∆. If the Büchi statesq andq′ (resp. LPDS configurations
〈g, γv〉 and〈g′, ωv〉) are both indistinguishable tor (resp.tB), tBP can be rewritten as a
BPDS path〈(g, q), γv〉 ⇒BP 〈(g, q′), γv〉 ⇒BP 〈(g′, q′), ωv〉 (resp.〈(g, q), γv〉 ⇒BP

〈(g′, q), ωv〉 ⇒BP 〈(g′, q′), ωv〉), where the concurrent state transitions ofB andP are
represented in an interleaved fashion with one intermediate state used.

Independence. Given a Büchi transitiontB and a LPDS ruler, if they are indistinguish-
able to each other,tB andr are called independent; otherwise if eithertB or r is not
indistinguishable to the other but they still enable each other,tB andr are called depen-
dent. The independence relation is symmetric. Furthermore, if tB andr are dependent,
(1) the BAB and LPDSP are called synchronous on them; and (2) the corresponding
BPDS transitions are called synchronous transitions; otherwise if tB andr are indepen-
dent, (1)B andP are called asynchronous on them; and (2) the corresponding BPDS
transitions are called asynchronous transitions.

Commutativity . Without affecting the reachability property, if a BPDS state transition,
tBP : 〈(g, q), γv〉 ⇒BP 〈(g′, q′), ωv〉 can be rewritten respectively as two BPDS paths

5

such that〈(g, q), γv〉 ⇒BP 〈(g, q′), γv〉 ⇒BP 〈(g′, q′), ωv〉 and 〈(g, q), γv〉 ⇒BP

〈(g′, q), ωv〉 ⇒BP 〈(g′, q′), ωv〉, the corresponding Büchi transitiontB and LPDS rule
r are called commutative. By definition, commutativity is equivalent to independence
but seen under a different light, which will help the presentation of the paper.

3.4 Static Partial Order Reduction

One common method for reducing the complexity of model checking asynchronous
systems is partial order reduction [10], which is based on the observation that proper-
ties often do not distinguish among the state transition orders. Traditional partial order
reduction algorithms use an explicit state representationand depth first search, where
both the states and transitions to be explored are selected during the model checking
process. Kurshan et al. [3] developed an alternative approach called static partial or-
der reduction, where the key idea is to apply partial order reduction when a model is
generated from the system specification. Thus, no modification to the model checker is
necessary. The model is reduced during the compilation phase by exploring the struc-
ture of the system specification. Any model checker that accepts this kind of model can
then be applied to solve the verification problem.

4 Reachability Analysis of BPDS

4.1 Reachability Analysis of BPDS without Reduction

For reachability analysis, we have demonstrated [1] that a BPDSBP can be converted
into a PDSP ′, which we refer to as the verification model, so that model checkers
for PDS (or PDS-equivalent models) can be readily utilized.It is important to note
that P ′ is a standard PDS in the sense thatP ′ does not have inputs. GivenBP =
((G × Q), Γ,∆′, 〈(g0, q0), ω0〉, F

′), we constructP ′ = (GP′ , ΓP′ , ∆P′ , c0) such that
GP′ = (G×Q),ΓP′ = Γ , c0 = 〈(g0, q0), ω0〉, and∆P′ is converted from∆′ = δ×∆,

where∀t = q
σ
→ q′ ∈ δ and∀r = 〈g, γ〉

τ
↪→ 〈g′, ω〉 ∈ ∆, if t andr are dependent, add

a rule〈(g, q), γ〉 ↪→ 〈(g′, q′), ω〉 to ∆P′ , i.e.B andP must transition synchronously;
else if t andr are independent, add three rules to∆P′ : (1) 〈(g, q), γ〉 ↪→ 〈(g, q′), γ〉,
i.e. B transitions andP loops; (2)〈(g, q), γ〉 ↪→ 〈(g′, q), ω〉, i.e.P transitions andB
loops; and (3)〈(g, q), γ〉 ↪→ 〈(g′, q′), ω〉, i.e. B andP transition together. Rules (1)
and (2) represent the non-deterministic delays that may occur betweenB andP . Non-
deterministic delays do not affect reachability properties. Rule (3) can be represented
by Rules (1) and (2) together becauseB andP are asynchronous; however we include
Rule (3) here to help the presentation of Section 4.2. The correctness of the conversion
thatP ′ preserves the reachability property ofBP is proved in [1].

4.2 Efficient Reachability Analysis based on Static PartialOrder Reduction

As discussed above, when a BPDSBP is converted to a PDSP ′ by the naı̈ve approach,
both the size of the state space and the number of the transition rules remain the same.
For example, the set of transition rules is the product ofδ that belongs toB and∆ that

6

belongs toP . However, a complete product is not necessary whenB andP are asyn-
chronous. Without affecting the verification result, static partial order reduction can be
applied to reduce the transition rules generated by the product. The reduced PDS model
P ′
r will have a smaller set of transition rules∆P′

r
⊆ ∆P′ and fewer state transition

traces while still preserving the reachability propertiesof P ′. Figure 1 illustrates the
verification process that supports the reduction.

BPDS
BPDS2PDS

PDS
Model checker

YES

NO

BP P'
with Static Partial

Order Reduction r

Reduced

Fig. 1. Reachability analysis of BPDS with static partial order reduction.

Our reduction is based on the observation that whenB andP transition asyn-
chronously, one can run continuously while the other one loops. Figure 2 illustrates
the idea of reducing a BPDS state transition graph that starts from the configuration
c0,0. Figure 2(a) is a complete state transition graph. There arethree types of transition

c0,0

cm,n

c1,0 c2,0 cm,0

cm,1

cm,2

c0,1

c0,2

c0,n c1,n c2,n

(a) Complete transition graph

c0,0

cm,n

c1,0 c2,0 cm,0

cm,1

cm,2

c0,1

c0,2

c0,n c1,n c2,n

(b) Reduce hori./diag. edges

c0,0

cm,n

c1,0 c2,0 cm,0

cm,1

cm,2

c0,1

c0,2

c0,n c1,n c2,n

(c) Reduce vert./diag. edges

Fig. 2. Reducing state transition edges without affecting the reachability from c0,0 when BA and
LPDS are asynchronous.

edges: (1) a horizontal edge represents a transition whenB transitions andP loops,
which follows a BPDS rule in the form of〈(g, q), γ〉 ↪→BP 〈(g, q′), γ〉; (2) a vertical
edge represents a transition whenP transitions andB loops, which follows a BPDS
rule in the form of〈(g, q), γ〉 ↪→BP 〈(g′, q), w〉; and (3) a diagonal edge represents a
transition whenB andP transition together, which follows a BPDS rule in the form of
〈(g, q), γ〉 ↪→BP 〈(g′, q′), w〉. For every configurationci,j = 〈(g, q), γv〉 (0 ≤ i ≤ m

and 0 ≤ j ≤ n) as well as the Büchi transitiontB : q
σ
→ q′ and the LPDS rule

r : 〈g, γ〉
τ
↪→ 〈g′, ω〉 that are both enabled onci,j , if tB andr are independent, we can

reduce many state transitions in Figure 2(a) without affecting the reachability fromc0,0
to other configurations in the graph. Figure 2(b) and Figure 2(c) illustrate two reduc-
tions that reduce horizontal/diagonal transition edges and vertical/diagonal transition

7

edges respectively. This kind of reduction can significantly reduce the transition rules
of BP, where Büchi transitions and LPDS rules are independent.

Now we present an optimization of our previous approach, where the reduction is
applied during the rule generation phase of constructing the verification modelP ′

r. We
define a set of heads,SensitiveSet, onConf(P) as follows:

Definition 1. SensitiveSet = { head(〈g0, ω0〉) }
⋃

{ head(c′) | ∃r = c
τ
↪→ c′ ∈ ∆,

∃tB ∈ δ, r andtB are dependent}, where〈g0, ω0〉 is the initial configuration ofP .

The concept ofSensitiveSet is similar to that of sleep set [10]. However, instead of
identifying transitions that are not necessary to be executed (i.e. reducible) at a state,
SensitiveSet identifies transitions that should be kept (i.e. irreducible). Algorithm 1
applies the reduction following the idea illustrated in Figure 2(b), where the horizon-
tal/diagonal edges are reduced. If the LPDS ruler and the Büchi transitiontB are de-

Algorithm 1 BPDS2PDSSPOR(δ ×∆)
1: ∆sync ← ∅, ∆vert ← ∅, ∆hori ← ∅

2: for all r : 〈g, γ〉
τ
↪→ 〈g′, ω〉 ∈ ∆ do

3: for all tB : q
σ
→ q′ ∈ δ and σ ⊆ LP2B(〈g, γ〉) and τ ⊆ LB2P (q) do

4: if r andtB are dependentthen
5: {WhenB andP are synchronous onr andtB}
6: ∆sync ← ∆sync

⋃
{〈(g, q), γ〉 ↪→ 〈(g′, q′), ω〉}

7: else
8: {For vertical edges (see Figure 2(b)), whenP transitions andB loops}
9: ∆vert ← ∆vert

⋃
{〈(g, q), γ〉 ↪→ 〈(g′, q), ω〉}

10: if 〈g, γ〉 ∈ SensitiveSet then
11: {For horizontal edges (see Figure 2(b)), whenB transitions andP loops}
12: ∆hori ← ∆hori

⋃
{〈(g, q), γ〉 ↪→ 〈(g, q′), γ〉}

13: end if
14: end if
15: end for
16: end for
17: ∆P′

r
← ∆sync

⋃
∆vert

⋃
∆hori

18: return ∆P′

r

pendent,B andP must transition synchronously as the set of rules,∆sync, generated
in line 6; otherwise, asynchronous transitions are generated. The set of rules,∆vert,
generated in line 9 represent the vertical edges, i.e. whenP transitions andB loops.
The set of rules,∆hori, representing the horizontal edges, i.e. whenB transitions and
P loops, are generated in line 12 only ifhead(r) belongs toSensitiveSet.

In Algorithm 1, a diagonal rule is reduced ifB andP are asynchronous on the cor-
responding Büchi transition and LPDS rule. This kind of reduction does not affect any
reachability property, because the diagonal rule can be represented by one horizontal
rule and one vertical rule respectively. A horizontal rule is reduced if the head of the
corresponding LPDS rule inP does not belong toSensitiveSet. There is a special set

8

of heads,DivideSet = { h | h ∈ SensitiveSet, ∀r = c
τ
↪→ c′ ∈ ∆ and∀tB ∈ δ,

if head(c) = h thenr andtB are not dependent}. Informally,DivideSet describes
a set of configurations that can be considered as divide-lines (in the traces ofP pro-
jected from the traces ofBP) for two adjacent LPDS transitions that are respectively
synchronous and asynchronous with the state transitions ofB. Given a trace ofP ′

r in
the form of 〈(g0, q0), ω0〉 ⇒ . . . ⇒ 〈(gj , qj), ωj〉 ⇒ . . . ⇒ 〈(gk, qk), ωk〉 ⇒ . . .

(0 ≤ j < k), if head(〈gj, ωj〉) ∈ DivideSet and〈(gk, qk), ωk〉 is the first configura-
tion satisfyinghead(〈gk, ωk〉) ∈ SensitiveSet after 〈(gj , qj), ωj〉, we can infer that
no horizontal transition occurs between〈(gj+1, qj+1), ωj+1〉 and〈(gk, qk), ωk〉 in the
trace (i.e.qj+1 = qk), because the horizontal transitions have been reduced.

Theorem 1. P ′
r preserves the reachability ofP ′ from the initial configuration.

Proof. It is easy to observe thatP ′
r andP ′ have the same state space and initial config-

uration, so the question is to prove that (1) given a configuration c and a trace ofP ′ in
the form ofT : c0 ⇒ c1 . . . ⇒ ci ⇒ c, there is a corresponding trace ofP ′

r such that
T ′ : c0 ⇒ c′1 . . . ⇒ c′j ⇒ c; and (2) vice versa.

Two types of transitions are reduced inP ′
r, compared toP ′. As explained above, the

reduction of diagonal transitions does not affect any reachability property. We prove that
the reduction of horizontal transitions does not affect thecorrectness of (1) by induc-
tion. If |T | = 0, i.e. c = c0, the reachability trivially holds onP ′

r. If |T | = 1, because
there is no horizontal transition reduced on the initial configuration, for any transition
c0 ⇒ c of P ′ there must be a corresponding trace ofP ′

r that preserves the reachability.
Given a traceT : c0 ⇒ c1 . . . ⇒ ci ⇒ c′ (i ≥ 0) of P ′ where|T | = i+1, if there exists
a traceT ′ : c0 ⇒ c′1 . . . ⇒ c′j ⇒ c′ (j ≥ 0) of P ′

r where|T ′| = j + 1, we show that
for all c ∈ Conf(P ′) andtP′ : c′ ⇒ c of P ′, there is a trace ofP ′

r such thatc0 ⇒∗ c.
Recall that the horizontal transitions are reduced inP ′

r except at configurations whose
heads belong toSensitiveSet, so we need to prove that this reduction does not affect
the reachability iftP′ involves a horizontal transition that is reduced inP ′

r. In the trace
T ′, we can always find a configurationc′k = 〈(gk, qk), ωk〉 (0 ≤ k ≤ j) such thatc′k is
the last configuration satisfyinghead(〈gk, ωk〉) ∈ SensitiveSet. Thus, the path from
c′k to c′ has the form of(c′k : 〈(gk, qk), ωk〉) ⇒ 〈(gk+1, qk), ωk+1〉 ⇒ . . . ⇒ (c′ :
〈(gj+1, qk), ωj+1〉), whereB always loops at the stateqk afterc′k. Because the horizon-
tal transitions are reduced on the configurations afterc′k, P ′

r cannot directly have the
transition(c′ : 〈(gj+1, qk), ωj+1〉) ⇒ (c : 〈(gj+1, qk+1), ωj+1〉), i.e. the corresponding
BPDS rule〈(gj+1, qk), γj+1〉) ↪→BP 〈(gj+1, qk+1), γj+1〉 (γj+1 is the top stack sym-
bol ofωj+1) does not exist after the reduction. According to the commutativity between
independent Büchi transitions and LPDS rules, we can shiftthis transition backward to
the position right afterc′k where the horizontal transitions are not reduced. In this case,
the path is(c′k : 〈(gk, qk), ωk〉) ⇒ 〈(gk, qk+1), ωk〉 ⇒ 〈(gk+1, qk+1), ωk+1〉 ⇒ . . . ⇒

(c : 〈(gj+1, qk+1), ωj+1〉), so we proved that there is a tracec0 ⇒∗ c of P ′
r.

On the other direction, (2) always holds because∆P′

r
⊆ ∆P′ . For every rule ofP ′

r,
P ′ has the same rule. Thus for every trace ofP ′

r, P ′ has the same trace. ut

Complexity analysis.LetnSR be the number of LPDS rules (in∆) whose heads belong
to SensitiveSet, andnsync be the number of PDS rules (in∆P′

r
) whereB andP

transition synchronously on the corresponding Büchi transitions and LPDS rules. We

9

have|∆hori| = nSR×|δ| and|∆sync| = nsync. As illustrated in Figure 2, asynchronous
transitions can be organized as triples where each one includes a vertical transition, a
horizontal transition, and a diagonal transition, so we have |∆vert| =

|δ×∆|−nsync

3
.

The number of rules generated in Algorithm 1 is|∆P′

r
| = nsync +

|δ×∆|−nsync

3
+

nSR × |δ| = 2

3
nsync + |δ×∆|

3
+ nSR × |δ|. The size of transition rules reduced is

|∆′| − |∆P′

r
| = 2

3
|δ × ∆| − 2

3
nsync − nSR × |δ|. We can infer from this expression

that the fewer places thatB andP transition synchronously the more transition rules
Algorithm 1 can reduce.

Discussions.Algorithm 1 makes a product of the transition relations respectively from
the BA and LPDS, where all the transition rules are explored.Obviously, this process
could be inefficient if the BA and LPDS are represented in a flattened approach, since
the sizes of the transition relations can be exponentially large. Symbolic representations
are efficient to model transition relations; therefore the cost of Algorithm 1 can be ex-
ponentially smaller on symbolic representations than thaton flattened representations.
However, the symbolic rules should be properly separated for the reduction to be effec-
tive. For example, if there is only one giant symbolic transition rule for each transition
relation, Algorithm 1 will have no reduction effect. Symbolic rules are commonly dif-
ferentiated by their control locations. This explains why the idea in Figure 2(b) is used
instead of that in Figure 2(c), because LPDS usually has a better control-flow structure
than BA.

5 Implementation

We apply the BPDS model in the verification of Windows device drivers with their
formal hardware interface models as illustrated in Figure 3, where software is repre-
sented as LPDS and hardware is represented as BA. From the view of software, we

Lower-priority Dispatch Routines

Driver

Interrupt Service Routine (ISR)

Hardware Interface Model

Model
HW/SW Interface

Hardware

Fig. 3. Driver-centric co-verification.

specify both the HW/SW interface and the hardware model, which together we refer to
as a hardware interface model. The HW/SW interface describes how hardware and soft-
ware should transition synchronously when they interact through their interfaces. The
hardware model describes the desired hardware behaviors when hardware and software
transition asynchronously, i.e. when there is no HW/SW interaction.

First, we present several preliminary definitions for our implementation. Second,
we elaborate on the specification of the HW/SW interface and the hardware model
respectively by examples. Third, we illustrate our automatic co-verification tool, CoVer.

10

5.1 Preliminary Definitions

We use Transaction Level Modeling (TLM) to specify the hardware interface model.
TLM is a commonly used approach to hardware system-level specification, and we have
designed a specification language, modelC, for our TLM specification. The modelC
language uses C semantics with two extensions to support non-determinism and relative
atomicity (see definitions below). In modelC, (1) we treat numbers as bounded integers,
so hardware registers can be properly modeled; and (2) the global hardware state space
is static, i.e. there is no dynamic memory allocation.

Hardware transaction. In co-verification, the interaction between hardware and soft-
ware is relevant rather than the implementation details of ahardware device; therefore
it is unnecessary to preserve the clock-driven semantic feature. We define a hardware
transaction to represent a hardware state transition in an arbitrarily long but finite se-
quence of clock cycles. Hardware transactions are atomic tosoftware. The concept of
hardware transaction preserves hardware design logic thatis visible to software, but
hides details only necessary for synthesizable Register Transfer Level (RTL) design.

Hardware transaction function. We define a transaction function as a C function that
describes a set of hardware transactions (i.e. state transitions). Because transactions are
atomic, the intermediate states of hardware during a transaction is not visible to soft-
ware. We define the current-states and next-states of a transaction function respectively
asρ ⊆ Q representing the hardware states when entering the function andρ′ ⊆ Q repre-
senting the hardware states when exiting the function. Formally, a transaction function
F : Q×Q describes a set of state transitions. Following this definition, any terminating
C function can be treated as a transaction function.

Relative atomicity. Relative atomicity has two key ideas: (1) hardware transactions
are atomic from the view of software; and (2) Interrupt Service Routines (ISRs) are
atomic to other lower-priority software routines. In device/driver applications, when
hardware fires an interrupt, the Operating System (OS) callsthe ISRs that are registered
in the interrupt vector table sequentially until an ISR acknowledges its ownership of
the interrupt. During this process, only one ISR can run at a time and other hardware
interrupts are suppressed [12]. The interrupted thread cancontinue its execution only
after the interrupting ISR terminates.

Software synchronization points.As the concrete counterpart of theSensitiveSet
concept, we define software synchronization points as a set of program locations1 where
the program statements right before these locations may be dependent with some of the
hardware state transitions. In general, there are three types of software synchroniza-
tion points: (1) the point where the program is initialized;(2) those points right after
software reads/writes hardware interface registers; and (3) those points where hardware
interrupts may affect the verification results. The first andsecond types are straightfor-
ward for hardware and software to transition synchronously. We may understand the
third type in such a way that the effect of interrupts (by executing ISRs) may influence
certain program statements, e.g. the statements that access global variables.

1 Assuming the program is preprocessed to ensure that every statement is atomic from the view of hardware.

11

5.2 Specifying Hardware Interface Model

In the specification of the hardware BA model,B = (Σ,Q, δ, q0, F), the alphabetΣ
is the power set of the set of propositions induced by software interface events (see
definition below); the set of statesQ is defined by global variables; the initial stateq0 is
given by an initialization function; and the transition relationR = Revt ∪ Rmodel has
two parts:Revt, is a set of transitions that are dependent with at least one of the software
LPDS transition rules;Rmodel, is a set of transitions that are not dependent with any
of the LPDS transition rules. Informally,Revt is described by the HW/SW interface
andRmodel is described by the hardware model. In this paper, we are interested only in
safety properties; therefore the Büchi constraintF is not necessary to be specified.

Specifying the HW/SW interface.The HW/SW interface, as the abstraction of the
HW/SW layers between the target device and driver, propagates the hardware (resp.
software) interface events to software (resp. hardware).

Figure 4 illustrates an example of a software interface event function in response
to a register write operation. The keywordatomic indicates thatWritePortA is
a transaction function atomic from the view of software. This transaction function de-
scribes a set of state transitions,R′

evt ⊆ Revt, when the driver writes to the interface
register, PortA, of the Sealevel PIO-24 digital I/O device (see Section 6). Figure 5 il-

atomic VOID WritePortA(UCHAR ucRegData){
// If Port A is configured as an “input” port
if (g DIORegs.CW.CWD4 == 1){

// Write to the output register instead of the port
g DIOState.OutputRegA.ucValue = ucRegData;

} else{ // Otherwise, configured as an “output” port
// Update both the port and the output register
g DIORegs.A.ucValue = ucRegData;
g DIOState.OutputRegA.ucValue = ucRegData;

}
}

Fig. 4.An implementation of a software interface event.

VOID WRITE REGISTERUCHAR
(PUCHAR Register, UCHAR ucData){

switch (Register){
case REGPORTA: WritePortA(ucData); return;
case REGPORTB: WritePortB(ucData); return;
. . .
case REGCONFIG: WriteConfig(ucData); return;
case REGSTATUS: WriteStatus(ucData); return;
default: abort “Register address error.”; return;

}
}

Fig. 5.Relating register calls to software interface events.

lustrates an example how function calls to a software write-register function (originally
provided by the OS) are related to interface event functions. A software interface event
happens when the entry stack symbol of the interface event function is reached.

When hardware fires an interrupt, the ISR should be invoked toservice this inter-
rupt. The HW/SW interface simulates this process as shown inFigure 6. The variable
IsrRunning represents the software status and the variableInterruptPending
represents the hardware status. The functionRunIsr has three parts, (1) check/prepare
the precondition before invoking the ISR; (2) invoke the ISR; and (3) set both the hard-
ware and software to proper status after ISR. The first and third parts describe syn-
chronous state transitions of both hardware and software. Formally, when hardware
(the BA) fires an interrupt, i.e. the interrupt pending status is set to be true, the corre-
sponding state transitions in software (the LPDS) will be enabled, so the BA and the
LPDS will transition synchronously in the next state transition.

12

VOID RunIsr(){
atomic {
// Make sure only one ISR is invoked
if ((IsrRunning == TRUE)||

(InterruptPending == FALSE))
return;

IsrRunning = TRUE;
}

// Invoke the ISR
IsrFoo();

atomic {
IsrRunning = FALSE;
InterruptPending = FALSE;

}
}

Fig. 6. Interrupt monitoring function.

atomic VOID Run DIO() {

// non-deterministic choices
switch (choice()){

// Port I/O Management
case 0: RunPorts(); break;

// Interrupt Management
case 1: RunInterrupt(); break;
. . .

}

Fig. 7. The transaction function of the
Sealevel PIO-24 card.

VOID HWInstr() {

// non-deterministic choices
while(choice()){

// Run hardware transaction
Run DIO();

// If interrupt has been fired
RunIsr();

}
}

Fig. 8. The hardware instrumenta-
tion function.

Specifying the hardware model.The hardware model describes the desired hardware
behaviors when hardware works asynchronously with software to realize system func-
tionalities. Conceptually, the behavior of the hardware model is represented as a set of
state transitions,Rmodel, where all the transitions are labeled by a set of propositions
that hold when no software interface event happens. Figure 7illustrates an example of a
transaction function,Run DIO, that specifies the set of state transitions,Rmodel, for the
digital I/O device. WhenRun DIO is executed multiple times, the stub-functions such
asRunPorts andRunInterrupt are non-deterministically invoked to simulate the
concurrent sub-modules of the hardware device.

Hardware instrumentation function. We define a C function to invoke independent
hardware transaction functions (for the hardware model) and ISRs. Figure 8 illus-
trates such an example, whereRunIsr is invoked right after every hardware trans-
action,Run DIO. If an interrupt is fired due to a hardware state transition byexecuting
Run DIO, the context-switch to the ISR is modeled as a function call,where the exe-
cution privilege switches back to the interrupted thread only after the ISR returns. This
approach is correct to simulate the context-switches because ISRs are relatively atomic
to other driver routines. The non-deterministic while-loop simulates the delays of either
software or hardware. This is correct when only safety properties are verified.

5.3 Co-verification Tool, CoVer

Our co-verification tool, CoVer, has two automatic steps. First, the frontend instruments
(i.e. make the product of) the driver with the hardware interface model to generate
a C program, which conceptually is the reduced verification modelP ′

r discussed in
Section 4.2. Second, the SLAM engine checks the reachability property (in the form of
a SLIC rule [4]) of the C program.

The instrumentation step has two parts. First, the dependent HW/SW transitions
when driver writes hardware registers are modeled by replacing the implementation of
the driver programming interfaces (see Figure 5), which is provided in the harness of

13

Static Driver Verifier [4]. Second, CoVer inserts function calls to the hardware instru-
mentation functionHWInstr into the C code of the driver, between the driver state-
ments. Without reductions, the function calls need to be inserted after every driver state-
ment. Using our reduction algorithm, CoVer first detects thesoftware synchronization
points in the driver code and then inserts the function callsonly at those detected points.
Conceptually, the instrumentation lets hardware run continuously for all the possibili-
ties after every HW/SW synchronous transition. Compared tothe trivial approach that
insertsHWInstr after every software statement to simulate the HW/SW concurrent
state transitions, our approach can significantly reduce the complexity of the verifica-
tion model, because the number of software synchronizationpoints are usually very
small in common applications.

6 Evaluation

We have applied our approach to the verification of two fully functional Windows de-
vice drivers: (1) the Sealevel PCI (Peripheral Component Interconnect) PIO-24 Digital
I/O card driver from Open Systems Resources (OSR), and (2) the Intel 82557/82558
based PCI Ethernet adapter driver from Microsoft Windows Driver Kit (WDK) samples.
We developed hardware interface models respectively for the drivers and verified two
kinds of properties: (1) whether a driver callback function2 accesses the hardware inter-
face registers in correct ways, e.g. a command should not be issued when the hardware
is busy; and (2) whether a driver callback function can causean out-of-synchronization
between the driver and the device. In other words, we check ifthe return value of a
driver callback function correctly indicates the current hardware state. Because both of
the drivers have been provided to public as samples for years, we did not expect to find
many bugs. However, CoVer detected seven real bugs. All these bugs can cause mal-
function of the devices/drivers, where the symptoms include data loss, interrupt storm,
device hang, etc. Our evaluation runs on a Lenovo ThinkPad notebook with Dual Core
2.66GHz CPU and 4GB memory. We set the timeout and spaceout threshold as 3000
seconds and 2000MB respectively.

Table 1 presents the statistics on the verification of the PIO-24 driver with its hard-
ware interface model. CoVer detected four bugs and proved two properties of the driver.
For example, the driver has two global variables to maintainthe I/O request status and
the device I/O port status respectively. The values of the two variables become inconsis-
tent when the ISR interrupts the callback functionEvtDeviceControl at a specific
program location. This inconsistency will cause the driverto return invalid data to user
applications later, which violates the ruleInvalidRead. Another serious bug (de-
tected by the ruleProperISR1) of this driver can cause interrupt storm. The design
of the device expects interrupts being repeatedly generated in certain configuration,
however the driver does not handle the interrupts correctlywhich will cause interrupts
being fired more frequently than that can be consumed, i.e. interrupt storm. As a com-
parison, the Ethernet adapter driver disables the interrupt first and re-enables it after the
interrupt processing is completed later in DPC (Deferred Procedure Call). This prevents
the situation when interrupts overwhelm the PCI bus.

2 Windows OS invokes the predefined driver callback functionsto service the I/O requests from user applications.

14

Table 1.Statistics on the co-verification of the Sealevel PIO-24 device/driver.

Size of the driver (# of lines) 1724
Size of the hardware interface model (# of lines) 1232

No Reduction Reduction
Rule Description Time Mem. Time Mem. Result

(Sec) (MB) (Sec) (MB)

DevD0EntryDriver and device will not go out-of-synchronization when starting. 391.3 293 214.3 181 Passed
DevD0Exit Driver and device will not go out-of-synchronization when stopping. 71.1 69 38.4 43 Passed
IsrCallDpc ISR will not queue DPC without reading specific hardware registers.Timeout N/A 700.5 218 Failed
InvalidReadDriver will not read any invalid input data. 589.4 132 91.3 66 Failed
ProperISR1ISR will clear the device interrupt-pending status before return. 58.9 58 35.2 43 Failed
ProperISR2ISR will not acknowledge the interrupt fired by other devices. 74.1 62 28.7 37 Failed

Table 2 presents the statistics on the verification of the Intel 82557/82558 based
PCI Ethernet adapter driver with its hardware interface model. CoVer detected three
bugs and proved five properties of the driver. For example, CoVer detects a bug that
violates the ruleDevD0Entry and reports an error trace where the callback function
EvtDeviceD0Entry returnsTRUE even if the driver fails to initialize the device
correctly. This is a direct violation of Windows device driver programming standards
and will cause the device unusable without the OS being notified. The error trace also
illustrates that the driver continues its attempts to initialize the device even after the
previous device operations have failed. This may cause the device permanently unac-
cessible. Compared to the PIO-24 device/driver, the Ethernet adapter device/driver have
more comprehensive functionalities and implementation, where the static partial order
reduction is clearly necessary for most of the rules to be even verified.

Table 2.Statistics on the co-verification of the Intel PCI Ethernet adapter device/driver.

Size of the driver (# of lines) 14406
Size of the hardware interface model (# of lines) 3518

No Reduction Reduction
Rule Description Time Mem. Time Mem. Result

(Sec) (MB) (Sec) (MB)

DevD0EntryDriver and device will not go out-of-synchronization when starting. 1328.3 758 367.1 182 Failed
DevD0Exit Driver and device will not go out-of-synchronization when stopping. Timeout N/A 206.6 143 Failed
IsrCallDpc ISR will not queue DPC without reading specific hardware registers. 64.1 99 39.9 79 Passed
ProperISR1ISR will clear the device interrupt-pending status before return. 48.9 59 32.6 52 Passed
ProperISR2ISR will not acknowledge the interrupt fired by other devices. 779.3 291 407.4 199 Passed
DoubleCUCDriver will not issue a command while the command unit is busy. Timeout N/A 602.4 238 Failed
DoubleRUCDriver will not issue a command while the receiving unit is busy. N/A Spaceout1797.3 231 Passed
ProperResetDriver uses a correct sequence to reset the device. Timeout N/A 86.9 71 Passed

7 Conclusion and Future Work

We have presented an efficient approach to reachability analysis of BPDS models for
HW/SW co-verification. The key idea of this approach is to reduce unnecessary state
transition orders between hardware and software, so there are fewer possibilities to be
explored in verification. We have implemented this approachin our co-verification tool,

15

CoVer, and successfully applied it to co-verify two Windowsdevice drivers with their
device models. CoVer proved seven properties and detected seven previously undis-
covered software bugs which can cause serious system failures. Evaluation shows that
the reduction can significantly scale co-verification. These results demonstrate that our
approach is very promising in ensuring the correct interactions between hardware and
software. For the next step, we plan to apply our approach to more devices and drivers.

Acknowledgement.This research received financial support from National Science
Foundation of the United States (Grant #: 0916968). We thankCon McGarvey, Onur
Ozyer, and Peter Wieland for evaluating our findings of device driver bugs.

References

1. Li, J., Xie, F., Ball, T., Levin, V., McGarvey, C.: An automata-theoretic approach to hard-
ware/software co-verification. In: Proc. of FASE. (2010)

2. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis (2002)
3. Kurshan, R.P., Levin, V., Minea, M., Peled, D., Yenigün,H.: Static partial order reduction.

In: Proc. of TACAS. (1998)
4. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., Ondrusek, B.,

Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers. In: Proc. of EuroSys.
(2006)

5. Kurshan, R.P., Levin, V., Minea, M., Peled, D., Yenigün,H.: Combining software and hard-
ware verification techniques. FMSD (2002)

6. Xie, F., Yang, G., Song, X.: Component-based hardware/software co-verification for building
trustworthy embedded systems. JSS80(5) (2007)

7. Monniaux, D.: Verification of device drivers and intelligent controllers: a case study. In:
Proc. of EMSOFT. (2007)

8. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecidable. ACM
Trans. Program. Lang. Syst. (2000)

9. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Appli-
cation to model-checking. In: Proc. of CONCUR. (1997)

10. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems - An Ap-
proach to the State-Explosion Problem. PhD thesis (1994)

11. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. Princeton University Press (1994)

12. Microsoft: Synchronizing interrupt code. In: MSDN: msdn.microsoft.com/en-
us/library/aa490313.aspx. (2009)

