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Abstract—Device drivers are a principal source of failures in
computer systems. Therefore, improving driver reliability greatly
improves overall system reliability. However, driver development
largely has to wait until a first stable version of the device
becomes available. This dependency often leaves not enough
time for driver validation. Recently, virtual machines and virtual
devices have found their way into early driver development and
validation. Virtual devices enable driver development even before
real devices become available and bring complete observability
and traceability that evade real devices. We present an approach
to static analysis of virtual devices which is central to achieving
observability and traceability. This approach exercises the device
model of a virtual device by symbolic execution. Based on the
result of symbolic execution, a concrete test case is generated for
each path through the device model, which has been exercised.
We have applied this approach to virtual devices of five network
adapters. The results show that this approach is feasible, efficient,
and useful.

Keywords-Static analysis, virtual device, symbolic execution,
test generation

I. INTRODUCTION

New computer systems, such as smart phones, tablets,

laptops and servers, are entering the marketplace at an ever-

accelerating pace. This brings pressures on product develop-

ment teams to shorten the time-to-market for these products.

Since every computer system comes with peripheral hardware

devices, a significant portion of development effort is devoted

to devices and their drivers.

Device drivers are one of the most critical parts of an

operating system (OS) kernel, but they are also one of the

least reliable parts. A driver failure causes the OS kernel, the

application, or both to crash or behave incorrectly. OS crashes

and the so-called "blue screens" are common experiences for

virtually every computer user. Most system failures are caused

by device drivers, for example, bugs in device drivers caused

85% of Windows XP crashes [1] while Linux drivers have up

to seven times the bug rate of other kernel code [2].

Therefore, driver development should start as early as pos-

sible to shorten product cycles and improve quality. However,

driver development largely has to wait until a first stable

version of the real device becomes available. This dependency

often leaves not enough time for driver validation. Moreover,

even when a real device is available, debugging the device-

driver combination is still a very challenging task. A real

device is a black box that can be observed solely by its input,

output and transfer characteristics without knowledge of its

internal workings. There are two major difficulties working

with real devices. Observability: Real devices can only be

observed through their fixed pin interfaces and their internal

states are generally not observable. Traceability: Once a device

error happens, it is difficult to trace what happens before the

error due to lack of information about device execution history.

Recently, virtual machines such as VMWare [3], QEMU [4],

VirtualBox [5] and Xen [6] have seen increasing use in

system development, deployment, and validation. They have

also found their way into device and driver development and

validation. In all these virtual machines, there are capabilities

for introducing virtual devices to emulate real devices needed

by the guest OS executing on the virtual machines. The virtual

machines usually include many virtual devices covering all

popular device categories such as buses, video adapters, and

network adapters. For some virtual machines such as QEMU,

a new virtual device can be easily introduced following the

same standard approach as those already included in the

virtual machines. Before the real device becomes available, the

developers can use virtual devices to shorten time-to-market in

the development of device and driver. An example is how Intel

used virtual devices to enable driver development for their 40G

network adapter before the device became available [7]. The

virtual machine used in this development is QEMU, which

includes a virtual device for a previous Intel network adapter,

E1000. A virtual device for the E40G was created based on the

E1000 virtual device and used to test and validate the E40G

driver being developed. Bugs were found in the driver using

the E40G virtual device, even before the E40G real device

became available.

Virtual devices not only enable early driver development.

Moreover, virtual devices are no longer black boxes as real

devices and bring complete observability and traceability.

Observability: Virtual devices are software components. De-

velopers have abilities to observe all variables, not only

interface variables but also internal states in virtual devices.

Traceability: Developers can record the initial states and all

inputs of virtual devices and are able to trace what happens

based on such information and debug errors. However, there

lacks a systematic way for achieving such observability and

traceability. Currently, developers usually observe virtual de-

vices when they are used in virtual machines at run-time.

Developers can observe paths triggered by run-time device

requests. However, it is easy to miss corner cases that are

seldom hit at run-time. Moreover, observing and tracing at run-
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time is a time-consuming process with high overheads: usually

many device requests are needed to trigger the behaviors to be

observed and traced, and recording device states and requests

tends to significantly slow down system operation. For the

reasons above, we need a systematic way to statically analyze

virtual devices to augment run-time observation and tracing.
This paper presents an approach to static analysis of virtual

devices. This approach exercises the device model of a virtual

device by symbolic execution to achieve better observability

and traceability. Based on the results of symbolic execution,

we generate concrete test cases for all paths through the device

model that is exercised. Moreover, we can replay test cases to

help developers better analyze and understand virtual devices.

Our approach needs to address the following challenges.

• Environment modeling. A virtual device by itself is not

a stand-alone program and can not be executed directly

by a symbolic execution engine. There are two issues

with the incompleteness of a virtual device. First, the

virtual device needs to be properly initialized and its

entry functions need to be properly exercised. Second,

the virtual device invokes libraries in its environment.

Therefore, we need a solution to enclose the device model

so that the symbolic execution engine can consume the

device model and perform accurate and efficient analysis.

• Symbolic execution engine adaptation. We will symbol-

ically execute device models using an existing symbolic

execution engine. This engine is not specially designed

for running device models while device models have

specific characteristics. Hence, we need to adapt the

engine so that the engine can execute device models

efficiently and provide more useful information.

• Result presentation. Symbolic execution can generate

symbolic inputs and path constraints. However, such

symbolic expressions are hard to understand and utilize

by general developers. We need a user-friendly way to

present the results of symbolic execution.

This work makes the following three contributions. First,

we generate harnesses for virtual devices and execute device

models of virtual devices symbolically. A virtual device and its

corresponding harness form a complete stand-alone program.

We modify an existing symbolic execution engine to adapt to

the characteristics of device models. We run this program with

this modified symbolic execution engine and explore as many

paths of this program as possible.
Second, we generate concrete test cases for all explored

paths based on the results of symbolic execution. As develop-

ers are often unfamiliar with symbolic expressions, a concrete

test case can give developers better understanding and control.

To utilize these test cases, our approach can execute a test case

using the symbolic execution engine forward and backward,

step by step. With this replay functionality, developers can also

inspect values of variables at each step.
Third, we have implemented this approach and evaluated

it on QEMU virtual devices for five widely-used network

adapters. This evaluation demonstrates that the approach is

feasible, efficient, and useful: the approach has been success-

fully applied to QEMU virtual devices, it can execute virtual

devices symbolically and generate concrete test cases to help

developers better understand behaviors of virtual devices, and

the performance overhead is modest.

The remainder of this paper is structured as follows. Section

2 provides the background of this work. Section 3 presents

our approach with its design and implementation. Section 4

elaborates on the five case studies we have conducted and

discusses the results. Section 5 reviews related work. Section

6 concludes and discusses future work.

II. BACKGROUND

In this section, we discuss three relevant concepts: virtual

machine, virtual device, and symbolic execution. We illustrate

what a virtual machine is and why we chose the QEMU

virtual machine as our environment for virtual devices. We will

introduce an example virtual device in detail so that the reader

can understand the basic structure of a virtual device. Symbolic

execution executes a program with symbolic values as inputs

instead of concrete ones and represents the values of program

variables as symbolic expressions. Our approach exercises the

device model of a virtual device by symbolic execution and

generates concrete test cases based on constraints obtained by

symbolic execution.

A. Virtual Machine

A virtual machine is a software implementation of a

machine that executes programs like a physical machine.

QEMU [4] is a generic and open source machine emulator.

It can load and execute a variety of unmodified target OS

such as Windows and Linux and all their applications in a

virtual machine. It is widely used today for many applications:

system development, debugging, profiling, security analysis,

etc. QEMU also provides a set of device models such as video

devices, audio devices, and network devices. A new virtual

device can be easily introduced into QEMU following the

same standard approach as those included. We applied our

approach to the QEMU virtual devices for five well-known

network adapters.

B. Virtual Device

To facilitate understanding of the virtual device concept,

we illustrate it with the E1000 virtual device from QEMU.

As shown in Figure 1, this virtual device conforms to the PCI

(Peripheral Component Interconnect) standard [8] and has the

following components:

1) The PCI device state, E1000State, which keeps track

of the PCI configuration, interface registers and internal

variables, such as dev, mac_reg, rxbuf_size respec-

tively;

2) The PCI interface functions which includes a set of I/O

interface functions such as "e1000_mmio_write" which

are invoked by the QEMU virtual machine when the

driver issues I/O commands;

3) The device transaction functions such as "start_xmit"
which are invoked by the I/O interface functions to
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typedef struct E1000State_st {
PCIDevice dev; //PCI configuration
......
uint32_t mac_reg[0x8000]; //Interface registers
......
uint32_t rxbuf_size; //Internal variables
......

} E1000State;

// Interface register function: write register
static void e1000_mmio_write(void *opaque,

target_phys_addr_t addr, uint32_t val)
{

E1000State s = (E1000State *)opaque;
......
if (index == TRANSMIT) {

mac_reg[index] = val;
start_xmit(s); //Invoking transaction function

}
......

}

// Transaction function: transmit packets
static void start_xmit(E1000State *s)
{

......
set_irq(s->dev.irq[0], 1); //Fire interrupt

}

// Environment function: receive packets
static ssize_t e1000_receive(VLANClientState *nc, const

uint8_t *buf, size_t size)
{

......
set_irq(s->dev.irq[0], 1); //Fire interrupt

}

Fig. 1. QEMU E1000 virtual device code structure

perform the I/O commands and may fire interrupts by

calling "set_irq";
4) The environment input functions such as

"e1000_receive" which are invoked by QEMU to

pass environment inputs such as a packet received to

the virtual device and may also fire interrupts by calling

"set_irq".

Both PCI interface functions and environment input func-

tions are device entry functions which are invoked by QEMU

to trigger device functionalities.

C. Symbolic Execution and KLEE Engine

Symbolic execution [9] executes a program with symbolic

values as inputs instead of concrete ones and represents the

values of program variables as symbolic expressions. Conse-

quently, the outputs computed by the program are expressed

as a function of input symbolic values. The symbolic state of

a program includes the symbolic values of program variables,

a path condition, and a program counter. The path condition

is a boolen formula over the symbolic inputs; it accumulates

constraints which the inputs must satisfy for the symbolic

execution to follow the particular associated path. The program

counter points to the next statement to be executed. A symbolic

execution tree captures the paths explored by the symbolic

execution of a program: the nodes represent the symbolic

program states and the arcs represent the state transitions.

int f(int x)
{

if(x < 0)
return -x

;
if(x == 1)

return 2;
return x;

}

x < 0

x = *

x == 1

return 2 return x

return -x FALSE

FALSE

TRUE

TRUE

x < 0 x 0

x == 1 x 1

Fig. 2. An example of symbolic execution

We use the program in Figure 2 to illustrate how symbolic

execution is conducted. At the entry, x has a symbolic value,

i.e., any value allowed by its type (in this case, integer).

At each branching point, the path condition is updated with

conditions on the inputs to select between the two alternative

paths. For this simple example, we can get three paths based

on symbolic execution. Each path will have its own path

condition, for example, x < 0 for the left path.

KLEE [10] is a symbolic execution engine built on the

LLVM [11] infrastructure. Given a C program, KLEE exe-

cutes the program symbolically and generates constraints that

exactly describe the set of values possible on a given path

through the program. KLEE is one of the latest tools for

symbolic execution that has produced tangible results and

found bugs in already heavily tested software. It can achieve

very high code coverage at a fraction of the costs if it had

been done manually and can potentially find serious security

bugs.

III. SYMBOLIC EXECUTION OF VIRTUAL DEVICES

A. Overview

Virtual devices are software components in virtual ma-

chines. Compared to their hardware counterparts, it is easier

to achieve observability and traceability on virtual devices.

Instead of executing concretely as part of the virtual machine,

the device model of the virtual device can be exercised by

a symbolic execution engine. Such execution can be utilized

to statically analyze virtual devices. The device state and all

inputs to the virtual device are made symbolic. The execution

paths through the virtual device are explored symbolically. For

each execution path explored, a concrete test case is generated.

The device model is then executed with the concrete test

case to compute the relevant device state information along

this path. Our approach includes four steps that are shown in

Figure 3. We now discuss each step in detail.

Harness
Generation

Symbolic
Execution

Test Case
Generation

Test Case
Replay

Fig. 3. Workflow for static analysis of virtual devices
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B. Harness Generation

For symbolic execution of virtual devices, we adapt KLEE

to handle the non-deterministic entry function calls and sym-

bolic inputs to device models. Since the virtual device by

itself is not a stand-alone program, in order for KLEE to

execute a virtual device, a harness must be provided for the

virtual device. A key challenge here is how to create such a

harness. This harness has to be faithful so that the symbolic

execution of the virtual device will not generate too many

paths infeasible in the real device. On the other hand, it has

to be simple enough so that KLEE can handle the symbolic

execution efficiently. To an extreme, the complete QEMU with

the guest OS can serve as the harness which, however, is

impractical for KLEE to handle.

We have developed two approaches for harness generation

as follows:

• Manual generation for major device categories. Since

devices fall into device categories depending on their

interface types, such as PCI and USB, and on their func-

tionalities, such as network adapters and massive storage

devices, we started with creating harnesses for major

device categories, for instance, PCI network adapters, and

improved such a harness as we experiment on a number

of devices in this category. Manual harness generation

involves examining how QEMU invokes the virtual de-

vice, what QEMU APIs that a virtual device invokes, and

what these APIs invoke recursively, and decide what to

include. At times, it may be necessary to make a function

produce non-deterministic outputs by throwing away its

implementation.

• Automatic generation. Based on our experience with man-

ual generation, we designed an automatic algorithm for

harness generation. This algorithm analyzes the call graph

originated from the virtual device, follows the call graph

to retrieve the functions invoked by the virtual device, and

decides whether to include their implementation. We base

this algorithm on two key observations: (1) the size of

QEMU is relatively small compared to that of an OS; (2)

it is often sufficient to include the implementations of the

first level functions invoked. This algorithm also includes

a refinement loop which adjusts what to include based on

the symbolic execution, for instance, if making a function

non-deterministic leads to an extra large number of paths,

the function implementation may need to be included.

The test harness should include the following parts:

• Declarations of the state variable and parameters of entry
functions. A virtual device is not a stand-alone program.

If a virtual device is running in a virtual machine, it

will register its entry functions with the virtual machine.

Moreover, the virtual machine will help the virtual device

manage its state variables. Every time an entry function

is invoked, the state variables and necessary parameters

of the function will be transferred to the function from

the virtual machine. In order to exercise a virtual device,

we need to handle the state variables and function param-

eters. Hence, we add declarations of state variables and

inputs of entry functions to the harness. An example is

shown in Figure 4. This example is part of the harness

for the E1000 virtual device. In the first declaration,

we define svd_E1000State as the state variable of the

E1000 virtual device. The remaining declarations define

necessary parameters for the entry functions.

// The device state
E1000State svd_E1000State;

// Parameters of entry functions
int svd_deviceEntry;
size_t svd_size_t;
target_phys_addr_t svd_target_phys_addr_t;
uint32_t svd_uint32_t;
uint8_t svd_uint8_t_s65536[65536];
NICState nicState;

Fig. 4. State variables and input parameters of entry functions

• Code for making the state variable and parameters of
entry functions symbolic. In order to cover as many paths

as possible in an entry function, we need to make all

inputs of the entry function symbolic. The inputs of

an entry function should contain the state variable and

necessary parameters. We implement a specific function

"svd_make_symbolic" in the engine to initialize the

inputs symbolically. An example is shown in Figure 5.

This example is part of the harness for the E1000 virtual

device. This example shows that the state variable and

parameters of entry functions are made symbolic before

they are used.

// Make the device state symbolic
svd_make_symbolic(&svd_E1000State, sizeof(

svd_E1000State), "svd_E1000State");

// Make parameters of entry functions symbolic
svd_make_symbolic(&svd_deviceEntry, sizeof(

svd_deviceEntry), "svd_deviceEntry");
......

Fig. 5. Initializing symbolic variables

• Non-deterministic calls to virtual device entry functions.
For a real device, there are several ways for the OS

and the environment to communicate with it. Simi-

larly, virtual devices provide all kinds of entry functions

for communicating with the OS and the environment.

To analyze a virtual device, we go through all entry

functions with symbolic inputs. We define a variable

svd_deviceEntry in the harness and make it symbolic.

With this symbolic variable, we make non-deterministic

calls to all entry functions. An example is shown in

Figure 6. This example is part of the harness of the E1000

virtual device. There are four main entry functions in the

E1000 virtual device. Functions "e1000_mmio_wirte"
and "e1000_mmio_read" are invoked by the E1000

driver to write to or read from the device registers.
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Function "e1000_set_link_status" is invoked by the

environment to notify the device whether there is a

physical link to the device. Function "e1000_receive"
is invoked by the environment to inform the device there

is a new packet to receive.

// Make non−deterministic choice symbolic
svd_make_symbolic(&svd_deviceEntry, sizeof(

svd_deviceEntry), "svd_deviceEntry");

// Non−deterministic calls to interface functions
switch(svd_deviceEntry) {
case MMIO_WRITE:

e1000_mmio_write((void *)&svd_E1000State,
svd_target_phys_addr_t, svd_uint32_t);

break;
case MMIO_READ:

e1000_mmio_read((void *)&svd_E1000State,
svd_target_phys_addr_t);

break;
case NIC_LINK_STATUS:

e1000_set_link_status(&nicState.nc);
break;

case NIC_RECEIVE:
e1000_receive(&nicState.nc, (const uint8_t *)

svd_uint8_t_s65536, svd_size_t);
break;

default: break;
}

Fig. 6. Non-deterministic calls to virtual device entry functions

• Stub functions for virtual machine API functions invoked
by virtual devices. Virtual devices often invoke API

functions of virtual machines to achieve certain func-

tionalities. Stubs for these functions need to be provided

to complete the harness and are created manually or

automatically as discussed above. The stub functions for

the E1000 virtual device are not shown due to space

limitation.

C. Symbolic Execution

Before we discuss the details of generating test cases using

symbolic execution, we first introduce the definition of a test

case.

Definition 1: A test case is denoted as tc =

〈state, para, choice〉, where state is a concrete device

state, para includes a set of concrete values for parameters

of entry functions, and choice saves the concrete value for

non-deterministic choice.

As shown in Figure 6, the device state svd_E1000State,
the parameters of entry functions and the choice

svd_deviceEntry are all made symbolic in the harness. We

then execute virtual devices with these symbolic variables.

For each explored path, we can get symbolic constraints for

these variables. Then a concrete case is generated based on

the constraints with the help of STP constraint solver [12].

Therefore, a test case includes three parts: a concrete device

state, concrete parameters of entry functions and a concrete

choice.

We use KLEE as our symbolic execution engine to exercise

virtual devices symbolically. To improve efficiency of sym-

bolic execution and realize the device specific characteristics,

we modify KLEE to address four technical challenges for

static analysis of virtual devices.

1) Path Explosion Problem: Path explosion is a major

limitation for symbolic execution to thoroughly test software

programs. The number of paths through a program is roughly

exponential in program size. This problem limits the extent to

which large software can be thoroughly tested. The problem

also exists with executing virtual devices symbolically.

int x=10, i=0;

while(i++ < x){
......

}

int x, i=0;
svd_make_symbolic(&x, sizeof(x), "x");
while(i++ < x) {
......

}

Fig. 7. An example of symbolic loop condition

We can apply two constraints when executing the virtual

device to combat the path explosion problem. First, we add

a loop bound to each loop whose loop condition is a sym-

bolic expression. As shown in Figure 7, the loop condition

"i + + < x" on the left side is always a concrete value.

However, the loop condition "i + + < x" on the right side

is a symbolic expression. We add a loop bound to limit the

execution iterations of the loop. With the loop bounds, the user

controls the depth of each loop explored. Currently, we add

the loop bounds manually in virtual devices. This is practical

since there are only a few loops in our analysis of five virtual

devices. Second, we can add a time bound to ensure that

symbolic execution will terminate in a given amount of time. If

the symbolic execution does not completely finish within the

given time bound, there may be unfinished paths. For such

paths, we still generate test cases with the path constraints

obtained so far.

2) Similar Trace Problem: Given a sample program shown

in Figure 8, obviously there are two paths in the program and

each path constraint is as follows:

int f(int x)
{

if(x == 1 || x == 2)
return 0;

return 1;
}

Fig. 8. Sample program for traces covering the same statements

Path 1 : x == 1 || x == 2. (1)

Path 2 : x �= 1 && x �= 2. (2)

To execute a program with KLEE, we first compile it to

LLVM bitcode. However, LLVM compiler will decompose

the "if" conditional expression into two seperate branches.
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KLEE operates on LLVM bitcode and finds three traces based

on the LLVM bitcode. Each path constraint is as follows:

Path 1 : x == 1. (3)

Path 2 : x == 2. (4)

Path 3 : x �= 1 && x �= 2. (5)

The first two traces are very similar, covering the same

sequence of C code statements. Since such decomposition is

very common, there are many such similar traces. Sometimes,

it is desired to merge such traces to simplify the trace results.

We modified KLEE to implement an algorithm for simplifying

trace results, which shown in Algorithm 1.

Algorithm 1 TRACE_RESULT_SIMPLIFICATION (sut, seq, k)

1: C ← ∅, P ← ∅, Rs ← ∅, Rr ← ∅;
2: S ←Make_Symbolic_State ( );

3: V ←Make_Symbolic_Parameters ( );

4: C ← Symbolic_Execution (S, V ); //First round
5: for each path c ∈ C do
6: tc← Generate_Concrete_Test_Case (c);
7: p← Concrete_Execution (tc); //Second round
8: if (p ∈ P ) then
9: Rr ← Rr ∪ {〈p, tc〉};

10: else
11: P ← P ∪ {p};
12: Rs ← Rs ∪ {〈p, tc〉};
13: Rr ← Rr ∪ {〈p, tc〉};
14: end if
15: end for
16: return Rs, Rr;

We run a device model in two rounds. In Algorithm 1, C
is a temporary set for saving all constraints for each path

computed by symbolic execution, P is a temporary set for

saving all unique path trace information, Rs is a set for saving

all simplified analysis results, and Rs is a set for saving all

regular analysis results, In the first round, we run the device

model with symbolic state S and parameters V using symbolic

execution. We save all the path constraints in the set C.

Based on the constraints of each path c generated by symbolic

execution, we produce a concrete test case tc for each path. In

the second round, we run the device model concretely with tc
to collect the path trace p. If p covers the same code statements

that has already existed in the path trace set P , we save 〈p, tc〉
in the regular analysis results Rr; otherwise, save p in P and

save 〈p, tc〉 in both Rr and Rs. Hence, there are no two traces

covering the same sequence of C code statements in Rs. The

users can check the regular and simplified analysis results for

different purposes.

Moreover, this algorithm collects complete path traces for

unfinished paths. If the analysis does not terminate in the given

time bound, there are some unfinished paths. Based on the path

constraints obtained for the unfinished paths, we generate test

cases for these paths in the first round. In the second round of

concrete execution, we run these test cases and generate the

complete path trace for each test case.

3) Environment Interaction Problem: A virtual device is

a software component and may invoke outside functions to

interact with its environment. We divide such interactions into

two categories based on whether this function call affects the

values of variables in virtual devices. Then we use different

mechanisms to handle them respectively.

• If the function call does not affect the values of variables

in virtual devices, we ignore it. We modified the symbolic

execution engine to realize this. When such a function

call happens, the engine ignores it and gives a warning

message.

• If the function call may affect the values of variables

in virtual devices, we implement this function in our

stubs. Since there are not many such function calls

for a category of virtual devices, such manual effort is

acceptable.

With the above three problems addressed, we can now

execute the device model of a virtual device symbolically.

After the symbolic execution, we can obtain path constraints

for each path. For the small example shown in Figure 2,

there are three possible paths and constraints of each path are

shown below:

Path 1 : x < 0. (6)

Path 2 : x == 1. (7)

Path 3 : x ≥ 0 and x �= 1. (8)

4) Device-specific Characteristics Adaption Problem: Vir-

tual devices have some specific characteristics which are

different from common software programs. First, devices have

interface registers which are accessed by drivers to control

and operate the devices. It’s the generic way for developers

to debug the device by checking device register access when

there is a bug. So it’s important to collect such information to

help developers better understand the virtual device execution.

Second, a hardware interrupt is an alerting signal which

notifies the driver that some work has been done by the device,

such as finishing transmitting a network packet. It’s critical

for developers to know what state and inputs can trigger the

interrupt, and check whether such interrupt conforms to the

specification.

We modify the symbolic execution engine to capture the

above two kinds of device-specific information. First, we

modify the engine to collect register access information. For

each explored path, the engine summarizes what registers

are read or written, saves the values of accessed registers,

and shows what registers are condition variables. Second, we

modify the engine to hook the interrupt function "set_irq"
to collect interrupt information. Then the engine reports what

state and inputs trigger or clear the interrupt. The user can

check the state and inputs to see whether the interrupt is

expected according to the specification.
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D. Test Case Generation

The symbolic execution generates path constraints. How-

ever, these symbolic expressions are hard to understand and

utilize by general developers. We generate concrete test cases

for each explored path based on the symbolic path constraints

of symbolic execution using STP constraint solver [12]. These

concrete test cases can help developers easily understand initial

inputs and path constraints of each path.

Based on path constraints shown in Section III-C, we can

generate concrete test cases. Three corresponding test cases

generated are as follows:

Path 1 : x = −1. (9)

Path 2 : x = 1. (10)

Path 3 : x = 2. (11)

Certainly a test case generated for a path of a virtual device

will be much more complex than this example. However, the

idea is similar.

E. Test Case Replay

Finding paths using the symbolic execution engine and

generating test cases is only half the story. We can also replay

the concrete test case for an exercised path so that developers

can get better understanding of this path. A generated test case

provide the information that can make the engine follow the

exact same code path that the engine did while executing the

code symbolically. This is achieved by instantiating symbolic

variables to concrete values that satisfy the constraints for the

path.

Our approach enables a developer to navigate backward

and forward, step by step through the execution based on a

concrete test case. We employ KLEE to help replay test cases

using the algorithm shown in Algorithm 2.

In the algorithm 2, S is a temporary stack for saving all

states along the replay process, and s is a temporary variable

for saving the current state of the virtual device. The algorithm

takes a concrete test case tc as the input, and then extracts

the device state s, the choice c and parameters V of entry

functions from tc. First, the current state s is pushed into S.
Then the program waits for the user input. If the user input is

forward, we execute one instruction, save the new state as

s and push s into S. If the user input is backward, we pop

out one state from S and save it as s. At any point, a user

can inspect the value of any variable including both interface

registers and internal variables. This algorithm is sufficiently

responsive to support interactive replay. This interactive replay

can help developers better understand which path is executed,

what variables are changed in the path, and what inputs and

initial state are used to trigger the path, and inspect values of

variables at any step.

Algorithm 2 TEST_CASE_REPLAY (tc)

1: S ← Initialize_State_Stack ( );

2: s← Extract_Concrete_State (tc);
3: c← Extract_Concrete_Choice (tc);
4: V ← Extract_Concrete_Parameters (tc);
5: S.push (s);
6: input← null;
7: while (true) do
8: if !(input = Check_user_input ( )) then
9: Sleep ( ); continue;

10: else
11: input← null;
12: switch (input) do
13: case forward :
14: s← Execute_instruction (s, c, V );

15: S.push (s); break;
16: case backward :
17: s← S.pop ( ); break;
18: case inspectvariables :
19: Inspect_variables (s); break;
20: case exit : return;
21: case default : continue;
22: end switch
23: end if
24: end while

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our approach from the following

three key aspects:

1) Feasibility. Can virtual devices from popular virtual

machines and for real world devices be analyzed using

our approach? How much extra effort is needed to apply

our approach to analyze virtual devices?

2) Efficiency. How many paths can be explored using our

approach in a given amount of time? What is the

performance overhead such as memory usage?

3) Usefulness. Can our approach help developers achieve

better observability and traceability? Can we provide a

user-friendly tool for our approach?

Based on analyzing the QEMU virtual devices of five

popular network adapters, our results demonstrate that our

approach can:

1) Be readily applied to the device models of all five virtual

devices. To execute the device models, we only need

to create a small harness for each virtual device and

implement a common stub for all virtual devices in the

network adapter category.

2) Explore numerous paths in a small amount of time, e.g.,

five minutes, and generate the corresponding concrete

test cases. Our approach also has modest performance

overhead.

3) Provide a user-friendly interface to assist developers in

achieving better understanding of virtual device behav-

iors.
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A. Feasibility

QEMU includes many virtual devices, which provides a

broad range of test cases for our approach. We applied our

approach to five virtual devices for popular network adapters,

which are released with QEMU, as shown in Table I.

TABLE I
FIVE VIRTUAL DEVICES FOR NETWORK ADAPTERS ANALYZED

Device Vendor Description

E1000 Intel Pro/1000 Gigabit Ethernet Adapter

EEPro100 Intel Pro/100 Ethernet Adapter

PCNet AMD PCNet32 10/100 Ethernet Adapter

RTL8139 Realtek PCI Fast Ethernet Adapter

Tigon3 Broadcom BCM57xx-based Gigabit Ethernet Adapter

To execute virtual devices symbolically, we manually cre-

ated a simple harness for each virtual device. We also created

a common library of stub functions for all five virtual devices.

The stub library has 481 lines of C code. More details about

the device models and their harnesses are given in Table II.

All device models are non-trivial in size ranging from 2099

lines to 4648 lines of C code. All harnesses are relatively

easy to create, having about 100 lines only. Only several hours

are needed to create and fine-tune each harness and the stub

library.

TABLE II
SUMMARY OF FIVE DEVICE MODELS

Device

Virtual Device Harness

Lines of Number of Lines of Number of

Code Functions Code Entry Functions

E1000 2099 53 74 4

EEPro100 2178 70 85 7

RTL8139 3528 110 111 13

PCNet 2139 50 112 13

Tigon3 4648 34 80 4

The experiments were performed on a laptop with an 8-

core Intel(R) Core(TM)2 i7 CPU, 8 GB of RAM, 320GB and

7200RPM IDE disk drive and running the Ubuntu Linux OS

with 64-bit kernel version 2.6.38.

B. Efficiency

To evaluate the performance overhead of our approach, we

execute these virtual devices under five configurations which

are shown in Table III. The five configurations are divided into

two groups based on different loop bound and time bound.

The first group contains configurations 1, 2 and 3, for which

we select the same loop bound and different time bounds. The

second group contains configurations 1, 4 and 5, for which we

select different loop bounds and also different time bounds.

Table III illustrates the different numbers of paths explored

in simplified results and memory usages for running the five

virtual device under the five configurations. With the given

loop bounds and time bounds, our approach is able to explore

numerous paths with modest memory usages. With the same

TABLE III
SUMMARY OF EVALUATION RESULTS

(NUMBER OF PATHS EXPLORED / MEMORY USAGE (MB))

Device

Config 1 Config 2 Config 3 Config 4 Config 5

loop bound: 1 loop bound: 1 loop bound: 1 loop bound: 2 loop bound: 3

time: 150 sec time: 300 sec time: 600 sec time: 300 sec time: 600 sec

Paths Mem. Paths Mem. Paths Mem. Paths Mem. Paths Mem.

E1000 318 216 545 1006 601 1229 427 626 669 1891

EEPro100 207 41 534 115 1087 328 469 82 590 126

RTL8139 457 76 487 82 503 86 493 82 508 87

PCNet 279 74 424 139 646 262 417 139 601 262

Tigon3 150 172 150 172 150 172 315 817 366 1541

loop bound, more paths can be explored with a larger time

bound. With a larger loop bound, we can cover new paths

with multiple loop iterations. However, each path may take

different amount time to explore. A path containing multiple

loop iterations often takes more time to explore. Therefore, in

some test runs, for instance, PCNet, it is possible to get few

paths with the same time bound but a larger loop bound.

Moreover, the analysis terminates before the time limit in

some test cases. For example, it is possible to explore all paths

in the Tigon3 virtual device when the loop bound is 1. The

actual time needed is 78 seconds to cover 150 paths.

318SimplifiedE1000

749Regular

207SimplifiedEEPro100

750Regular

457SimplifiedRTL8139

751Regular

279SimplifiedPCNet

750Regular

150SimplifiedTigon3

315Regular

0 100 200 300 400 500 600 700 800

Fig. 9. Number of paths in both simplified and regular results

To evaluate the trace result simplification algorithm, we

compare numbers of traces in both the simplified and regular

results. The data is collected under Configuration 1 and shown

in Figure 9. It can be observed that with the simplification

algorithm, we can significantly reduce the number of traces

included; therefore, making it easier for developers to exam

the traces.

C. Usefulness

Our approach assists developers in analyzing a virtual

device and generating test cases. A test case contains the

concrete values for the device state and inputs that can be

used to replay the corresponding path symbolically explored.

Replaying the test case enables developers better observe and
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Fig. 10. Test case replay GUI

trace any variable change in the virtual device along this path.

Developers can execute a device model based on a concrete

test case back and forth, step by step and observe variable

changes at each step. Developers can also inspect values of all

virtual device variables easily at any time and check whether

the state conforms to the specification. With such observability

and traceability, developers can understand what paths exist

and get a better understanding of the device behaviors.

We have implemented a RCP-based (Eclipse Rich Client

Platform) Graphical User Interface (GUI) to assist developers

in replaying test cases, which is illustrated in Figure 10.

We have demonstrated our tool to industry developers. The

feedbacks from these developers are that our tool is useful, can

provide in-depth knowledge about virtual devices, and they are

willing to trial our tool.

V. RELATED WORK

Recently virtual devices are widely used for software val-

idation. Intel has utilized a network virtual device to enable

early driver development [7], and bugs were found in the driver

using the virtual device. A wireless network virtual device was

created for testing and fuzzing of wireless device drivers [13],

and timing difficulties inherent to traditional 802.11 fuzzing-

techniques have been solved. Virtual devices bring complete

observability and traceability to support software validation,

we present an approach to static analysis of virtual devices to

help developers better understand virtual devices.

There has been much recent work on using symbolic

execution to automatically generate test inputs, leading to

software testing tools such as Java PathFinder [14], CUTE

and jCUTE [15], CREST [16], BitBlaze [17], DART [18], and

SAGE [19]. These tools basically follow the same approach

as KLEE in solving a path’s constraints to generate a test

case and differ in the specifics of symbolic execution and

test case generation. Mixed-model execution [15], [18], com-

bining concrete and symbolic execution, has also been used

to optimize symbolic execution efficiency. In our approach,

we applied symbolic execution to a special type of programs,

virtual devices, utilized characteristics of virtual devices to

improve symbolic execution effectiveness, generated test cases

characterizing paths through virtual devices, and provided

facilities for replaying these paths with the generated test cases

to assist developers in better tracing and understanding of

virtual devices.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an approach to static analysis of virtual

devices, which is central to achieving observability and trace-

ability over virtual devices. We have evaluated our approach on

five network virtual devices. The case studies and evaluations

demonstrate that our approach is feasible, efficient and useful:

it has been successfully applied to QEMU virtual devices, it

can execute virtual devices symbolically and generate concrete

test cases, it can replay concrete test cases to help developers

better understand behaviors of virtual devices, and its perfor-

mance overhead is modest.

Our future research will explore the following three di-

rections. (1) We will investigate how to set loop bounds

automatically without instrumenting the source code of virtual

devices. (2) We will research how to better utilize the results of

static analysis. Based on the analysis results, we will develop

test coverage metrics that is suitable for virtual devices and

automatic test generation algorithms for testing drivers with

virtual devices based on these metrics. (3) We will research
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how to utilize symbolic execution of virtual devices at run-

time with the virtual machine for step-by-step debugging and

assertion checking.
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