
Optimizing Automatic Abstraction Refinement for
Generalized Symbolic Trajectory Evaluation

Yan Chen
Dept. of Computer Science
Portland State University

Portland, OR, 97207
chenyan@cs.pdx.edu

Fei Xie
Dept. of Computer Science
Portland State University

Portland, OR, 97207
xie@cs.pdx.edu

Jin Yang
Strategic CAD Labs, DTS

Intel Corporation
Hillsboro, OR 97124

jin.yang@intel.com

ABSTRACT
In this paper, we present a suite of optimizations targeting auto-
matic abstraction refinement for Generalized Symbolic Trajectory
Evaluation (GSTE). We optimize both model refinement and spec
refinement supported by AutoGSTE: a counterexample-guided re-
finement loop for GSTE. Experiments on a family of benchmark
circuits have shown that our optimizations lead to major efficiency
improvements in verification involving abstraction refinement.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—Verification, Optimization

General Terms
Verification, Performance, Algorithms

Keywords
Model Checking, Generalized Symbolic Trajectory Evaluation, Au-
tomatic Abstraction Refinement

1. INTRODUCTION
Generalized Symbolic Trajectory Evaluation (GSTE) [10] is a

highly scalable hardware model checking technique based on a
form of quaternary symbolic simulation. It extends Symbolic Tra-
jectory Evaluation (STE) [4, 5, 7] to verification of properties over
infinite time intervals, while maintaining the efficiency, capacity,
and ease-to-use of STE. The key to the high capacity of STE and
GSTE is the abstraction based on a quaternary state representation
(a.k.a., quaternary abstraction) which, however, is also their weak-
ness. Quaternary abstraction allows circuit nodes to have unknown
values and propagates these unknown values in verification. Prop-
agation of unknown values can both reduce the sizes of the state
space representations and cause false negatives in verification. The
false negative problem is further worsened by the fixed-point com-
putation of GSTE. Wide application of GSTE has been hindered
by manual efforts which are needed in identifying the right level of
abstraction that enables successful verification at reasonable time
and memory usages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2008, June 8–13, 2008, Anaheim, California, USA.
Copyright 2008 ACM ACM 978-1-60558-115-6/08/0006 ...$5.00.

In [3], we proposed AutoGSTE, a comprehensive approach to
automatic abstraction refinement for GSTE. It addresses impreci-
sion of GSTE’s quaternary abstraction caused by under-constrained
input circuit nodes, quaternary state set unions, and existentially
quantified-out symbolic variables. It follows the counterexample-
guided abstraction refinement framework and features an algorithm
that analyzes counterexamples (symbolic error traces) generated by
GSTE to identify causes of imprecision and two complementary al-
gorithms that automate model refinement and specification refine-
ment according to the causes identified. AutoGSTE completely
eliminates false negatives due to imprecision of quaternary abstrac-
tion. Application of AutoGSTE to benchmark circuits from small
to large size has demonstrated that it can automatically verify cir-
cuits that could not be automatically verified by GSTE before.

Application of AutoGSTE has also revealed that the verification
complexities grow rapidly as the number of refinement iterations
increases and the model and the spec are made more precise. This
is affected by both the counterexample analysis algorithm and the
refinement algorithms. It is, therefore, highly desired to have opti-
mized algorithms that can facilitate quicker termination of the re-
finement loop to a less detailed abstraction that can either verify or
falsify the spec.

In this paper, we present a suite of optimizations targeting auto-
matic abstraction refinement supported by AutoGSTE. In the coun-
terexample analysis, as we conduct backward chasing of unknown
values, instead of chasing all the unknowns, we conduct case-by-
case analysis at each circuit node so that we only chase unknowns
that may contribute to the false negatives. In the model refine-
ment, instead of making circuit nodes identified by the counterex-
ample analysis have precise values throughout the whole verifica-
tion, we extend the precise node concept so that precise nodes can
have lifespans. In the spec refinement, instead of requiring exact
matches of state sets to determine terminations of loop-unrollings
and case-splittings, we conduct state set containment checks that
effectively leverage the quaternary state representation to eliminate
unnecessary loop-unrollings and case-splittings.

We have implemented all the above optimizations in the Intel
Forte environment [8] and upon GSTE and AutoGSTE. We have
conducted experiments on a family of benchmark FIFO circuits
from Intel. The experiments have shown that our optimizations
lead to major efficiency improvements in verification involving ab-
straction refinement.

Related Work. There has been much research on abstraction re-
finement for model checking of both hardware and software. Space
limitation precludes a detailed discussion. Closely relevant to our
research is the work on abstraction refinement for STE. In [9], sym-
bolic constants are automatically introduced to constrain under-
constrained input nodes of circuits based on counterexamples from

STE. In [6], a SAT-based algorithm was developed to assist man-
ual refinement of STE assertions. In [1], an automatic symbolic
indexing discovery technique was introduced for STE.

2. BACKGROUND

2.1 GSTE
GSTE checks whether a circuit satisfies the spec given by an as-

sertion graph. An assertion graph is defined as a quintuple G = (V,
v0, E, ant, cons), where V is a set of vertices, v0 is the initial ver-
tex, E is a set of directed edges, and ant and cons are functions
that map each edge to an antecedent label and a consequent label,
respectively. Every finite path in the assertion graph from the ini-
tial vertex is an STE assertion. Therefore, a circuit M satisfies an
assertion graph G if it satisfies every STE assertion derived from
G by following a finite path from the initial vertex. More formally,
the circuit satisfies the assertion graph, denoted by M |= G, if for
every boolean assignment to all the symbolic constants, every fi-
nite path in the graph, and every finite state trace in the circuit of
the same length, the trace satisfies the antecedent sequence on the
path implies it also satisfies the consequent sequence on the path.

To model check an assertion graph against a circuit, GSTE per-
forms a symbolic simulation to compute a set of states simulated
by each edge in the graph. A state is in this set if there is a finite
path from the initial vertex leading to the edge and a finite trace
leading to the state such that the trace satisfies the sequence of the
antecedent labels along the path. Obviously, for an edge coming
out of the initial vertex, any state satisfying the antecedent label on
the edge is simulated by the edge. Furthermore, for an edge e and
a successor edge e′ of e, if s is a state simulated by e, then any
next state s′ of s that satisfies the antecedent label on e′ is simu-
lated by e′. This leads to a GSTE model checking algorithm with
an iterative symbolic simulation phase. Since an assertion graph
may contain loops and an edge may be reached from the initial ver-
tex through different paths, the algorithm requires a form of least
fixed-point computation in the simulation phase [10].

2.2 AutoGSTE
Using quaternary abstraction, each node has quaternary values
{0, 1, X,�} instead of boolean values and any state set in the
circuit can be represented either precisely or approximately by a
quaternary assignment to the nodes in the circuit. A node has
a boolean value in the quaternary assignment if it has the same
boolean value in every state of the state set. Otherwise, it has the
unknown value X. The empty set is represented by assigning �,
which denotes the overconstrained value, to one or more nodes. For
instance, consider a circuit with three nodes p, q and r. The quater-
nary assignment for the singleton state set {[p=1, q=0, r=1]}
is [p = 1, q = 0, r = 1], and the assignment for the state set
{[p=1, q=0, r=1], [p=1, q=1, r=1]} is [p=1, q=X, r=1].

The imprecision of quaternary abstraction may lead to false neg-
atives: STE and GSTE may report the result of X instead of 0 or
1. This is worsen by the fixed-point computation of GSTE which
introduces additional possibilities for unknowns to creep into veri-
fication. As a result, there are three possible causes of abstraction
imprecision in GSTE: (1) under-constrained input circuit nodes,
(2) quaternary state set unions, and (3) existentially quantified-out
symbolic variables.

AutoGSTE [3] is a comprehensive approach to automatic ab-
straction refinement for GSTE, which addresses abstraction im-
precision due to the three causes identified above. It follows the
counterexample-guided abstraction refinement framework and fea-
tures an algorithm that analyzes the counterexample (symbolic er-

ror trace) generated by GSTE to identify causes of imprecision
and two complementary algorithms that automate model refine-
ment and spec refinement according to the causes identified. The
analysis algorithm identifies these causes by backtracking through
the counterexample and conducting fan-in analysis on the circuit.
If imprecision is due to under-constrained input nodes, symbolic
constants are introduced on non-loop edges of the assertion graph
while symbolic variables are introduced on loop edges of the as-
sertion graph. Using model refinement, the circuit nodes which
obtain the unknown values due to imprecision caused by quater-
nary state set unions or quantified-out symbolic variables are iden-
tified and marked as precise nodes in the circuit. Using spec refine-
ment, according to the causes identified, the right kind of semantic-
preserving transformation is applied to the assertion graph: for im-
precision due to quaternary state set unions, loop-unrolling is ap-
plied and for imprecision due to quantified-out symbolic variables,
case-splitting is applied.

3. OPTIMIZING AUTOGSTE
In this section, we present our optimizations of the counterex-

ample analysis, model refinement, and spec refinement algorithms.
For each optimization, we first discuss the inefficiency in the origi-
nal algorithm and we then discuss our improvement.

3.1 Optimizing Counterexample Analysis

3.1.1 Inefficiency in Counterexample Analysis
A counterexample generated by GSTE is a sequence of state

transitions leading to a consequent violation. Each transition is rep-
resented by a triple (edge, src, dest) where edge is the assertion
graph edge simulated, and src and dest are the circuit states be-
fore and after the simulation of edge. The counterexample analysis
algorithm of AutoGSTE is shown in Figure 1. It inputs the coun-

Algorithm: AnalyzeCounterExample(CE[1 : l], post)

1: V iolators← {n|n ∈ N, n violates cons(CE[l].edge) due
to unknown value}

2: Candidate← ∅, Q← ∅
3: forall n ∈ V iolators do Q.enqueue((n, l))
4: while Q �= ∅ do
5: (n, step)← Q.dequeue()
6: if n ∈ NI then
7: add (n, step, INPUT) to Candidate
8: else if n depends on symbolic variables from

ant(CE[step− 1].edge) then
9: add (n, step, WEAK) to Candidate

10: else if n has precise value in post(CE[step − 1].dest)
then

11: add (n, step, UNION) to Candidate
12: else
13: New ← {(n′, step − 1)|n′ ∈ fanin(n), n′ is un-

known in CE[step−1].dest and may contribute to the
unknown value of n}

14: Q.enqueue(New)
15: end if
16: end while
17: return Candidate

Figure 1: Counterexample Analysis Algorithm

terexample CE, the post-image function post and outputs a set of
circuit nodes Candidate which get unknown values directly due

to inputs, quaternary state set unions, and quantified-out symbolic
variables. In this algorithm, fanin(n) is the function that identifies
all one-level fan-in nodes of n.

Given the counterexample CE, the algorithm starts with the time
step l at which a consequent violation is reported. It first decides
which circuit nodes have unknown values and cause the violation.
If a circuit node n has an unknown value in CE[l].dest, while hav-
ing a boolean value in cons(CE[l].edge), then n violates cons(
CE[l].edge). All violating circuit nodes are put into a queue Q
(Steps 1-3). For each node n in Q, if n is an input node, the al-
gorithm identifies n and mark the cause as “INPUT” (Steps 4-7).
If n depends on a symbolic variable in ant(CE[l − 1].edge), it
identifies n and marks the cause as “WEAK” (Steps 8-9). If n has
precise value in post(CE[l−1].dest), it identifies n and marks the
cause as “UNION” (Steps 10-11). All the identified circuit nodes
are added into the node-cause set Candidate. If none of the above
conditions holds, the algorithm backtracks to the previous time step
l− 1. It also conducts a one-level fan-in analysis from n in the cir-
cuit to identify all nodes that affect n. Among these nodes, for
each node n′ with an unknown value in the quaternary assignment
of CE[l − 1].dest and that may contribute to the unknown value
of n in CE[l].dest, this analysis is repeated for n′ until one of the
three causes above is found in the counterexample, by putting n′

into Q (Steps 13-14).
In the backtracking phase (Steps 13-14) of the above counterex-

ample analysis algorithm, the backtracking is conducted for each
fan-in node n′ of n if n′ has an unknown value in CE[l− 1].dest.
This strategy is conservative and guaranteed to identify all causes
for the false negative. However, it can be very inefficient in many
cases when the value of n is not affected by n′. In such cases,
it not only conducts unnecessary backtracking, but also identifies
false causes which will lead to unnecessary refinement actions that
lead to an overly refined model or spec. Figure 2 illustrates such a
case: a simple mux circuit: When the control signal C is 0, A is
selected as the output; otherwise, B is selected. For the counterex-

E=XB

X

X

X

D=XA

C=0

Figure 2: A Mux Circuit Example

ample shown in Figure 2, the algorithm will backtrack on both A
and B even when the value of the control signal C is known. In
fact, when C = 0 (or C = 1, respectively) is known, we only need
to backtrack on A (or B) and eliminate the imprecision in A (or
B). When A and B are complex, the original algorithm can result
in significant increases in verification time and memory usages.

Another problem for the counterexample analysis is the lack of
backward reasoning capability with symbolic indexing. With sym-
bolic indexing, the circuit nodes may contain partially unknown
values, rather than X. GSTE uses dual-rail representation [2] to
encode the quaternary state representation and symbolic indexing.
Each symbolic quaternary value is encoded as a pair of binary val-
ues (H,L), where H and L represent the conditions under which
the value should be true or false, respectively. Therefore the condi-
tion under which the value is unknown can be represented as H∧L.
The counterexample analysis algorithm did not consider the condi-
tion under which the value is unknown and, therefore, may identify
unnecessary circuit nodes. For example, suppose a fan-in of a cir-

cuit node is (c, T rue) while the fan-out of the node is (True,¬c)
in the counterexample trace. That is when c is True, the fan-in is X,
the fan-out is 1; when c is False, the fan-in is 0, the fan-out is X. If
the partially unknown of fan-out causes the imprecision, we do not
need to continue to chase for the partially unknown of its fan-in,
because under the condition that the fan-out is unknown, the fan-in
has precise value rather than X. Therefore, we can conclude that
the imprecision is caused by the Union at this circuit node and not
by its fan-in.

3.1.2 Backward Reasoning
We optimize the counterexample analysis algorithm by conduct-

ing more accurate fan-in analysis at each circuit node as the algo-
rithm is backtracking through the circuit. The optimized counterex-
ample analysis algorithm is shown in Figure 3. Steps 3-5 add an

Algorithm: AnalyzeCounterExample(CE[1 : l], post)

1: V iolators← {n|n ∈ N, n violates cons(CE[l].edge) due
to unknown value}

2: Candidate← ∅, Q← ∅
3: for all n ∈ V iolators do Q.enqueue((n, l, T rue))
4: while Q �= ∅ do
5: (n, step,XCond)← Q.dequeue()
6: if n ∈ NI then
7: add (n, step, INPUT) to Candidate
8: else if n depends on symbolic variables from

ant(CE[step− 1].edge) then
9: add (n, step, WEAK) to Candidate

10: else
11: get value (H,L) of node n from CE[step].dest
12: XCond′ ← H ∧ L ∧XCond
13: Statefanin ← CE[step− 1].dest
14: for all n′ ∈ fanin(n) do
15: Get value (H ′, L′) of node n′ from Statefanin

16: (H ′, L′)← (XCond′ ∧H ′, XCond′ ∧ L′)
17: Update the value of n′ with (H ′, L′) in Statefanin

18: end for
19: if n has precise value in post(Statefanin) then
20: add (n, step, UNION) to Candidate
21: else
22: get the Boolean function f for n from post
23: for all n′ ∈ fanin(n) ∧ n′ has precise value v in

Statefanin do substitute n′ with v in f
24: canonicalize f
25: New ← {(n′, step − 1, XCond′)|n′ ∈

depend(f)}
26: Q.enqueue(New)
27: end if
28: end if
29: end while
30: return Candidate

Figure 3: Counterexample Analysis Algorithm with More Ac-
curate Fan-in Analysis

extra field XCond to the queue Q, which indicates the constraint to
n propagated from its fan-outs. This condition will propagate into
its fan-ins during the backtrack. Steps 11-18 propagate the XCond
into the fan-ins of node n, constrain the state CE[step− 1].dest,
and store the constrained state as Statefanin. Here we do not up-
date the states in the original CE[step−1].dest, because one node
can be the fan-in of several other nodes, and these nodes can have

different XCond’s. So we need to store different XCond’s in the
queue. If the post-image of Statefanin can derive a precise value
for node n, we identify n and mark the cause as UNION (Steps 19-
20). By propagating the XCond, we eliminate the unnecessary re-
finement for partial unknowns as indicated in the previous section.
Otherwise, we extract the Boolean function f for n, and for each
fan-in n′ of n that has precise value in Statefanin, we substitute n′

with its precise value in function f , simplify the function by BDD
canonicalization, and put all the remaining circuit nodes in f into
the queue (Steps 21-27). Since the simplified Boolean function f
can eliminate some potentially unused circuit nodes, we reduce the
number of unnecessary backtracking. Note that the effectiveness
of the simplification depends on the order that we conduct substitu-
tions and the order of BDD variables, this process does not always
derive the most simplified function. But in most cases, especially
when the fan-in values have no dependencies between each other,
most of the non-contributing fan-ins can be eliminated.

3.2 Optimizing Model Refinement

3.2.1 Inefficiency in Model Refinement
In AutoGSTE’s model refinement, after the circuit nodes (i.e.,

the nodes in Candidate) that get unknown values due to quater-
nary state set unions or quantified-out symbolic variables are iden-
tified, the circuit model M is refined by marking these nodes as pre-
cise nodes, and then rerun GSTE with the refined model. By mark-
ing these nodes as precise, GSTE forces these nodes always have
precise value by utilizing symbolic indexing. To ensure that the ab-
straction refinement loop terminates, marking of precise nodes are
done in a monotonic way, i.e., once a node is marked as precise, it
will be precise throughout the whole verification run.

This approach can be quite inefficient when certain circuit nodes
only need to be precise during selected time frames in the verifi-
cation. Making such nodes always precise in general will lead to
larger number of BDDs and, therefore, more memory and time us-
ages. This is especially true when verifying a staged design. Within
each stage of the design, we need to know the precise control flow,
however, after entering the next stage, we often care about the out-
put data of the previous stage rather than its actually control flow,
provided that the two stages are independent. Marking control sig-
nals of a stage as precise nodes only during the computation of the
stage rather than the whole design is especially effective.

3.2.2 Precise Nodes with Lifespans
To address the above problem, we extend the precise node con-

cept of GSTE so that precise nodes now have lifespans. In practice,
we realize this concept by marking different precise nodes on dif-
ferent assertion edges. After the counterexample analysis phase,
if n causes imprecision when going through assertion edge e, we
mark n as precise only on edge e. This will be beneficial in the
staged design, because at different stages we only need to precise
circuit nodes for a particular stage rather than the whole design.

To ensure that the refinement loop still terminates, we require
that marking of precise nodes be monotonic with respect to each
edge of the assertion graph. That is once a node is marked pre-
cise on an edge, it will remain precise on this edge throughout the
abstraction refinement loop.

3.3 Optimizing Spec Refinement

3.3.1 Inefficiency in Spec Refinement
AutoGSTE’s spec refinement algorithm is shown in Figure 4,

which extends the basic GSTE algorithm. Edges is the set of as-

Algorithm: ExtendedGSTE(G,post, Edges)

1: for all e from v0 do Q.enqueue((e, ant(e)))
2: for all e ∈ Edges do Hash(e)← ∅
3: while Q �= ∅ do
4: (e′, sim(e′))← Q.dequeue()
5: for all successor edge e of e′ do
6: NewState← post(sim(e′)) ∩ ant(e)
7: if e ∈ Edges then
8: if e is marked UNION then
9: if NewState /∈ Hash(e) then

10: Hash(e)← Hash(e) ∪ {NewState}
11: Q.enqueue((e, NewState))
12: end if
13: else if e is marked WEAK then
14: Weak← {states derived from NewState by as-

signing all combination of boolean values for sym-
bolic variables in ant(e)}

15: for all s ∈Weak do
16: if s /∈ Hash(e) then
17: Hash(e)← Hash(e) ∪ {s}
18: Q.enqueue((e, s))
19: end if
20: end for
21: end if
22: else
23: sim(e)← sim(e) ∪NewState
24: if there is a change in sim(e) then

Q.enqueue(e, sim(e))
25: end if
26: end for
27: end while
28: for all e ∈ V do consequent check

Figure 4: GSTE Extended with Spec Refinement

sertion graph edges that are identified in the counterexample anal-
ysis and need to be transformed. The algorithm includes two parts:
the on-the-fly transformation (Steps 7-21) and the normal GSTE
fixed-point computation (Steps 22-25). In the transformation, to
keep precise states, we built a hash table for each edge e in Edges
(Steps 1-2). When a new post-image NewState of edge e is gen-
erated, we first check if edge e is marked as UNION. If yes, we
examine the hash table. If NewState is not in the hash table,
NewState is added to the hash table and the simulation contin-
ues with NewState; otherwise, a fixed point is reached (Steps 8-
12). In essence, this realizes loop-unrolling: Loops in G are ex-
panded to mimic the real computation flow of the circuit. If edge
e is marked as WEAK, we generate all possible combinations of
boolean assignments to the symbolic variables in ant(e), and ap-
ply these combinations to NewState to get a set of states Weak.
Each state in Weak not reached before is put into the queue (Steps
13-21). This is equivalent to case splitting of certain edges.

The inefficiency of this algorithm lies in the fixed-point compu-
tation based on the hash tables on each edges. When checking a
state in a hash table, it requires an exact match of the state. This
can be very inefficient when the quaternary state representation and
symbolic indexing is used. For example, if an assertion edge gen-
erates three different states: s0 = [A = 1, B = 0], s1 = [A =
v1, B = 0], s2 = [A = v1 ∨ v2, B = v2]. The algorithm will treat
them as different states and put them into the queue to continue the
computation from each state. However, it is easy to see that s2 is
more general then s1, while s1 is more general then s0. In this

Algorithm: Containment(s1, s2)

1: Ok ← T
2: for all (n, V al2) ∈ s2 do
3: get value V al1 of node n from s1

4: Ok ← Ok ∧ (V al2 → V al1)
5: Quant ← variables that only appear in the current

and previous (V al2 → V al1) pairs
6: Ok ← ∃Quant.Ok
7: end for
8: return Ok

Figure 5: State Set Containment Check

case, we only need to put s2 in the queue. Therefore, the algorithm
above may cause the unnecessary state space blow-ups.

3.3.2 Containment Check for Spec Refinement
Our approach to address this problem is to add a state contain-

ment check procedure to replace the equality test in the above al-
gorithm. Figure 5 shows the state containment check algorithm.
It takes two quaternary state s1, s2 and check whether s1 is con-
tained by s2. For each circuit node n, we find the corresponding
value V al1, V al2 in circuit state s1, s2 respectively. We then build
the Boolean expression Ok =

V
n(V al(n, s2) → V al(n, s1)),

where V al(n, s) represents the value of node n in state s. To pre-
vent the expression growing too large, we enforce a fixed order
for circuit nodes in the state representation, and existentially quan-
tify out the variables that only appear in the current and previous
(V al(n, s2) → V al(n, s1)) pairs. When all variables in Ok are
quantified out, if Ok is true, s1 is contained in s2.

We modify the AutoGSTE spec refinement algorithm as follows.
Every time a new state s′ is generated, we check if s′ is contained
in a previously generated state s for the same edge or vice versa.
If s′ is contained in s, we discard s′. If s is contained in s′, we
replace s with s′ in the hash table, remove s from the queue, and
put s′ in the queue.

4. EXPERIMENTAL EVALUATIONS
We have implemented the above optimizations in the Intel Forte

environment [8] and upon GSTE and AutoGSTE. And we have
conducted experiments on a family of benchmark FIFO circuits
from Intel. All experiments were conducted on a workstation with
3GHz Intel Xeon processor with 2GB memory, and all verifications
were done on the original circuits with no prior abstraction.

Our first example is the classical stationary FIFO circuit. Figure 6

din[7:0]

demux
reset empty

dout[7:0]

full
enq

entry[0]

entry[1]

entry[2]

mux

deq

head[1:0]
tail[1:0]

w
rap

Figure 6: Stationary FIFO Implementation

shows a simple stationary 3-entry 8-bit FIFO circuit. In this exper-
iment, we use an assertion graph that checks whether the empty

!empty&!full

empty&!full
enq iff deq /
!empty&!full

enq iff deq /
!empty&!full

enq /
empty&!full

enq&!deq /
!empty&!full

enq&!deq /
!empty&!full

!empty&full
deq /!enq&deq /

!empty&!full
!enq&deq /

!enq /

reset / true

init

!deq /
!empty&full

3−entry0−entry 1−entry 2−entry

Figure 7: FIFO Assertion Graph

Assertion Pure Spec Ref Hybrid w/o cont. Hybrid w/cont.
FIFO # of # of Time Mem # of Time Mem # of Time Mem
Depth Edges Edges (Sec.) (MB) Edges (Sec.) (MB) Edges (Sec.) (MB)

3 11 31 0.23 11 51 0.32 11.8 25 0.3 11.7
8 26 201 2.69 15 296 2.98 14.3 145 2.56 15.8

16 50 785 17.31 22.5 1104 16.97 21.6 545 13.9 17
24 74 1785 54.23 33.8 2424 50 33.1 1201 44.3 20

Table 1: Refinement Results for 8-bit FIFOs

and full signals of the FIFO circuits are correctly set for all types
of FIFO circuits. The assertion graph is shown in Figure 7. The
assertion graph is independent of the circuit implementation and
data width, and exposes imprecision of quaternary abstraction due
to both UNION and WEAK. We have conducted verifications for
different depths of FIFO. Table 1 compares the verification results
for the pure spec refinement algorithm and a hybrid refinement ap-
proach where spec refinement is used to address UNION and model
refinement is used to address WEAK. Such a hybrid approach is
of interest in that it allows the original assertion graph to be high-
level and the refinement algorithm automatically adapts the graph
to the real computation flow of the circuit without being too de-
tailed (i.e., case-splitting all symbolic variables). Using the hybrid
refinement without containment check, we got even more assertion
edges than the pure spec refinement approach, because many edges
are contained in other edges and the algorithm cannot detect such
redundancy. With containment check, we reduced about half of
the assertion edges and got lower running time and memory usages
than the pure spec refinement.

Our second example is a speculative design whose high-level
model is shown in Figure 8. Multiple components are connected

MUX

 0 1 n

 0 1 n

 0 1 n

Sel

......

......

......

In

In

In

......

Figure 8: Speculative Design of FIFO

to a control unit and are executing in parallel. The final results is
determined by a control signal which selects the appropriate fan-in.
Here, we use 16-depth 8-bit FIFOs as components and a mux as
the control unit. The assertion graphs used in this experiment are
constructed based on the original assertion graph above and reflect
the control flow of the speculative design. We plot the time and
memory usages of model refinement with and without backward
reasoning optimization in Figure 9. As discussed in [3], to check
each FIFO component, we need to mark at least 5 circuit nodes
precise. For our largest experiment with 24 fan-ins to the mux, we
need to mark 120 circuit nodes precise to make all the fan-ins of
the mux precise. However, by backward reasoning, only one of the

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25
 20

 30

 40

 50

 60

 70

 80

 90

R
un

 T
im

e
(s

ec
)

M
em

or
y

(M
B

)

Number of Fanins

time for original model ref.
time for model ref. w/backward

mem for original model ref.
mem for model ref. w/backward

Figure 9: Time and Memory for Speculative Design

fan-ins needs to be marked as precise according to the sel signal,
which significantly reduces time and memory usages. This exam-
ple suggests that the backward reasoning approach is particularly
effective when control signals are indicated in the assertion graph.

Our last example is a staged design with speculative execution,
further extending the scale and complexity of FIFO circuits. Fig-
ure 10 shows the high-level design of this circuit. Instead of con-
necting one FIFO to each fan-in of the mux, we connect a staged
design of FIFOs. Here we fixed the fan-in of the mux to be 16, and

MUX 0 1 n......In 0 1 n 0 1 n 0 1 n......In

 0 1 n......In 0 1 n 0 1 n 0 1 n......In

 0 1 n......In 0 1 n 0 1 n 0 1 n......In

......

Sel

Figure 10: Staged Design with Speculation

see how our optimization affects verification performance for dif-
ferent number of stages. Again the assertion graphs are constructed
based on the original assertion graph and reflect the staged design.
The scale for this design and assertion graph is so complicated that
the original AutoGSTE without optimization cannot finish within
reasonable amount of time. We plot the time and memory usage
data for model refinement with and without the precise-nodes-with-
lifespans optimization in Figure 11. With the backward reasoning
optimization, both refinement algorithms identified the correct fan-
in of the FIFO. In this staged design, there is no control dependency
between the stages and only the data is transferred after a dequeue
signal, so we only need to mark the control signals of a FIFO pre-
cise during the period when the FIFO is working. In this way, the
maximal number of precise nodes for different assertion edges is 5.
In contrast, without the precise-nodes-with-lifespans optimization,
we end up with marking 120 precise nodes for the 24-depth staged
design. We see from Figure 11 that the precise-nodes-with-lifespan
optimization reduce both the time and memory usages for the veri-
fication, especially the memory usage. Since we mark one precise
node on one edge per iteration, this requires multiple iterations in
order to reach the desired level of precision. As a result, the run-
ning time is a little more than we expected, but it is still better than
the refinement with only backward reasoning.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25
 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

R
un

 T
im

e
(s

ec
)

M
em

or
y

(M
B

)

Number of Stages

time for model ref with backward
time for model ref with backward+lifespan

mem for model ref with backward
mem for model ref with backward+lifespan

Figure 11: Time and Memory for Staged Design

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a suite of optimizations for im-

proving efficiency of automatic abstraction refinement for GSTE.
These optimizations are applied throughout the AutoGSTE refine-
ment loop: counterexample analysis, model refinement, and spec
refinement. Experimental evaluations have shown that each opti-
mization is efficient for certain type of circuits. For the next step,
we will investigate analysis algorithms that can match a given cir-
cuit to the right types of optimizations. We will also examine more
efficient symbolic indexing for fine-grained model refinement.

6. ACKNOWLEDGMENT
This research is partially supported by grants from Intel Corpora-

tion. We thank the anonymous reviewers for their helpful feedback.

7. REFERENCES
[1] S. Adams, M. Bjork, T. Melham, and C. Seger. Automatic

abstraction in symbolic trajectory evaluation. In Proc. of FMCAD,
2007.

[2] R. Bryant and C.-J. Seger. Digital circuit verification using
partially-ordered state models. In Twenty-Fourth International
Symposium on Multiple-Valued Logic, 1994.

[3] Y. Chen, Y. He, F. Xie, and J. Yang. Automatic abstraction
refinement for generalized symbolic trajectory evaluation. In Proc.
of FMCAD, 2007.

[4] C.-T. Chou. The mathematical foundation of symbolic trajectory
evaluation. In CAV’1999, July 1999.

[5] S. Hazelhurst and C.-J. Seger. A simple theorem prover based on
symbolic trajectory evaluation and OBDDs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 14(4),
April 1995.

[6] J.-W. Roorda and K. Claessen. SAT-based assistance to abstraction
refinement for symbolic trajectory evaluation. In Proc. of CAV, 2006.

[7] C.-J. Seger and R. Bryant. Formal verification by symbolic
evaluation of partially-ordered trajectories. Formal Methods in
System Design, 6(2), March 1995.

[8] C.-J. Seger, R. Jones, J. O’Leary, T. Melham, M. Aagaard,
C. Barrett, and D. Syme. An industrially effective environment for
formal hardware verification. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 24(9), 2005.

[9] R. Tzoref and O. Grumberg. Automatic refinement and vacuity
detection for symbolic trajectory evaluation. In CAV, 2006.

[10] J. Yang and C.-J. H. Seger. Introduction to generalized symbolic
trajectory evaluation. IEEE Transaction on VLSI Systems, 11(3),
June 2003.

