Guiding Component-Based Hardware/Software Co- Verification with Patterns *

Juncao Li and Fei Xie

Department of Computer Science

Portland State University
Portland, OR 97207, USA
{juncao, xie} @cs.pdx.edu

Abstract

In component-based hardware/software co-verification,
properties of an embedded system are established from
properties of its hardware and software components. A
major challenge in component-based co-verification is the
property formulation problem: (1) what are the system
properties to verify, (2) what are the component properties
needed for verifying the system properties, and (3) what are
the environment assumptions for establishing these proper-
ties. We present a pattern-guided approach to the property
Sformulation problem. We develop an embedded architecture
description language (EADL). A key feature of EADL is its
support to specification of architectural patterns for embed-
ded systems. Such patterns capture recurring system struc-
tures and, furthermore, templates for properties to verify on
systems following these patterns and strategies for decom-
posing system properties into component properties. We
have applies EADL in co-verification of medical sensor sys-
tems, which shows that architectural patterns have major
potential in facilitating component-based co-verification.

1 Introduction

In today’s embedded system design, the boundary between
hardware and software has become increasingly blurred:
hardware and software closely interact and functionalities
often migrate across the boundary. This demands hard-
ware/software co-verification. At the same time, embedded
systems are increasingly component-based in order to attain
modularity, functional reuse, and configuration flexibility.
Component-based embedded systems for a given applica-
tion domain often have commonalities in their architectures.

In [18], we have developed a component-based approach
to hardware/software co-verification of embedded systems.
In this approach, embedded systems are structured follow-
ing a component model that unifies the concepts of hard-
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ware IPs [8] (i.e., hardware components) and software com-
ponents [16]. In this model, verified temporal properties
of hardware and software components are associated with
the components. A special type of component, bridge com-
ponent, is introduced, which inter-connects hardware and
software components and bridges the hardware/software se-
mantic gaps. Our approach to co-verification is a synergistic
integration of bottom-up component verification and top-
down system verification. Hardware and software compo-
nents are verified as they are assembled bottom-up. Prop-
erties of a primitive component (i.e., a component that is
not composed from other components) are directly verified
while properties of a composite component are verified on
its abstractions constructed from verified properties of its
sub-components. A system is verified top-down as it is de-
veloped via recursive decompositions into its components.
The decompositions reuse components as possible. Verified
properties of the reused components are reused in construct-
ing the abstractions for verifying properties of the system.
A major challenge in component-based co-verification
is the property formulation problem: (1) what are the sys-
tem properties to verify, (2) what are the component prop-
erties needed for verifying the system properties, and (3)
what are the environment assumptions necessary for estab-
lishing these properties. The problem may significantly
hinder effectiveness of component-based co-verification.
The increasing adoption of assertion-based verification
(ABV) [10] alleviates this problem since designers are re-
quired to formulate the component properties as a compo-
nent is designed. However, this problem persists since, in
essence, it is due to lack of knowledge about possible envi-
ronments of components, and it also plagues ABV although
on a lesser extent. In addition, ABV requires major manual
efforts in property formulation. Therefore, it is highly de-
sired for heuristics that can reduce the property and assump-
tion formulation efforts for embedded systems and compos-
ite components which follow commonly used architectures.
In this paper, we present a pattern-guided approach to
the property formulation problem. We develop an embed-
ded architectural description language (EADL) that sup-



ports rigorous architectural specification of embedded sys-
tems and provides complete language support for the uni-
fied component model. A key feature of EADL is its sup-
port to specification of architectural patterns for embedded
systems (i.e., recurring patterns of embedded system archi-
tectures). EADL supports association of property templates
and property decomposition strategies with embedded sys-
tem architectural patterns. Property templates are formu-
lated on component templates that abstract real components
and component templates are specified as complete or par-
tial component interfaces which provide the semantic infor-
mation needed for specification of property templates. The
property decomposition strategies will be represented in
term of templates for component properties needed for veri-
fying the pattern-level properties and the assume-guarantee
relations among component properties. For a system fol-
lowing such an architectural pattern, its properties can be in-
stantiated from the property templates and are decomposed
under the guidance of the decomposition strategies which
consider the properties of reusable components. We have
applied our approach in component-based co-verification
of medical sensor systems [15]. The case study has shown
that architectural patterns have major potential in improving
effectiveness of component-based co-verification by con-
tributing to solution of the property formulation problem.

The reminder of this paper is organized as follows. In
Section 2, we review the key concepts of component-based
co-verification. In Section 3, we present EADL and how it
captures architectural patterns. In Section 4, we elaborate
on how architectural patterns are utilized in addressing the
property formulation problem. In Section 5, we discuss the
related work. In Section 6, we conclude this paper.

2 Component-Based Co-Verification

Our component-based co-verification approach [18] builds
on and advances compositional model checking [3] by in-
tegrating compositional model checking into component-
based development of embedded systems. It has three key
features: (1) unified component model for hardware and
software, (2) unified component property specification, and
(3) integrated component and system verification.

2.1 Unified Component Model

Under the unified component model shown in Figure 1, an
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Figure 1. Unified Component Model

embedded system is assembled from components. There

are three types of primitive components: sofiware com-
ponents, hardware components, and bridge components.
Bridge components interact with hardware (or software, re-
spectively) components following hardware (or software)
semantics and bridge the semantic gap between hardware
and software components by propagating events across the
HW/SW semantic boundary. The semantics of bridge com-
ponents together with the hardware and software semantics
abstract the processor, bus model, and embedded OS of the
targeted embedded system platform. Three types of com-
posite components may also be defined: software compo-
nents, hardware components, and hybrid components. Sub-
components of a composite software (or hardware, respec-
tively) components are all software (or hardware) compo-
nents. A hybrid component contains both hardware and
software sub-components and, therefore, also bridge sub-
components. This model essentially integrates hardware
and software component models.

Components. A component C' is a triple (E, I, P) where
E is the design or implementation of C, I is an interface
including the semantic entities for C' to interact with its en-
vironment and/or for specification of properties of C, and
P is a set of temporal properties that are defined on I and
have been verified on E. Hardware, software, and bridge
components differ in the representations of £ and I, but
share the same representation of P. Each entry of P is a
pair (p, A(p)) where p is a temporal assertion and A(p) is
a set of assumptions (i.e., assumed properties) on the envi-
ronment of C for enabling the verification of p on C. The
environment of C' include components that interact with C'
in a system, and may be different in each system.

For a software component, £/ can be specified in C or
other software design/programming languages. To sup-
port high-level design, we adopt the model-driven develop-
ment [13] and specify software components in XUML [13],
an executable dialect of UML. I of a software component is
a pair, (M, V'), where M is a set of input and output mes-
sages and V is a set of variables in E that are exported. The
component communicates with its environment via asyn-
chronous message-passing. The variables in V' are to be
mapped to hardware signals and/or to be utilized in specify-
ing component properties and scheduling constraints. This
interface semantics is determined by the asynchronous in-
terleaving message-passing semantics of XUML.

For a hardware component, E can be specified in Ver-
ilog or other hardware design languages. In our study, we
specify E in Verilog. I consists of a set of variables that the
hardware component imports from or exports to its environ-
ment. The component communicates with its environment
via variables in I. This interface semantics is determined
by the synchronous clock-driven semantics of Verilog.

Bridge components inter-connect hardware and software
components. The interface of a bridge component is a pair



(Ig,Is). Iy is a synchronous shared-variable interface for
interactions with hardware components and Ig is an asyn-
chronous message-passing interface for interactions with
software components. The interface of the bridge compo-
nent is determined by the hardware and software compo-
nents it connects. The design F of a bridge component is
formulated in a domain-specific bridge spec language [18].

Composition. A composite component, C' = (E, I, P), is
composed from a set of components, Cy = (Ey, Iy, Pp),

vy Cp1 = (Ep—1, In—1, Pn_1), as follows. F is con-
structed from Fy, ..., E,_1 by connecting Fy, ..., F_1
through Iy, ..., I,—;. I may be a hardware interface, a
software interface, or a hybrid hardware/software interface
depending what types of components Cy, ..., C,_1 are.
Essentially, I includes the semantic entities from Iy, ...,
I,,_1 that are needed for C' to interact with its environment
and/or for specification of properties of C'. Properties of a
composite component are established from properties of its
sub-components (see Section 2.3).

2.2 Unified Property Specification

In [17], we develop a unified property specification lan-
guage for HW/SW co-verification of embedded systems.
This language, namely xPSL, builds on the IEEE Property
Specification Language (PSL) [7]. It extends PSL to sup-
port specification of temporal assertions over both hardware
and software events. The HW/SW semantic gap is filled by
formalizing the semantics of hardware and software events
and their temporal correlations based on translation of hard-
ware and software semantics to a common formal seman-
tic basis, in our case, the w-automata semantics [9]. While
PSL supports both LTL and CTL style temporal operators,
xPSL inherits the linear-time subset of the PSL temporal
operators and is, therefore, fully subsumed by w-automata
in expressiveness. xPSL is fully compatible with PSL and
readily supports ABV. xPSL facilitates verification reuse:
Properties of hardware and software components in xPSL
can serve as abstractions of the components in system-level
verification and can be reused across multiple systems if the
components are reused. In this paper, we specify properties
using a set of intuitive temporal templates based on xPSL
and w-automata. (See Section 3 for example properties.)

2.3 Integrated Component and System Verification

Under the component-based approach to co-verification,
hardware and software components are verified as they are
developed bottom-up. Properties of a primitive component
are directly model-checked and properties of a composite
component are checked on its abstractions constructed from
verified properties of its sub-components. A system is ver-
ified top-down as it is developed via recursive decomposi-

tions into its components. The decompositions reuse com-
ponents as possible. Verified properties of the reused com-
ponents are reused in constructing the abstractions for veri-
fying properties of the system or higher-level components.

Given a property (p, A(p)) of a composite component C
which is composed from C, . . ., C,,_1, an abstraction of C
for verifying (p, A(p)) is constructed as follows:

1. Construct a system of non-deterministic w-automata
wo, - - -, wp—1 each of which corresponds to C;, 0 <
i < n, and simulates the interface of C;. The w-
automata are inter-connected through the interfaces
that they simulate, following the inter-connections
among Cpy, ..., Cp_1. A non-deterministic w-
automaton w, that simulates the environment of C is
also added to ensure that the system is closed.

2. Constrain w;, 0 < ¢ < n, by composing w; with the w-
automata translated from the properties of C; that are
related to (p, A(p)) by cone-of-influence [3, 9] analy-
sis and enabled. Constrain w, by composing w, with
w-automata translated from the assumptions in A(p).

A property of C; is enabled if and only if its assumptions are
implied by the enabled properties of other sub-components
and/or the assumptions in A(p). There may exist circular
dependencies among the sub-component properties. Sup-
pose we have verified that a property, g, holds on C as-
suming that a property, (1, holds on C; and vice versa. We
cannot conclude that Qg and Q1 hold on C unless we can
show that circular reasoning can be avoided. Circular rea-
soning can be avoided using the following methods (but not
limited to these methods): (1) avoid using an assumption
that creates a dependency cycle; (2) use temporal induction
proposed by McMillan [11]; or (3) use the compositional
reasoning rule proposed by Amla, et al. [2].

The abstraction constructed above is conservative. If the
property holds on the abstraction, it also holds on the com-
posite component; otherwise, the abstraction can be refined
by verifying additional sub-component properties and in-
cluding them in the abstraction. If the property does not
hold on the composite component, abstraction refinement
together with error trace analysis will uncover the cause.

3 Embedded
Architecture Description Language

The unified component model defines the concept of com-
ponent and basic rules for component composition. How-
ever, it is yet to support architectural specification, i.e.,
specification of an embedded system (or a composite com-
ponent) in term of the inter-connecting relations among its
hardware and software components (or sub-components).
Architectural specifications are crucial to exploring compo-
sitional structures of embedded systems for co-verification.



We have developed an embedded architecture descrip-
tion language (EADL) that provides complete language
support for the unified component model and for architec-
tural specification of entire embedded systems. EADL ex-
tends the concept of software architecture [14] to the con-
cept of embedded system architecture. A first desirable fea-
ture of EADL, in addition to the unified component rep-
resentation above, is to support specification of the inter-
connecting relations among hardware, software, and bridge
components in a system or a composite component. An-
other desirable feature of EADL is to support specification
of architectural patterns of embedded systems, i.e., recur-
ring patterns of embedded system architectures. We will
discuss how architectural patterns can contribute to solution
of the property formulation challenge in Section 4.

3.1 Embedded System Architecture Specification

To specify inter-connecting relations among hardware, soft-
ware, and bridge components, EADL needs additional lan-
guage constructs besides components and simple interfaces.
We introduce events, ports, connectors, and configurations,
and show how they are utilized in specifying architectures.

3.1.1 Events and Ports

We employ the event concept to abstract all concrete inter-
action mechanisms: messages, function calls, signals, etc.
The event semantics are precisely defined when the EADL
is instantiated for a specific embedded system platform.
Events in an embedded systems can be of different seman-
tics due to the differences between hardware and software
semantics. This enables EADL to span across hardware and
software semantics. Each event has an in or out direction. A
port groups events into a clear identified functionality and
it also has an in and/or out direction. Figure 2 shows the
interface of a pulse sensor component, which consists of
two ports, StdCtrl and GSI, where events are messages. The
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Figure 2. Interface of Pulse Sensor

EADL specification of the two ports is shown in Figure 4.
Take GSI as an example, it groups all events necessary in the
functionality of providing data to other components. The in
direction indicates that the GSI port only responds to data
requests and never provides data without a request.

3.1.2 Connectors and Configurations

To present a uniform and abstract view of embedded sys-
tem architectures, we introduce the concept of connector.

Connectors are components dedicated to connecting other
components. Instead of connecting components on the de-
tailed event level, connectors connect components on the
more abstract port level. The ports in the interface of a con-
nector match the ports in the interfaces of the components
it connects: having the same events while the directions of
the events are reversed. The implementation of the connec-
tor consists of the detailed mappings among the events from
the ports in its interface. The EADL connector concept dif-
fers from the connector concept in software architectures in
that the EADL connectors are extended to connect compo-
nents of different semantics: hardware (or software) compo-
nents of different semantics, e.g., hardware components in
Verilog or VHDL, and furthermore hardware and software
components. Essentially, it generalizes the bridge compo-
nent concept in the unified component model. A connector
has a direction based on the ports that it connects. The di-
rection of a connector indicates which component can po-
tentially initiate the interaction. It should be consistent with
the directions of the ports involved. Figure 3 shows the ar-
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Figure 3. Architecture of Pulse Sensor

chitecture of the pulse sensor whose hardware and software
sub-components are connected by a connector that bridges
the hardware and software semantics. The software, hard-
ware, and bridge sub-components are marked with the pre-
fixes, SW, HW, and BG, respectively.

EADL specifies the architecture of a composite compo-
nent through specifying its configuration which consists of
all its sub-components, and the connectors among them.
The configuration of the pulse sensor is shown in Figure 4.
Besides the sub-components and connectors, configuration
maps are also provided to indicate the correspondence be-
tween the ports/variables of the composite component and
the ports/variables of its sub-components. Such a map can
be one-to-one or one-to-many. For a primitive component,
the configuration is replaced by its source code.

3.1.3 Properties

To support verification and reuse, EADL inherits from the
unified component model the way how component proper-
ties are specified. The properties of a component, as its sub-
components and its configuration, are part of the component
specification and are defined over its ports and variables
made visible for property specification. When a component
is developed, its properties are established and can then be
reused with the component. Environment assumptions for
enabling verification of a component property are provided
with the property. A property SENI of the pulse sensor is
shown in Figure 4, which asserts that after the pulse sensor



Component HB_Pulse {
Port In StdCtrl {Input: start, stop;}
Port In GSI {Input: getData; Output: dataReady(int var); }
int drvSenVar = 0, devSenVar = 0;

Configuration {
Component SW_Pulse {
Port In StdCtrl {Input: start, stop; }
Port In GSI {Input: getData; Output: dataReady(int var); }
Port Out Ctrl {Output: setPW, clrPW, enlnt; }
Port In Data {Input: data(int var);} int drvSenVar = 0;
Properties{
PSW1: Assert After(GSI.getData)
Eventually(GSI.dataReady(var=drvSenVar))
Assume After(GSI.getData) Never(GSI.getData)
UnlessAfter(GSI.dataReady);
PSW2: Assert IfEventually Always(!Data.data + Data.data(var>T))
EventuallyAlways(drvSenVar>T);
}

}

Component HW_BCI {
Port In HWCtrl {Input: sig_setPW, sig_cIrPW, sig_enInt; }
Port Out HWDT {Output: sig-int(int var);} int devSenVar =0;
Properties {
BCI1: Assert IfEventually Always(devSenVar>T)
EventuallyAlways('HWDT.sig_int+ HWDT.sig_int(var>T));
}

}

Connector BG_Pulse {
Cnn(SW_Pulse.Ctrl.setPW, HW_BCL.HWCtrl.sig_setPW);
Cnn(SW_Pulse.Ctrl.clrPW, HW_BCL.HWCtrl.sig_clrPW);
Cnn(SW_Pulse.Ctrl.enInt, HW_BCL.HWCtrl.sig_enInt);
Cnn(SW_Pulse.Data.data, HW_BCL.LHWDT.sig_int);

ConfigMap(SW _Pulse.StdCtrl, StdCtrl);
ConfigMap(SW _Pulse.GSI, GSI);
ConfigMap(SW _Pulse.drvSenVar, drvSenVar);
ConfigMap(HW_BCl.devSenVar, devSenVar);

Properties {
SEN1: Assert After(GSI.getData)
Eventually(GSI.dataReady(var=drvSenVar))
Assume After(GSI.getData) Never(GSI.getData)
UnlessAfter(GSI.dataReady);
SEN2: Assert IfEventuallyAlways(devSenVar>T)
EventuallyAlways(drvSenVar>T);
}

}

Figure 4. EADL Spec for Pulse Sensor

receives a getData message, it will eventually reply with
a dataReady message whose data field equals to drvSenVar,
assuming that no further getData message is received unless
after the previous getData message has been acknowledged.

3.2 Embedded System Architectural Patterns

With the above features of EADL, we can specify the archi-
tectures of embedded systems and their components. There
often exist common patterns among the architectures of sys-
tems or components, e.g., the CodeBlue architectural pat-
tern [15] for medical sensor systems in Figure 5. Further-
more, sensor components used in the CodeBlue pattern of-
ten share the same architectural pattern as the pulse sensor.

To capture such a pattern, we need additional language
constructs. While the architecture of a system or compo-

nent is captured as a configuration which is based on com-
position of components, an architectural pattern is captured
as a configuration template which is based on composition
of component templates. Abstraction of patterns from the
component/system architectures is based on abstraction of
component templates from components. A component tem-
plate is a skeleton for components, which captures the pa-
rameterized interface shared by these components, the com-
mon set of variables of these components, and the templates
for properties of these components. The property templates
are defined over the parameterized interface and the variable
set in the component template. As the component template
is instantiated into a component, the property templates are
instantiated into component properties. Take the CodeBlue
pattern as an example, the software component CodeBlue-
Query (CBQ) manages different numbers and kinds of sen-
sors in different systems, delivers a query request to the
right sensor, and filters data with thresholds before output.
Because most CodeBlue system instances are differentiated
by the specific sensors and their associated data filters, the
CBQ component which deals with sensors directly can be
abstracted as a component template 7_SW_CBQ to support
the abstraction of the CodeBlue pattern. Shown in Figure 6
is the specification of this template, which is composed of
port templates, variables, and property templates. As the

Component Template T_SW_CBQ {
Port In StdCtrl {Input: start, stop;}
Port In QueryHandler {Input: handleQuery(int src, sink, threshold),
cancelQuery(int src, sink);
Output: dataReady(int var); }
Multi Sen[NumofSen] {
Port Out Ctrl {Output: start, stop; }
Port Out Data {Output: getData; Input: dataReady(int var); }

}
int QrySink[NumofSen], QryThreshold[NumofSen];

Properties{

CBQI: Assert After(QueryHandler.handleQuery(SRC, SINK, T))
Repeatedly(Sen[SRC].Data.getData)
UnlessAfter(QueryHandler.cancelQuery(SRC, SINK));

CBQ2: Assert After(QueryHandler.handleQuery(SRC, SINK, T))
EventuallyAlways ((QrySink[SRC]=SINK)

*(QryThreshold[SRC]=T))
UnlessAfter(QueryHandler.cancelQuery(SRC, SINK));
CBQ3: Assert After((Sen[SRC].Data.dataReady(var>QryThreshold[SRC]))
*(QrySink[SRC]=SINK))
Eventually(QueryHandler.dataReady(SRC, SINK,
(var>QryThreshold[SRC])))
UnlessAfter(QueryHandler.cancelQuery(SRC, SINK));

CBQ4: Assert After(Sen[SRC].Data.getData) Never(Sen[SRC].Data.getData)

UnlessAfter(Sen[SRC].Data.dataReady);
}

}

Figure 6. EADL Spec for CBQ Template

number of sensors that CBQ manages varies depending on
the individual system, the number of corresponding ports
varies accordingly. Keyword Multi is used to support this
feature. By using Multi to group the ports, it indicates this
is a group of ports that can be instantiated multiple times
according to the number of sensors in a specific system.
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Figure 5. CodeBlue Architectural Pattern for Medical Sensor Systems

While the component level abstraction is achieved by
component templates, the architecture level abstraction is
realized by configuration templates. A configuration tem-
plate consists of component templates, connector templates,
and also concrete components and connectors. Shown in
Figure 7 is the specification of the CodeBlue architectural
pattern, in which two concrete components and two com-
ponent templates are included. In particular, T_HB_Sensor

Pattern P_.HB_CodeBlue {
Configuration Template CodeBlueCnfg{

Component SW_Coordinator;

Component HB_Network;

Component Template T_SW_CBQ;

Multi Component Template T_-HB_Sensor[NumofSen];

Connector SW_CrdNetCnn{
Cnn(SW_Coordinator.NetCtrl, HB_Network.StdCtrl);
Cnn(SW_Coordinator.SRMsg, HB_Network.SRMsg); }

Connector SW_CrdCBQCnn{
Cnn(SW_Coordinator. CBQCtrl, T_SW_CBQ.StdCtrl);
Cnn(SW_Coordinator.Query, T_-SW_CBQ.QueryHandler); }

Multi Connector Template T_-SW_CBQSenCnn{
Cnn(T_SW_CBQ.Ctrl, T_-HB_Sensor.StdCtrl);
Cnn(T_-SW_CBQ.Data, T-HB_Sensor.GSI); }

}

Properties{

CBI1: Assert After(SW_Coordinator.Query.handleQuery(SRC, SINK, T))
Eventually(SW_Coordinator.SRMsg.send(SRC, SINK, var>T))
UnlessAfter(SW_Coordinator.Query.cancelQuery(SRC, SINK))

Assume After(SW_Coordinator.Query.handleQuery(SRC, SINK, T))
EventuallyAlways(T_HB_Sensor[SRC].devSenVar>T);

Figure 7. EADL Spec for CodeBlue Pattern

is a Multi component template that is mapped to the Sen
interface of the T_SW_CBQ component template. It can be
instantiated for multiple times in a system instance.

Based on the above abstractions, an architectural pattern
consists of three parts similar to those of a component archi-
tecture: (1) an interface template for a component/system
following this pattern, which consist of port templates and
variables; (2) a configuration template; (3) templates for
properties of a component/system following this pattern.
(Note that the CodeBlue Pattern has no interface template.)

4 Pattern-Guided Co-Verification

As discussed in the previous section, EADL not only pro-
vides the language support for capturing architectures and
architectural patterns of embedded systems, but also sup-
ports association of properties with components and proper-
ties templates with architectural patterns. Our approach uti-
lizes EADL to address the property formulation challenge
in the following ways: (1) pattern-guided property formu-
lation, (2) pattern-guided property decomposition, and (3)
pattern-guided circular reasoning prevention.

4.1 Pattern-Guided Property Formulation

Patterns can guide property formulation for both systems
and reusable components. A difficulty in ABV is to iden-
tify the potential environments for a reusable component
and how it interacts with the environments. Patterns essen-
tially abstract the potential environments for reusable com-
ponents. If a component is designed to be reused under a
given pattern, the pattern often determines the properties
that ought to hold on the component and the appropriate
environment assumptions of these properties. An example
is the T_SW_CBQ component template under the CodeBlue
pattern which dictates the interactions between CBQ and
other components and suggests the properties in Figure 6.
Another difficulty in property formulation is how to de-
rive appropriate behavior rules of the system from the sys-
tem requirements, i.e. what are the system properties to
verify. Patterns are utilized as the vehicle to address this
problem during the system design process. Given the sys-
tem requirements, the architecture patterns used to structure
the system are selected. These patterns suggest what prop-
erties to verify on the system. In EADL, this is supported by
pattern-level property templates which are specified on the
system-level (or composite component level) interfaces and
variables. Property CBI in Figure 7 is such an example. It
asserts that for a medical sensor system following the Code-
Blue pattern, if there is an active query on a given sensor



and the sensor’s reading exceeds the corresponding thresh-
old, the system will eventually report the sensor’s reading.

4.2 Pattern-Guided Property Decomposition

In component-based development of embedded systems,
the system synthesis process is top-down, which recursively
decomposes a system into its components and their inter-
connecting relations, until reaching the primitive compo-
nents or the reusable components from the library. The
synthesis process often depends on knowledges and expe-
riences of system architects to determine the decomposi-
tions, e.g., hardware and software partitions. Architectural
patterns facilitate this process through capturing reusable
knowledges about system architectures.

The pattern-guided synthesis process shown in Figure 8
starts with pattern selection. In this step, architectural pat-
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Figure 8. Top-Down System Decomposition

terns are manually selected according to the specification of
system/component requirement and interface. If a pattern
is successfully selected from the pattern library, the sys-
tem/component is decomposed into concrete components
and component templates following the pattern. The de-
composition stops at a concrete component which is reused
directly. A component template, which is only a compo-
nent skeleton with ports and property templates, is utilized
to select a component matching the template specification.
This decomposition stops if the component can be reused;
otherwise, there are two ways to design the component: as
a primitive component by which the decomposition stops
with direct implementation or as a composite component by
which the decomposition continues recursively. If there is
no appropriate pattern that matches the system/component
specification, the decomposition is conducted manually.

To enable efficient component-based co-verification, we
integrate verification into the top-down synthesis process, in
particular, integrating property decomposition with system
decomposition, which is a major advantage of our approach.

As an architectural pattern is selected to guide a decomposi-
tion, its associated property decomposition strategy is also
utilized to decompose the pattern-level properties into the
component properties. As a component template is utilized
to select a component, both the interface/port templates and
the property templates are used to guide the component se-
lection. A basic approach to specification of decomposi-
tion strategies is to associate appropriate property templates
with the component templates in a pattern and define the
dependency links from a pattern-level property templates to
the component property templates. Dependencies among
component properties are captured as assumptions of these
properties. For instance, for the pattern-level property of
the CodeBlue pattern, we can define a decomposition strat-
egy as shown in Figure 9. This strategy must be instantiated

// Pattern-level property
CB1: Assert After (SW_Coordinator.Query.handleQuery(SRC, SINK, T))
Eventually (SW_Coordinator.SRMsg.send(SRC, SINK, var>T))
UnlessAfter (SW_Coordinator.Query.cancelQuery(SRC, SINK))
Assume After (SW_Coordinator.Query.handleQuery(SRC, SINK, T))
EventuallyAlways (T-HB_Sensor[SRC].devSenVar>T);

/I Properties of Coordinator
CRD1: Assert After (SW_Coordinator.Query.dataReady(SRC, SINK, var>T))
Eventually(SW_Coordinator.SRMsg.send(SRC, SINK, var>T));
CRD2: Assert Never (SW_Coordinator.Query.handleQuery(SRC, SINK, T)*
SW_Coordinator.Query.cancelQuery(SRC, SINK));

// Properties of CBQ as shown in Figure 6
/I Properties of Sensors as shown in Figure 4

/I Decomposition strategy
CB1 — CRDI, CRD2, CBQI, CBQ2, CBQ3, CBQ4, SEN1, SEN2;

Figure 9. An example decomposition strategy

for each individual system since the properties of the CBQ
component depends on how many sensors are included in
the system.

This straightforward approach to strategy specification
is cumbersome when a lot of property templates need to be
specified. And as discussed above, for certain patterns the
number of components that are involved in the patterns are
only known when the components are instantiated. There-
fore, more convenient ways to specify decomposition strate-
gies is needed. We are currently working on providing lan-
guage supports for specifying decomposition strategies as
simple programs. These programs need to consider other
knowledge that is useful in property decomposition, e.g.,
certain port templates and connector templates may dictate
the way how component properties must be formulated.

4.3 Pattern-Guided Circular Reasoning Avoidance

There may exist assume-guarantee dependency cycles
among component properties, which can potentially lead
to circular reasoning. Property dependency cycles may be
accidentally introduced by incorrect formulation of compo-



nent properties or intentionally introduced to reflect the na-
ture of component interactions and simplify property speci-
fication. The first type of cycles can be eliminated by cycle
detection. For the second type of cycles, additional work
may be needed to show that such cycles will not cause cir-
cular reasoning, for instance, using the methods discussed
in Section 2.3. Solution of this problem can be made more
efficient through architectural patterns since once a pattern
can be shown free of circular reasoning, the instantiations
of the pattern are free of circular reasoning. In essence, the
circular reasoning detection is conducted only once for the
pattern and is reused when the pattern is reused.

4.4 Preliminary Evaluation

We have applied EADL and the pattern-guided approach to
the medical sensor systems in the CodeBlue software pack-
age [15]. We started by capturing the CodeBlue pattern us-
ing EADL. We then decomposed the Pulse Oximeter Sen-
sor system, one of the systems in the package, formulated
the properties of the system and its components, and con-
ducted compositional model checking. We then abstracted
the system property template from the system property and
the property templates from the component properties and
used these templates to guide verification of two other sys-
tems in the package. This case study shows our approach
has major potential in verifying embedded system families.

5 Related Work

Pattern reuse is often conducted at two levels: design and
architecture level. Design patterns [4] are concerned with
reuse of programming structures at the algorithmic or data
structure level. Architectural patterns [14] are concerned
with reusable structural patterns of software system with re-
spect to their components. Architectural patterns have been
applied in software design, documentation, validation, etc.
Our research utilizes architectural patterns to facilitate for-
mulation of properties of embedded systems and their com-
ponents. There exist many software architectural descrip-
tion languages [12]. Among them, ACME [5] is closely re-
lated to our work. It provides language constructs for speci-
fying architectural patterns. Our representation of architec-
tural patterns is partially motivated by that of ACME and
specially targets HW/SW co-design and co-verification of
component-based embedded system families.

There are also approaches [1, 6] to automatic generation
of assumptions for safety properties of components. Our
approach addresses the property formulation challenge via
architectural pattern guided property formulation in bottom-
up component verification and via pattern guided property
decomposition in top-down system verification. It handles
both safety and liveness properties and complements auto-
matic assumption generation for safety properties.

6 Conclusions and Future Work

We have presented an approach to guiding component-
based hardware/software co-verification with architectural
patterns. Architectural patterns are extended to capture tem-
plates for properties to be verified on systems following
these patterns and strategies to decompose these properties.
Future work will be focused on further automation of our
pattern-guided approach in formulation of property patterns
and decomposition strategies and instantiations of property
patterns for specific systems. We will also apply this ap-
proach to a broader range of embedded systems families.
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