
Optimizing Post-silicon Conformance Checking

Li Lei, Kai Cong, and Fei Xie
Department of Computer Science

Portland State University

Portland, OR 97207

{leil, congkai, xie}@cs.pdx.edu

Abstract—Virtual prototypes of hardware devices, a.k.a, vir-
tual devices, are increasingly used to enable early software devel-
opment before silicon prototypes/devices are available. In previous
work, we presented a post-silicon conformance checking approach
to detecting interface state inconsistencies between a silicon device
and its virtual device. In this paper, we present an optimization,
adaptive concretization, to reduce the overhead incurred by
symbolic execution, a key technique used in our conformance
checking approach. We have evaluated our optimized approach
on three Ethernet adapters and their virtual devices. The results
demonstrate that it is effective and efficient: 21 inconsistencies are
discovered and time usages are reduced by an order of magnitude,
comparing to the previous approach.

Keywords—Post-silicon validation; conformance checking; sym-
bolic execution;

I. INTRODUCTION

Virtual prototyping has emerged as a promising technique
for device/driver co-development. Using virtual prototypes,
i.e., virtual devices, for early driver developments has potential
to shorten development cycles and reduce product time-to-
market. Nevertheless to achieve these benefits, a key challenge
has to be addressed. Drivers developed over virtual devices
often do not work readily on silicon devices, since silicon
devices often do not conform to virtual devices. Therefore,
it is critical to check the conformance of a silicon device with
its virtual device and discover their inconsistencies.

Our previous work [1] presents an approach to post-silicon
conformance checking of a hardware silicon device with its
virtual device. This approach symbolically executes the virtual
device with the same driver request sequence to the silicon
device, and checks if the interface states of the silicon and
virtual devices are consistent. However, the internal state of a
silicon device is hard to observe and the external environment
inputs to the silicon device are also difficult to capture. We use
symbolic execution to tackle this problem. We model internal
states and environment inputs using variables with symbolic
values when simulating the silicon device behaviors on the
virtual device. This way symbolic execution covers all the
possible values of the internal state and environment inputs.

The approach presented in [1] has a major limitation. It
incurs significant time usages. Symbolic execution introduces
a significant overhead while exploring a large number of
paths. This overhead makes the approach a time-consuming
process. In post-silicon conformance checking, a driver request
sequence is often composed of thousands of, even millions
of driver requests, which requires a long time to process.
Therefore, how to reduce time usages is a critical task in
scaling the conformance checking approach.

In this paper, we present an efficient approach to address
the above limitation. We propose an optimization, adaptive
concretization, to reduce the symbolic execution overheads. We
exploit the fact that most of virtual device states conforming to
silicon device states are generated by execution paths accessing
none or only a few of symbolic values. Adaptive concretization
eliminates unnecessary symbolic values, in order to prune
unnecessary paths explored by symbolic execution.

We have evaluated the optimized approach on three Eth-
ernet adapters and their virtual devices from QEMU virtual
machine [2]. We discovered 21 inconsistencies, behind which
there are 21 device bugs in either the silicon devices or
their virtual devices. Furthermore, the time usages have been
reduced by an order of magnitude, compared to those of the
unoptimized approach.

II. POST-SILICON CONFORMANCE CHECKING

A. Definitions for Conformance Checking

In [1], the conformance is defined between the states of the
silicon and virtual devices. The state of the silicon device is
determined by the values of its interface and internal registers.
The interface registers of the silicon device are observable
while the internal registers are not observable in general. The
virtual device models interface registers of the silicon device
with a set RI of corresponding variables and defines a set RN

of variables to capture device internal behaviors.

Definition 1: A virtual device state is denoted as V=〈VI ,
VN 〉 where VI is the device interface state, i.e., the assignments
to variables in RI and VN is the device internal state, i.e., the
assignments to variables in RN .

Definition 2: A silicon device state is denoted as S=〈SI ,
SN 〉 where SI is the assignments to variables in RI and SN

is the assignments to variables in RN with symbolic values.

Both V and S can be treated as symbolic states, which
are two sets of concrete device states, denoted as set(V ) and
set(S) respectively. The conformance between a silicon device
state and a virtual device state is described in Definition 3. If
a virtual device state V conforms to a silicon device S, we
refer to V as a conforming state.

Definition 3: A silicon device state S and a virtual device
state V conform to each other if set(S) ∩ set(V ) �= ∅.

B. Conformance Checking Workflow

As illustrated in Figure 1, the framework has two major
components: a trace recorder and a conformance checker. The



trace recorder records the driver request sequence to the silicon
device. The conformance checker replays the sequence on
the virtual device, checks the conformance, and reports the
discovered inconsistencies.

OS

Fig. 1: Conformance Checking Workflow

1) Trace recorder: the trace recorder captures: (1) each
driver request issued to the silicon device; (2) the silicon device
interface state before each driver request is issued. A sequence
of such state-request pairs captured on the silicon device can
be viewed as a device trace, denoted as T = 〈SI0 , D0〉,
〈SI1 , D1〉, ..., 〈SIn , Dn〉, where the pair 〈SIk , Dk〉 (0 ≤ k ≤
n) represents a driver request Dk to the current silicon device
interface state SIk .

2) Conformance checking algorithm: the conformance
checker replays T on the virtual device using symbolic ex-
ecution. Algorithm 1 presents this work flow. It takes a device
trace T and a virtual device F as inputs. Major functions in
Algorithm 1 are described below.

Algorithm 1 replay trace(T , F )

1: T ′ ← convert trace(T )
2: /* Take 〈Sk, Dk〉 from T ′*/
3: for k : 0 → n do
4: /*Set VD state Vk to be SD state Sk*/
5: Vk ← Sk

6: /*Symbolically execute VD by taking Dk at Vk state*/
7: G ← sym exec(F, Vk, Dk)
8: H ← conformance check(G,Sk+1)
9: if H == ∅ then

10: report incon()
11: end if
12: end for

1) Given T = 〈SI0 , D0〉, 〈SI1 , D1〉, ..., 〈SIn , Dn〉,
function convert trace generates a new device trace
T ′ = 〈S0, D0〉, 〈S1, D1〉, ..., 〈Sn, Dn〉, where Sk(0 ≤
k ≤ n) is a silicon device state derived from SIk . (cf.
Definition 2).

2) Function sym exec symbolically executes the virtual
device and generates a set of virtual device states
denoted as G = {gi | 0 ≤ i ≤ p}.

3) Conformance checking checks the conformance be-
tween G and the next silicon device state under Dk,
denoted as Sk+1. Definition 4 defines their confor-
mance. Function conformance check generates a
set of virtual device states H = {hi | hi �= ∅, 0 ≤
i ≤ m} where hi = set(gj) ∩ set(Sk+1), 0 ≤ j ≤ p.

4) According to Defintion 4, if H is empty, there is an
inconsistency and function report incon reports the
inconsistency.

Definition 4 (Device Conformance): Given G = {gi | 0 ≤
i ≤ p} and Sk+1, the virtual device and the silicon device
conform to each other at Dk if ∃gi ∈ G where 0 ≤ i ≤ p,
set(Sk+1) ∩ set(gi) �= ∅ .

Notes. In the reminder of the paper, we refer to the above
conformance checking approach as the native approach.

III. OPTIMIZATION

This section presents our optimization applied to the na-
tive conformance checking approach. Before we describe our
optimization, we introduce several preliminary definitions.

A. Preliminary Definitions

Definition 5 (Virtual Device Path): A virtual device path
is an execution path derived from symbolic execution of the
virtual device. It can be viewed as a sequence of branch condi-
tions, denoted as π = c0, c1, ..., cn−1, cn, where ci (0 ≤ i ≤ n)
is a branch condition, a Boolean expression over device state
variables and external environment inputs. We refer to a virtual
device path as a path for simplicity.

Definition 6 (Conforming Path): Given a virtual device
state Vk and its set of next states G = {gi | 0 ≤ i ≤ n},
∀gi ∈ G, there exists a virtual device path π that Vk transitions
to gi following π, denoted as Vk

π⇒ gi. Vk is the previous state
of π and gi is the next state of π. If gi is a conforming state,
we define π as a conforming path.

B. Adaptive Concretization

Motivation. The native conformance checking approach as-
signs symbolic values to the internal state variables and
external environment inputs. These variables with symbolic
values account for a significant overhead as symbolic execution
explores enormous number of paths due to symbolic values.
An intuitive idea is to assign concrete values to these variables
instead of symbolic ones. We observed that a conforming
path usually accesses none of, or only a small number of
variables with symbolic values. In other words, variables with
symbolic values do not affect the conformance checking results
most of time. Therefore, we can adaptively concretize these
symbolic variables, with only a few false positives introduced
and eliminate these false positives thereafter.

We apply an optimization, namely adaptive concretization,
to the native approach. Figure 2 shows the work flow. Adaptive
concretization includes two rounds of conformance checking.
In the first round, we concretize (1) virtual device internal
variables and (2) external environment inputs, which all have
symbolic values. Then we check the conformance following
the same work flow as the native approach. We define this first
round as concrete mode. However, as the concrete values we
assign to the variables might not be the right value, thereby the
concrete mode may produce false alarms, i.e., false positives.
To eliminate these false positives, we conduct a second around
using the original virtual device where the internal state and
external inputs all have symbolic values. This round verifies
the inconsistencies discovered in the concrete mode. We define
this second round as refinement mode.



Fig. 2: Workflow of Adaptive Concretization

1) Concrete mode: the conformance checking algorithm in
the concrete mode is shown in Algorithm 2. It takes a device
trace T and a virtual device F as its inputs.

Algorithm 2 concrete mode(T , F )

1: T ′ ← convert to concrete trace(T )
2: F ′ ← concretize device(F )
3: /* Take 〈Sk, Dk〉 from T ′*/
4: for k : 0 → n do
5: Vk ← Sk

6: G ← sym exec(F ′, Vk, Dk)
7: H ← conformance check(G,Sk+1)
8: if H == ∅ then
9: refinement mode(F, Vk, Sk+1, Dk)

10: end if
11: end for

Algorithm 2 follows the work flow of Algorithm 1 except
three modifications: (1) function convert to conrete trace is
applied instead of convert trace to concretize silicon device
states in T ; (2) function concretize device concretizes the
virtual device F ; (3) when an inconsistency is discovered,
the workflow enters the refinement mode rather than directly
reporting an inconsistency.

Given T = 〈SI0 , D0〉, 〈SI1 , D1〉, ..., 〈SIn , Dn〉, func-
tion convert to conrete trace converts to T ′ = 〈S0, D0〉,
〈S1, D1〉, ..., 〈Sn, Dn〉, where Sk = 〈SIk , SNk

〉 (0 ≤
k ≤ n) derived from SIk . Instead of assigning sym-
bolic values to internal state variables of SNk

, function
convert to conrete trace assigns value zero to variables
of SNk

. Moreover, in function concretize device, external
environment inputs to the virtual device F are also concretized
to zeros. As the values of some environment input variables can
not be zero, for example, the value for modeling the received
packet size cannot be zero, function concretize device ran-
domly picks up non-zero concrete values in their valid range.

We use zero rather than other concrete values for concretiz-
ing since most of the internal state variables have zero as their
initial values. By setting zero, we can largely avoid introducing
false positives in the concrete mode. The zero value we use
to concretize symbolic values should be treated as a special
concrete value. We denote such a value as 0sym, indicating
this zero is concretized from a symbolic value and will be
recovered to the symbolic value in the refinement mode. As

discussed above, some variables are concretized into non-zero
values. For simplicity, when we say concretizing a variable to
0sym, this also means that if the variable is an environment
input variable always with non-zero value, it is concretized to
a random non-zero value.

2) Refinement mode: the refinement mode takes the virtual
device F , a virtual device state Vk, a silicon device state
Sk+1, and a driver request Dk as its inputs. It has the same
work flow as a single iteration presented in Algorithm 1.
Additionally, it has a conversion functions Con2Sym. Func-
tion Con2Sym is invoked immediately when the work flow
enters the refinement mode. It replaces 0sym of virtual device
variables with symbolic values. By recovering 0sym to the
symbolic value, the refinement mode re-simulates the virtual
device under the driver request leading to the inconsistency in
concrete mode. The inconsistency produced in the refinement
mode are reported as a real inconsistency.

IV. EVALUATION

A. Experiment Setup

All experiments were conducted on a workstation with a
dual-core Intel Pentium D Processor at 3.20 GHz and 4GB of
RAM, running Linux with kernel version 2.6.35. We evaluated
three widely used network adapters and their QEMU virtual
devices. Information about these devices and their virtual
devices are summarized in Table I. The virtual device size
is measured in Lines of Code (LoC).

TABLE I: Summary of Devices for Case Studies

Devices Virtual Device
Size (LoC) Basic Description

Intel e1000 2099 Intel Gigabit Ethernet Adapter

Broadcom bcm5751 4519 Broadcom Gigabit Ethernet Adapter

Intel eepro100 2178 Intel Megabit Ethernet Adapter

TABLE II: Types of Bugs in Virtual and Silicon Devices

No. Bug Description Num. Distribution
1 Reserved Bits/Registers are updated 2 e1000

2 Generate unnecessary interrupts 2 eepro100, e1000

3 Fail to generate interrupts 1 bcm5751

4 Fail to clear interrupts 1 bcm5751

5 Fail to update registers 4 e1000, bcm5751

6 Update registers with wrong values 2 e1000

7 Model state with wrong data types 1 bcm5751

8 Registers are out of sync 2 bcm5751

9 Reset to incorrect values 3 eepro100, e1000, bcm5751

10 Fail to model concurrency of SD 3 eepro100, e1000, bcm5751

B. Bug Detection

In this section, we demonstrate that our optimized approach
can detect all the bugs previously discovered by the native
approach. To demonstrate that our optimized approach does
not reduce the capacity comparing to the native approach, we
preform the test cases triggering the previous inconsistencies
between silicon and virtual devices. We summarize all the
bugs derived from inconsistencies in Table II. VD indicates
the virtual device bugs while SD indicates the silicon device
bugs. The results shows that our approach detects all the 15



previous bugs. Moreover, by issuing more test cases to three
network adapters, we detect 6 new virtual device bugs which
are the ninth and tenth type of bugs.

TABLE III: Summary of Test Cases

Test Cases Description
Reset Network Interface Bring down and then bring up the network interface

Ping Ping another network interface

Transfer files Copy large files with total size 3.2 GB

NIC test-suite A set of typical test cases on NIC

C. Efficiency

We evaluate the efficiency of our approach, in terms of
time usages and memory usages. We issue four kinds of
test cases to the network adapters to collect device traces.
These test cases are all common usages of network adapters
as shown in Table III. “NIC test-suite” contains a family
of typical test cases on network interface controllers (NIC),
which manipulates a NIC in different ways, e.g., sending UDP
packets and setting MTU size.

TABLE IV: Summary of Time and Memory Usages

Time Usage (sec) Memory Usage (MB)
Devices Test Cases Native Optimized Native Optimized

Reset NIC 31.28 1.83 233.41 225.26
e1000 Ping 366.28 45.10 336.21 330.24

Transfer files 415.05 48.29 336.63 331.57
NIC test-suite 351.13 18.36 288.79 288.33

Reset NIC 26.31 0.88 169.01 168.32
bcm5751 Ping 305.11 42.05 284.25 279.47

Transfer files 294.84 48.23 273.23 261.69
NIC test-suite 261.77 23.79 225.95 225.93

Reset NIC 28.79 0.61 251.62 243.81
eepro100 Ping 236.51 16.62 261.31 259.63

Transfer files 210.44 16.70 262.96 258.99
NIC test-suite 215.57 8.63 261.34 258.38

1) Time usages: we calculate the average time usages
to process 100 driver requests in each test cases. Table IV
summarizes the results. The time have been reduced an order of
magnitude by using the optimized approach. The time usages
are reduced less in the test cases “Ping” and “Transfer files”
than the other two test cases. The reason is that these two test
cases involve receiving packets. The test case involving receiv-
ing packets has more false positives introduced in the concrete
mode, as the conforming paths usually access many symbolic
variables representing the environmental inputs. Therefore, in
these two test cases, the approach often requires the refinement
mode and the time usages are increased.

2) Memory usages: We evaluate the memory usages in the
same way as evaluating time usages. As Table IV shows, the
results suggest that our optimized approach has almost same
memory usages with the native approach.

V. RELATED WORK

Post-silicon validation is important but difficult. Most of
previous work has been focused on improving observability of
hardware internal. A notable work is “backspace” [3], which
uses SAT-solving techniques to provide an execution trace to a
crashed post-silicon state, thus facilitating off-line debugging.

Several approaches [4], [5], [6] integrate assertions into post-
silicon checking of hardware by observing its execution trace.
In [7], [8], hardware monitors are introduced to ameliorate
observability requirements on silicon.

Many research have been done for reducing symbolic exe-
cution overheads. A major effort is to avoid path explosions by
pruning redundant paths. RWSet [9] and path subsumption [10]
employ a similar heuristic where a path which is identical to
the one previously explored can be safely pruned. Kuznetsov
et al. [11] propose a method of automatically merging states
to reduce the number of paths explored in symbolic execu-
tion. Several other approaches [12], [13], [14] leverage the
benefits of concolic execution to partially concretize the target
programs; thereby the number of explored paths is decreased.

VI. CONCLUSIONS AND FUTURE WORK

We have presented adaptive concretization, an optimization
for efficiently checking the conformance between virtual and
silicon devices. By employing this optimization, time usages
of conformance checking are reduced significantly. This op-
timization makes conformance checking efficient and capable
of scaling to hardware devices with complicated designs. For
the next step, we plan to apply our approach to more devices.

VII. ACKNOWLEDGMENT

This research received financial support from National
Science Foundation (Grant #: 0916968). A pending patent filed
on this research by Portland State University has been licensed
to Virtual Device Technologies (VDTech) where Fei Xie is a
partner.

REFERENCES

[1] L. Lei, F. Xie, and K. Cong, “Post-silicon Conformance Checking with
Virtual Prototypes,” in Proc. of DAC, 2013.

[2] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proc.
of ATEC, 2005.

[3] F. M. De Paula, M. Gort, A. J. Hu, S. Wilton, and J. Yang, “BackSpace:
Formal Analysis for Post-Silicon Debug,” in Proc. of FMCAD, 2008.

[4] M. Boule, J. Chenard, and Z. Zilic, “Adding Debug Enhancements to
Assertion Checkers for Hardware Emulation and Silicon Debug,” in
Proc. of ICCD, 2006.

[5] A. J. Hu, J. Casas, and J. Yang, “Efficient Generation of Monitor
Circuits for GSTE Assertion Graphs,” in Proc. of ICCAD, 2003.

[6] J. A. M. Nacif, F. M. de Paula, H. Foster, C. J. N. C. Jr., and A. O.
Fernandes, “The chip is ready. am i done? on-chip verification using
assertion processors,” in VLSI-SOC, 2003.

[7] S.-B. Park and S. Mitra, “IFRA: instruction footprint recording and
analysis for post-silicon bug localization in processors,” in Proc. of
DAC, 2008.

[8] S. Ray and W. A. Hunt, Jr., “Connecting Pre-silicon and Post-silicon
Verification,” in Proc. of FMCAD, 2009.

[9] P. Boonstoppel, C. Cadar, and D. Engler, “RWset: attacking path
explosion in constraint-based test generation,” in Proc. of TACAS, 2008.

[10] S. Anand, C. S. Păsăreanu, and W. Visser, “Symbolic execution with
abstract subsumption checking,” in Proc. of SPIN, 2006.

[11] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state
merging in symbolic execution,” in Proc. of PLDI, 2012.

[12] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing,” in Proc. of PLDI, 2005.

[13] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing
engine for C,” in Proc. of ESEC/FSE, 2005.

[14] A. Tomb, G. Brat, and W. Visser, “Variably interprocedural program
analysis for runtime error detection,” in Proc. of ISSTA, 2007.


