Theoretical Computer Science 412 (2011) 1606-1613

P

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Realization and synthesis of reversible functions

Guowu Yang?, Fei Xie®, William N.N. Hung “*, Xiaoyu Songd, Marek A. Perkowski 9

2 School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
b Department Computer Science, Portland State University, Portland, OR 97207, USA

¢ Synopsys Inc., Mountain View, CA 94043, USA

d Department Electrical & Computer Engineering, Portland State University, Portland, OR 97207, USA

ARTICLE INFO ABSTRACT

Article history: Reversible circuits play an important role in quantum computing. This paper studies the
Received 3 July 2009 realization problem of reversible circuits. For any n-bit reversible function, we present a
Received in revised form 28 July 2010 constructive synthesis algorithm. Given any n-bit reversible function, there are N distinct

Accepted 14 November 2010

. . . . < on
Communicated by M. Hirvensalo input patterns different from their corresponding outputs, where N < 2", and the other

(2" — N) input patterns will be the same as their outputs. We show that this circuit can
be synthesized by at most 2n - N ‘(n — 1)’-CNOT gates and 4n? - N NOT gates. The time

Iég,‘évrosrigfé logic and space complexities of the algorithm are £2(n - 4") and £2(n - 2"), respectively. The
Group theory computational complexity of our synthesis algorithm is exponentially lower than that of
Permutation breadth-first search based synthesis algorithms.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Reversible computing provides a way to improve the energy efficiency beyond the von Neumann-Landauer limit [1,2].
It has been shown that any computing system of irreversible logic gates leads inevitably to energy dissipation [2-4]. To
avoid power dissipation, circuits must be constructed [3,4] from reversible gates. Reversible circuit plays an important role
in quantum computing [5,6]. There is a lot of research [7,8,4,6,9-18] on the construction of reversible logic gates.

A fundamental question on reversible logic is what kind of reversible circuits can be implemented, given a library of
reversible logic gates. In this paper, we show that any reversible logic function with n (n > 2) bits can be constructed by
NOT and ‘(n—1)’-CNOT gates. We also investigate the realization problem of 3-bit reversible circuits specifically. Using group
theory, we present two sets of new 3-bit reversible logic gates. We show that any 3-bit reversible logic circuit is realizable
by cascading NOT and Feynman gates, and at most one instance of the proposed gates. We present a novel, concise and
constructive proof based on group theory. Our synthesis algorithm is based on a constructive proof, where the numbers
of ‘(n — 1)’-CNOT and NOT gates required in the realization are bounded by 2n - N and 4n? - N, respectively, where N is
the number of distinct input patterns that are different from their corresponding output patterns. Our provable synthesis
algorithm outperforms search based approaches. The time complexity of our algorithm is §2(n - 4"). In contrast, a search
based synthesis algorithm may have a worst case time complexity of (2")!.

The rest of the paper is organized as follows. In Section 2, we present definitions of reversibility, permutation, and
some elementary reversible logic gates. Then, in Section 3, we proceed to prove a few lemmas for n-bit reversible gates
and subsequently prove that every reversible function can be synthesized within our upper bounded number of gates. To
showcase the practicality of our proof, we rephrase the proof as a synthesis algorithm in Section 4 and present some synthesis
examples. We analyze the complexity of our algorithm in Section 5. Our conclusion is given in Section 6.

* Corresponding author. Tel.: +1 650 584 5204.
E-mail address: william_hung@alumni.utexas.net (W.N.N. Hung).

0304-3975/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.11.031

http://dx.doi.org/10.1016/j.tcs.2010.11.031
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:william_hung@alumni.utexas.net
http://dx.doi.org/10.1016/j.tcs.2010.11.031

G. Yang et al. / Theoretical Computer Science 412 (2011) 1606-1613 1607

A NOT A

Fig. 1. NOT gate.

A o A

B o B

E <> ABCD xor E

Fig. 2. 4-CNOT gate.

2. Preliminaries

In this section, we introduce some basic concepts and results on permutation group theory from [19] and binary reversible
logic from [20-22].

Definition 1 (Binary Reversible Gate). Let B = {0, 1}. Given any binary logic circuit f with n inputs and outputs, we can
denote it as a binary multiple-output function f : B — B".Let (By,...,B;) € B"and (Py, ..., P,;) € B" be the input and
output vectors, where By, . . ., B, are input variables and Py, . . ., P, are output variables. There are 2" different assignments
for the input vectors. A binary logic circuit f is reversible if it is a one-to-one and onto function (bijection). A binary reversible
logic circuit with n inputs and n outputs is also called an n-bit binary reversible gate. There are (2")! different n-bit binary
reversible circuits.

We introduce a permutation group [23,21,19] and its relationship with reversible circuits.
A mapping s : M — M can be written as:

di,dy, ..., d
s=(1, d2 k). 1)
di,, diy, ..., d;

Here we use a product of disjoint cycles as an alternative notation for a mapping [19]. For example,

(dh dy, ds3, d4, ds, ds, d7, dg, dg)
dy, dy, d7, dy, ds, dg, d3, ds, dg

can be written as (d;, d4)(ds, d7)(ds, dg). Denote “()" as the identity mapping (i.e., direct wiring) and call this the unity
element in a permutation group. The inverse mapping of mapping f is denoted as f ~!. Per convention, a product f * g of two
permutations applies mapping f before g.

An n-bit reversible circuit is a permutation in Sy», and vice versa. Cascading two gates is equivalent to multiplying two
permutations in Syn. Thus, in what follows, we will not distinguish an n-bit reversible circuit from a permutation in Syn.

(2)

Definition 2 (NOT Gate). A NOT gate N; connects an inverter to the jth wire,i.e: P =B;® 1; P; =B;, ifi #j,1 <j<n.
An example NOT gate is shown in Fig. 1.

Definition 3 (‘n — 1-CNOT Gate). A ‘n — 1’-Controlled-NOT (CNOT) gate C; is defined as follows:

o If m # j, then Py, = G(By) = Bp.
e If m =j,and B; = 1foralli # j, then P; = Cj(B;) = B; ® 1, else, P; = B;.

A 1-CNOT gate is also called a Feynman gate. A 2-CNOT gate is also called a Toffoli gate. A ‘n— 1'-CNOT gate is a generalized
Toffoli gate where n inputs control the output of another input. An example 4-CNOT gate is shown in Fig. 2.

1608 G. Yang et al. / Theoretical Computer Science 412 (2011) 1606-1613

For Feyman gates, we also use Fe; j to denote the gate:

o Ifm= i, then P, = B; @Bj
e If m # i, then P, = By,.

On 3-bit circuits, the gate can be represented as the following permutation: Fe;, = (3, 4)(7, 8). Similarly, we have:
Fei13 = (5,6)(7,8),Fey1 = (2,4)(6, 8), Fea3 = (5,7)(6, 8), Fes .1 = (2,6)(4, 8), Fes» = (3,7)(4, 8).

Definition 4 (SWAP Gate). A SWAP gate Ex; ; is defined as follows:

e Ifm =i, then Py, = B;.
e Ifm = j, then P, = B;.
e Ifm #1i,j, then P,, = By,

3. ‘n’-bit theoretical results

In this section, we show the process to constructively synthesize any ‘n’-bit reversible circuit by NOT and ‘n — 1’-CNOT
gates without ancilla bits. It will be used in our synthesis algorithm in Section 4.

Lemma 1. All permutations can be generated by some ‘2’-cycles.

Proof. Any permutation can be written as a product of some disjoint cycles. So we only need to show that every cycle
(dq, ds, ..., dy) can be expressed as a product of some 2-cycles.

(di,dy, ..., dy) = (dy, da)(dy, d3, ..., di). (3)
Recursively using this equation, Lemma 1 holds. O

Definition 5 (Neighboring ‘2’-Cycle). Given two integers u,s € 1, ..., 2" both u and s can be encoded using n bits (binary
representation). If the n-bit encodings for u and s are the same except for only one bit, we call the permutation (u, s) a
neighboring ‘2’-cycle. This is because their binary representations differ in one bit only.

Lemma 2. Given two integers u and s, and in their binary representations:

1. there is only one bit B; different; and

2. all other bits are the same between u and s:
(a) I bits are Os; and
(b) remaining bits are all 1s.

Suppose those | zero bits are By, , . . ., B;, we have:
(u,s) = Ni; * ... %Ny G * Ny *--- %Ny (4)

Proof. We need to show that R.H.S. will turn the number u into s, and the number s into u, and it will not change any other
numbers.

After using the first set of NOT gates N;,, . .., Nj, the binary numbers u and s become " and s” with only one bit (the jth
bit) different and all other bits are 1’s. Then connecting Cj, we can exchange u’ and s’, which becomes s” and v’ respectively.
Finally, connecting the second set of NOT gates N;, . .., Ny, the values of bits B; , . . ., B; become all zeros, and the binary
numbers s’ and 1’ become s and u respectively.

Suppose we are given a number t, where t # u and t # s, there exists a bit (the kth bit) in the binary representation of t
that is different from the corresponding bit in the binary representation of u and s, such that k # j. After using the first set of

NOT gates Nj,, . .., Nj, the number t becomes t’. But the kth bit in the binary representation of t’ is still zero. Then after the
action of gate Cj, the number t is still t’ (unchanged). This is because the kth bit is zero, which disables the controlled-NOT
operation. Hence, after the second set of NOT gates N;,, . .., N, t’ becomes t again.
Therefore, the R.H.S. will only exchange the numbers u and s, and nothing else. O

Lemma 3. If two n-dimension vectors u, s have k bits different, then there is an ordered set M = {d4, d3, . .., dy+1} such that
di = u,dyy; =sandforanyi, 1 <i < k+ 1, there is only one bit different between d; and d; 1, and

(u, 8) = (dq, d2)(d2, d3) . .. (dy, diy1) (d, 1) . . . (d2, dy). (5)
Proof. First, we have d; = u, dy1 = s. Then, in each ‘2’-cycle we change one bit in the k different bits between u and s. So
we get an ordered set M = {d;, d,, ..., dgs+1} such thatdy = u, dyy; = sand foranyi, 1 <i < k + 1, there is only one bit

different between d; and d; . Hence Eq. (5) is valid.
Alternatively, we can denote the image of d after the action of R.H.S. as I(d). Then I(d;) = dy41,I(dg+1) = d1, and for any
1 <j < k+ 1,1(dj) = d;. Thus the equation is correct. O

Remark 1. In order to make the number of NOT gates as small as possible, we give two rules for constructing the ordered
set M.

G. Yang et al. / Theoretical Computer Science 412 (2011) 1606-1613 1609

Table 1

The ordered set M of u and s encoded
using the Gray-code trick from page 191
of [5].

Py P, P3 Py Ps Encode

0 0 1 1 1 di=s
o 1 1 1 1 4
0 1 0 1 1 ds
0 1 0 0 1 ds
0 1 0 0 0 ds=u

e If the number of 1s in the vector u is more than that in s, then d; = u, dy41 = s.Else, d; = s, dyy1 = .
o In the different bits between u and s, change the zero bit to one first, then change one bit to zero bit.

For example, if u = (0, 1,0, 0,0),s = (0,0, 1, 1, 1), thenk = 4, d; = s, ds = u and, d;, ds, d4 are given in Table 1.
Remark 2. There is commutativity in the product of NOT gates, and we can remove adjacent pairs of identical NOT gates.

Lemma 4. Suppose there are j bits different between u and s in decomposing the 2’-cycle (u, s) to NOT gates and ‘n — 1’-CNOT
gates, and

e there are jy zero bits in these bits in dq, and
e there are j; one bits in these bits in dy, and

® jo <ju
then the number of NOT gates is no more than 2(j — 2) + 2(o — 1) ifjo > 1, or 2(j — 1) if jo = 0.

Proof. Using the two rules in Remark 1 and the property of NOT gate in Remark 2, we can calculate the number of the
needed NOT gates, no more than 2(j — 2) + 2(jo — 1) ifjo > 1; 0r2(G — 1) ifjo=0. O

Theorem 1. For a given n-bit reversible circuit f, if there are N distinct input patterns that are different from their corresponding
output patterns, where N < 2", and the other (2" — N) input patterns are the same as their corresponding output patterns, then
this circuit can be synthesized by at most 2n - N ‘(n — 1)’-CNOT gates and 4n® - N NOT gates without ancilla bit.

Proof. According to Eq. (3), this reversible circuit can be decomposed to at most N — 1 ‘2’-cycles. According to Lemmas 2 and
3, the number of ‘(n— 1)’-CNOT gates is no more than 2n-N; the number of NOT gates is no more than 2n-2n-N = 4n®-N. O

Theorem 2. All n-bit reversible circuits can be constructed by less than 2n - 2" NOT gates and less than 2n— 1) - 2" ‘n — 1’-CNOT
gates without ancilla bit.

Proof. Let (d{, d;), (ds3,dy), ..., (dn_1, dmn), where m = 2", be all the ‘2’-cycles where d,;_; and d,; have the maximal
number of different bits, n.

When we optimally decompose any permutation p in S, to a product of some neighboring ‘2’-cycles, let function N(p)
be the minimal number of neighboring ‘2’-cycles.

When p = (dq, d3)(d3, dy) ... (dm_1, dm), N(p) achieves the maximal number (2n — 1) - 2™. The reason is the following.
When using Eq. (3) of Lemma 1 to optimally decompose p to some neighboring 2-cycles based on Eq. (5), if (dai_1, da;) is
in the decomposition, then (d,;_1, a) or (dy;, b) will not be in this decomposition. We can prove by contradiction. Assume
(dyi—1, @) is in the optimal decomposition:

(dai—1, d2i) (doi—1, @) = (dai—1, dai, @)
= (dai—1, @) (da;, @)
the number r of different bits between d,; and a is less than n. According to Eq. (5)
N((dyi, a)) =2r — 1 < 2n — 1 = N((dai—1, d2)).

Thus (dy;_1, a)(dy;, a) is a better decomposition than (da;_1, dy;) (d2i—1, @).

Therefore, (d»;_1, a) or (do;, b) will not be in this decomposition. So, the product p of all these ‘2’-cycles with maximal n
different bits makes N(p) to be 2n — 1) - 2",

Using Eq. (4) of Lemma 2, the number of ‘n — 1'-CNOT gates is no more than (2n — 1) - 2".

Let the number of NOT gates be Y, C(i; j) be the binomial coefficient [25]. Using Lemma 4 and properties of binomial
coefficient, whenn = 2k — 1, k > 2, nis an odd number,

Y =22k —3)C(2k — 1; 0) + (2(2k — 3) + 2(1 — 1))C(2k — 1; 1)
+ o+ 22k —3) + 2(k — 2)C(2k — 1; k — 1))
= (Bk—4)2""—Q2k—1)CRk—2;k—1)+2
<2n-2"

1610 G. Yang et al. / Theoretical Computer Science 412 (2011) 1606-1613

Table 2

A binary reversible circuit f.
Input Output
By B, B3 By Encoding Py P, P3 Py Encoding
0 0 0 0 a 0 1 0 0 as
1 0 0 0 a 1 0 1 0 ag
0 1 0 0 as 1 1 0 0 as
1 1 0 0 ay 1 1 1 1 a6
0 0 1 0 as 0 0 1 0 as
1 0] 1 0 ag 1 0 1 1 a4
0 1 1 0 ay 0 1 1 0 az
1 1 1 0 ag 1 1 1 0 ag
0 0 0 1 ag 0 0 0 1 dg
1 0 0 1 ajo 0 0 0 1 ayo
0 1 0 1 an 0 1 0 1 ar
1 1 0 1 anz 1 1 0 1 ay
0 0 1 1 a3 0 0 1 1 ass
1 0 1 1 (14 1 0 0 0 a
0 1 1 1 ass 0 1 1 1 ass
1 1 1 1 (16 0 0 0 0 a;

when n = 2k, k > 2, nis an even number,

Y =22k — 2)C(2k; 0) + 22k — 2) +2(1 — 1))C2k; 1) + ... + (2(2k — 2) + 2(k — 1)C(2k; k))
= (3k — 4)2% + (2k — 3)C(2k; k)
<2n-2". O

Remark 3. The upper bound for NOT gates can be reduced by further removing adjacent pairs of identical NOT gates. This
is illustrated by the example in the next section.

Remark 4. The product of all ‘2’-cycles with maximal n different bits indeed is the product of all n different NOT gates. Thus
the approach of directly using Eq. (3) and Lemma 3 has some defects. We should consider the NOT gate before using Eq. (3).

The idea of considering the NOT gate before using Eq. (3) is given as follows. Consider the truth table of a given reversible
circuit, each output bit has 2" values, we compare them with the input values. If the number of different values is bigger
than 2"~!, we apply a NOT gate to this bit. After processing with all bits, we count the changed vectors. If the number of the
changed vectors is less than that of the original circuit, we decompose the reversible circuit with the inserted NOT gates using
Eq. (3) and Lemma 3. Otherwise, we decompose the original reversible circuit. The decomposition algorithm and examples
are given in the next section.

4. Algorithm and synthesis example

Based on the above analysis, we present the following constructive algorithm for synthesizing any given binary reversible
circuit f without using ancilla bits.

Algorithm:

Step 1. Check the truth table of f to determine before using Eq. (3) and Lemma 3, whether we need NOT gates or not.

Step 2. After Step 1, write the reversible circuit as a product of cycles. For every cycle (dy, ds, ..., dy), calculate the
number r; of different bits between d; and di;4,1 = 1,2, ..., k where dy41 = d;. Let r; be the minimal number. The basic
idea to decompose the reversible circuit by Eq. (3) is to break the mapping relation from d; to d;,; without increasing the
number of different bits between adjacent vectors.

(dy,dy, ..., dy) = (d;, diy1)(dj, djj2, djg3, ..., dy, da, ..., djq). (6)

Recursively repeat this process, we can decompose the reversible circuit to ‘2’-cycles.
Step 3. Decompose every ‘2’-cycle by NOT and ‘n — 1’-CNOT gates using Lemma 3, two rules in Remark 1, Lemma 2, and
removing adjacent pairs of identical NOT gates as much as possible.

Example 1. Given a binary reversible circuit f which has a truth table shown in Table 2.

From the truth table, f = (a4, as, a4, ag)(az, s, A14).

Step 1. The total changed vectors is 7, less than 24~1 = 8, thus, we deal with the input reversible circuit f without
pre-cascading NOT gates.

Step 2. Decompose each cycle into the product of 2-cycles using Eq. (6).

(a1, a3, ag, a16) = (a4, a16)(a4, a1, a3)
= (as, a16)(as, az)(ay, as)
(a2, as, a14) = (s, a14)(as, az)

G. Yang et al. / Theoretical Computer Science 412 (2011) 1606-1613 1611

oy >0

o

P >o-e 0B >0

o

o

o

Fig. 3. Decomposed circuit for f.

o
[>o-tb{>0——

Table 3

A binary reversible circuit g.
Input Output
By B, Bs By Encoding P, P, P; P, Encoding
0 0 0 0 a; 1 1 0 0 ay
1 0 0 0 a 0 0 1 0 as
0 1 0 0 a 0 1 0 0 a3
1 1 0 0 ay 0 1 1 1 ass
0 0 1 0 as 1 0 1 0 ag
1 0 1 0 4 0 o0 1 1 a3
0 1 1 0 az 1 1 1 0 ag
1 1 1 0 ag 0 1 1 0 az
0 0 0 1 g 1 0 0 1 aro
1 0 0 1 ayo 1 0 0 1 dg
0 1 0 1 a 1 1 0 1 aqy
1 1 0 1 ap 0 1 0 1 an
0 o0 1 1 a3 1 0 1 1 a1a
1 0 1 1 ayy 0 0 0 0 a,
0 1 1 1 ais 1 1 1 1 a6
1 1 1 1 a6 1 0 0 0 a

v

D >o-e{>oB{>0

o
o

>

o

Fig. 4. Decomposed circuit for g.

Step 3. Using Eqs. (4) and (5), we have:
(as, a16) = (a6, A12)(A12, A1) (a6, A12)
= C3 *Ng*C4*N3*C3
(a4, 113) = N3 % Ny % *C] * N3 % Ny
((11,(13) =N, *N3>|<N4*C2 * Nq % N3 % Ny
(@5, a14) = N2 % C4 % N
((15, (12) = Ny % Ny * C3 * Ny * No.

Therefore,

f=C3*N3*C4*N3*C3*N3*N4*C1*Nl*Cz*N1*N3*N4*N2*C4*N4*C4*N4*N2.

The synthesis process is finished, and f is decomposed into the product of 12 NOT gates and 7 ‘n — 1’-CNOT gates, shown

in Fig. 3.

Example 2. Given a binary reversible circuit g which has a truth table shown in Table 3.

Step 1. Only the output P; has over 24~! = 8 different values with input B;. So we need to cascade a NOT gate N; after g,

shown in Fig. 4.

The remaining steps. g « N; = f, so the rest of the steps is the same as Example 1,and g = f * Ny.

Remark 5. From these two examples, especially the second example, the numbers of NOT gates and ‘n — 1’-CNOT gates are
much less than the upper bound that we gave in Theorem 1. The optimal upper bound of our algorithm is still our future

research.

1612 G. Yang et al. / Theoretical Computer Science 412 (2011) 1606-1613
5. Complexity analysis

In this section, we analyze the computation complexity of our algorithm. Compared with breadth-first search based
synthesis algorithm, the computation complexity of our algorithm is exponentially lower.

Theorem 3. The time complexity of our synthesis algorithm is §2(n - 4").

Proof. The time complexity of Step 11is n- 2", since we need to check the whole values in truth table. In Step 2, to get Eq. (6),
in the worst case (k = 2"), we need n - 2" computations. And we need recursively use Eq. (6) k — 1 times, so the time
complexity of Step 2is n - (2")?/2 = n-4"/2. In Step 3, there are 2" — 1 ‘2’-cycles in the worst case. According to Lemmas 2
and 3, to decompose every ‘2’-cycle to NOT and ‘n — 1’-CNOT gates, we need 2n - 2n = 4n°. Removing NOT gates needs to
check all these 2n - 2" NOT gates. So the time complexity of Step 3 is 4n? - 2" +2n-n - 2" = 6n? - 2™

Therefore, the total time complexity of the synthesis algorithm is:

n-2"+n-4"/24+6n*-2"=0Q20-4". O

Remark 6. Our method is a constructive algorithm, since for each step, we are simply transforming the formula to obtain
the synthesized gates. We do not need to search other reversible circuits that do not appear in our result. The computational
complexity of our synthesis algorithm is exponentially lower than the complexity of breadth-first search based synthesis
algorithm, which needs to explore a number of different reversible gates in each step and only a subset of them are used in
the result. The space complexity of any breadth-first search based synthesis algorithm for n bits reversible circuit is more
than (2")!, since in the worst case, it needs to remember all (2")! reversible circuits. This is impossible even when n = 4
because (24)! & 2.0 x 10'2. The time complexity is also greater than (2")!, because in the worst case, it needs to compute all
reversible circuits. In fact, it also has to do a lot of equality comparisons to determine whether the calculated circuit is the
given circuit or not, so the time complexity of any breadth-first search based synthesis algorithm is much more than (2™)!.

Theorem 4. The space complexity of our synthesis algorithm is 6n - 4".

Proof. The space complexity of Step 1 is 2n - 2", since we need to store the input assignments and output assignments in
truth table for computing the number of different values between the input and the output. After we finish Step 1, we do
not have to store the input assignment. In Step 2, we need to store all ‘2’-cycles, and we need n? space units to compute r;
which can be ignored by comparing with the exponential number of the needed space. So, the space complexity of Step 2
isn - 2™ In Step 3, we need to store all NOT gates and ‘n — 1’-CNOT gates. According to Theorem 2, the space complexity of
Step 3 is 4n - 2™. Thus, the space complexity of our synthesis algorithm is 6n - 2". 0O

In the worst case, breadth-first search based synthesis algorithm needs to store all (2")!. So, the space complexity of our
synthesis algorithm is still exponentially lower than that of breadth-first search based synthesis algorithm.

6. Conclusion

In this paper, we investigated the realization of reversible circuits. We presented a constructive algorithm for synthesizing
n-bit reversible circuits by NOT and ‘n — 1’-CNOT gates and gave two synthesis examples based on this algorithm, which
showed that even by hand, synthesizing any ‘4’-bit reversible circuit is not difficult. The computational complexity of our
synthesis algorithm is exponentially lower than that of breadth-first search based synthesis algorithms.

Acknowledgement

The first author’s work is supported by NSFC under Grant 60773205 and RFDP under Grant 20090185110006.

References

[1] J. Von Neumann, Theory of Self-Reproducing Automata, University of Illinois Press, Champaign, IL, USA, 1966.
[2] R.Landauer, Irreversibility and heat generation in the computational process, IBM Journal of Research and Development 5 (1961) 183-191.
[3] C.Bennett, Logical reversibility of computation, IBM Journal of Research and Development 17 (1973) 525-532.
[4] E. Fredkin, T. Toffoli, Conservative logic, International Journal of Theoretical Physics 21 (1982) 219-253.
[5] M.A. Nielsen, L.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000.
[6] K.Iwama, Y. Kambayashi, S. Yamashita, Transformation rules for designing CNOT-based quantum circuits, in: Proc. DAC, 2002, p. 28.4.
[7] D. Deutsch, Quantum computational networks, Royal Society of London Series A 425 (1989) 73-90.
[8] G.W. Dueck, D. Maslov, Reversible function synthesis with minimum garbage outputs, in: Proc. 6th Int. Symp. Representations and Methodology of
Future Computing Technologies, RM2003, 2003.
[9] P.Kerntopf, Maximally efficient binary and multi-valued reversible gates, in: Proc. ULSI Workshop, 2001, pp. 55-58.
[10] P.Kerntopf, Synthesis of multipurpose reversible logic gates, in: Proc. EUROMICRO Symp. Digital Systems Design, 2002, pp. 259-266.
[11] A.Khlopotine, M. Perkowski, P. Kerntopf, Reversible logic synthesis by gate composition, in: Proc. [IEEE/ACM Int. Workshop on Logic Synthesis, 2002,
pp. 261-266.
[12] D.Maslov, G.W. Dueck, Garbage in reversible designs of multiple-output functions, in: Proc. 6th Int. Symp. Representations and Methodology of Future
Computing Technologies, RM2003, 2003.
[13] A. Mishchenko, M. Perkowski, Logic synthesis of reversible wave cascades, in: Proc. IEEE/ACM Int. Workshop on Logic Synthesis, 2002, pp. 197-202.

G. Yang et al. / Theoretical Computer Science 412 (2011) 1606-1613 1613

[14] P. Picton, A universal architecture for multiple-valued reversible logic, Mutiple Valued Logic: an International Journal 5 (2000) 27-37.

[15] T. Toffoli, Bicontinuous extensions of invertible combinatorial functions, Mathematical Systems Theory 14 (1981) 13-23.

[16] G.Yang, W.N.N. Hung, X. Song, M. Perkowski, Majority-based reversible logic gates, Theoretical Computer Science 334 (1-3) (2005) 259-274.

[17] X. Song, et al., Algebraic characteristics of reversible gates, Theory of Computing Systems 39 (2) (2006) 311-319.

[18] G. Yang, X. Song, W.N.N. Hung, M. Perkowski, Fast synthesis of exact minimal reversible circuits using group theory, in: ACM/IEEE Asia and South
Pacific Design Automation Conference, ASP-DAC, 2005, pp. 1002-1005.

[19]].D. Dixon, B. Mortimer, Permutation Groups, Springer, New York, 1996.

[20] A.De Vos, Reversible computing, Qutantum Electronics 23 (1999) 1-49.

[21] L. Storme, A. De Vos, G. Jacobs, Group theoretical aspects of reversible logic gates, Journal of Universal Computer Science 5 (1999) 307-321.

[22] D.M. Miller, D. Maslov, G.W. Dueck, A transformation based algorithm for reversible logic synthesis, in: Proc. DAC, 2003, pp. 318-323.

[23] A.De Vos, B. Raa, L. Storme, Generating the group of reversible logic gates, Journal of Physics A: Mathematical and General 35 (2002) 7063-7078.

[24] ML.L Kargapolov, J.I. Merzljakov, Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1979.

[25] K.P. Bogart, Introductory Combinatorics, Harcourt Brace Jovanovich, 1990.

	Realization and synthesis of reversible functions
	Introduction
	Preliminaries
	`n'-bit theoretical results
	Algorithm and synthesis example
	Complexity analysis
	Conclusion
	Acknowledgement
	References

