Model Checking Blichi Pushdown Systems

Juncao Li, Fei Xie!, Thomas Bafl, and Vladimir Levir?

! Department of Computer Science, Portland State University
Portland, OR 97207, USA
{j uncao, xie}@s. pdx.edu
2 Microsoft Corporation
Redmond, WA 98052, USA
{tbal |, vl adl ev}@ri crosoft.com

Abstract. We develop an approach to model checking Linear TemporaicLog
(LTL) properties of Buchi Pushdown Systems (BPDS). SucibBMnodels are
suitable for Hardware/Software (HW/SW) co-verificatioin a BPDS repre-
sents the asynchronous transitions between hardware &iméhsy some tran-
sition orders are unnecessary to be explored in verificatidsdesign an algo-
rithm to reduce BPDS transition rules, so that these triansdrders will not be
explored by model checkers. Our reduction algorithm isiegpt compile time;
therefore, it is also suitable to runtime techniques suchaasimulation. As a
proof of concept, we have implemented our approach in owetification tool,
CoVer. CoVer not only verifies LTL properties on the BPDS misdepresented
by Boolean programs, but also accepts assumptions in LThdtae. The eval-
uation demonstrates that our reduction algorithm can eethe verification cost
by 80% in time usage an@5% in memory usage on average.

1 Introduction

Hardware/Software (HW/SW) co-verification, verifying Harare and software together,
is essential to establishing the correctness of complexpaben systems. In previous
work, we proposed a Biichi Pushdown System (BPDS) as a faepa¢sentation for
co-verification [1]: a Buichi Automaton (BA) represents adwaare device model and a
Labeled Pushdown System (LPDS) represents a model of thensygeftware; the in-
teractions between hardware and software take place thtbegynchronization of the
BA and LPDS. This is different from a BPDS model used in sofeneerification [2],
where BA only monitors the state transitions of the PushdBwystem (PDS) (see Re-
lated Work). We also designed an algorithm for checkingtggfeoperties of BPDS [1,
3]. However, besides the verification of safety propertiks, verification of liveness
properties is also highly desirable. For example, a drinerits device should not hang
on an |/O operation; a reset command from a driver shouldteadiy reset the device.
We present an approach to LTL model checking of BPDS and desigduction
algorithm to reduce the verification cost. Given an LTL fotenyg to be checked on
a BPDSBP, we constructed a BA3, from —¢ to monitor the state transitions of
BP. The model checking process computeBjf has an accepting run dsiP. Since
a BPDS has two asynchronous components, i.e., a BA and an LkR®8esign our

model checking algorithm in such a way that the fairness eetvthem are guaranteed.
We also design an algorithm to reduce the BPDS transitiesriohsed on the concept
of static partial order reduction [4]. Our reduction alglom is applied at compile time
when constructing a BPDS model rather than during modelkihgrtherefore, the
algorithm is also suitable to runtime techniques such asimadation [5]. Different
from other partial order reduction techniques [4, 6], oupraach can reduce many
visible transitions without affecting the LTLy propertie$to be verified, which is very
effective in reducing the co-verification cost.

As a proof of concept, we have implemented our approach ircowerification
tool, CoVer. CoVer not only verifies LTL properties on the BRPhodels represented
by Boolean programs [7], but also accepts assumptions irfaithulae. These assump-
tions are very helpful in practice to constrain the verifmaand rule out false positives.
We have also designed an evaluation template to generat& Biidlels with various
complexities. The evaluation demonstrates that our rémluetgorithm can reduce the
verification cost by80% in time usage ané5% in memory usage on average.

The rest of this paper is organized as follows. Section Zwevirelated work. Sec-
tion 3 introduces the background of this paper. Section 4gmes our LTL model
checking algorithm for BPDS. Section 5 elaborates on ounctdn algorithm. Sec-
tion 6 presents the implementation details of CoVer angtithtes an example of BPDS
represented by Boolean programs. Section 7 presents theatua results. Section 8
concludes and discusses future work.

2 Related Work

Bouajjani, et al. [8] presented a procedure to compute badkweachability (a.k.a.,
pre*) of PDS and apply this procedure to linear/branching-timopprty verification.
This approach was improved by Schwoon [2], which resultd@og Moped, for check-
ing LTL properties of PDS. An LTL formula is first negated ahen represented as a
BA, which is combined with the PDS to monitor its state tréinsis; therefore, the
model checking problem is to compute if the BA has an accgptin. The goal of the
previous research was to verify software only; howevergaal is co-verification.

Cook, et al. [9] presented an approach to termination cigckf system code
through proofs. The approach has two phases: first constguttte termination ar-
gument which is a set of ranking functions and then provirad tine of the ranking
functions decreases between the pre- and post-statedioftaltransition sequences in
the program. When checking the termination of a device dritsshardware behavior is
necessary to be modeled; otherwise, the verification mayrtedalse positive or miss
areal bug (see examples in Section 6).

Device Driver Tester (DDT) [5] is a symbolic simulation engifor testing closed-
source binary device drivers against undesired behasocs, as race conditions, mem-
ory errors, resource leaks, etc. Given driver’s binary ¢itds first reverse-engineered
and then simulated with symbolic hardware, a shallow hardwaodel that mimics
simple device behaviors such as interrupts. When simgjdkia interactions between

LLTL _x is the subset of the logic LTL without the next time operator.

device and driver, DDT employs a reduction method that aloverrupts only after
each kernel API call by the driver to operate the hardwarécgeWVhile the reduction
method of DDT was not formally justified, such kind of redoctican be formalized as
the static partial reduction approach discussed in thigpap

Our previous work [3] of co-verification implemented an aungdic reachability
analysis algorithm for BPDS models specified using the Cuagg. The concept of
static partial order reduction is applied to reduce the derity of the BPDS model
only for reachability analysis. However, no algorithm wasigned for either co-verifi-
cation of liveness properties or its complexity reduction.

3 Background

3.1 Bichi Automaton (BA)

A BAB[10]is a non-deterministic finite state automaton accegtifinite input strings.

Formally, B = (X, Q, 9, g0, F), whereX' is the input alphabety is the finite set of
statesp C (@ x X' x Q) is the set of state transitiong € @ is the initial state, and
F C @ is the set of final stateds accepts an infinite input string if and only if (iff) it
has a run over the string that visits at least one of the fiméstinfinitely often. A run
of B on an infinite strings is a sequence of states visited Bywhen takings as the

input. We use; > ¢’ to denote a transition from stageto ¢’ with the input symbob.

3.2 Labeled Pushdown System (LPDS)

An LPDSP [1]is atuple(I,G, I, A, (go,wo)), wherel is the input alphabet; is a
finite set of global stated; is a finite stack alphabetl\ C (G x I') x I x (G x I'*)
is a finite set of transition rules, an@o, wo) is the initial configuration. An LPDS
transition rule is written agg,v) < (¢/,w) € A, wherer € I. A configuration of
P is a pair(g,w) € G x I'*. The set of all configurations is denoted@sn f(P).
The head of a configuration = (g,vv) (y € I',v € I'*)is (g,~v) and denoted as

head(c). Similarly the head of a rule = (g,7) < (¢’,w) is (g,~) and denoted as
head(r). Given the same rule, for everyv € I'*, the immediate successor relation is
denoted agg, yv) = (¢, wv), where we say this state transititollowsthe LPDS rule

r. The reachability relations*, is the reflexive and transitive closure of the immediate
successor relation. A path @ on an infinite input stringzor, ... 7 ..., iS written
ascy = ¢ = ...¢; = ..., where the path is also referred to as a tracéaf

¢o = {go,wo) is the initial configuration.

3.3 Bichi Pushdown System (BPDS)

A BPDSBP, as defined in [1], is the Cartesian product of a BAand an LPDSP,
where the input alphabet #fis the power set of the set of propositions that may hold on
a configuration ofP; the input alphabet dP is the power set of the set of propositions
that may hold on a state &; and two labeling functions are defined as follows:

— Lpog : (G x I') — X, associates the head of an LPDS configuration with the
set of propositions that hold on it. Given a configuratioa Conf(P), we write
Lpap(c) instead ofLpop(head(c)) for simplicity.

— Lpop : Q — I, associates a state Bfwith the set of propositions that hold on it.

There are three definitions that help the presentation of ®PD

Enabledness A BA transitiont = ¢ % ¢’ € ¢ is enabled by an LPDS configuration
c (resp.an LPDS rule = ¢ < ¢/ € A)iff 0 C Lpog(c); otherwiset is disabled by
c (resp.r). The LPDS ruler is enabled by the BA statg(resp. the BA transition) iff

T C Lp2p(q); otherwisey is disabled by; (resp.t).

Indistinguishability . Given a BA transitiont = ¢ % ¢’ € §, an LPDS ruler = ¢ SN
¢ € Aisindistinguishable toiff o C Lpag(c) N Lpap(c'), i.€.,t is enabled by both
andc’. On the other hand,is indistinguishable te iff 7 C Lgap(q) N Lp2p(¢'), i€,
r is enabled by both andq’.

Independence Given a BA transitiort and an LPDS rule, if they are indistinguishable
to each other; andr are independent; otherwise if eithigor r is not indistinguishable
to the other but they still enable each otheandr are dependent. The independence
relation is symmetric.

ABPDSBP = ((G x Q), I, A, {(g0,q0),wo), F') is constructed by taking the
Cartesian product df andP. A configuration of 37 is denoted a$(g, ¢), w) € (G x
Q) x I'*. The set of all configurations is denoted@sn f (BP). ((go, 90),wo) is the
initial configuration. For ally € G andy € I, {(g,q),y) € F'if ¢ € F. If we
strictly follow the idea of Cartesian product, a BPDS ruledhis constructed from
a BA transition ing and an LPDS rule imA; therefore, both BA and LPDS have to
transition simultaneously so that BPDS can make a transitio order to model the
asynchronous executions between BA and LPDS, we also neettdduce self-loops
to BA and LPDS respectively. The set of BPDS rulgs, is constructed as follows:

given a BA transitiont = ¢ % ¢/ € § and an LPDS rule = (g,7) < (¢, w) € Athat
enable each other,

— if r andt are dependent, addy, ¢),7) —spr ((¢’,¢),w) to A', i.e., B andP
transition together.

— otherwise, add three rules #: (1) B transitions andP self-loops, i.e.{(g, q),7)
—gp ((9,4),7); (2) P transitions and self-loops, i.e.{(g,q),v) —sr ((¢',q),
w); and (3)B andP transition together, i.e{(g, ¢),v) —gspr ((¢',¢),w).

The head of a configuratian= ((g, q),yv) (v € I,v € I'*) is {(g,q),~) and denoted
ashead(c). Similarly the head of arule = ((g,¢),7) < ((¢',¢),w) is {(g,q),~) and
denoted a&ecad(r). Given the same rule, for everyv € I'*, the immediate successor
relation in BPDS is denoted d&y, q), vv) =5p ((¢', '), wv), where we say this state
transitionfollowsthe BPDS rule-. The reachability relations 5, is the reflexive and
transitive closure of the immediate successor relationath pf B3P is a sequence of
BPDS configurationsy = ¢y =pp ¢1... =5p ¢ =pp ..., Wherer satisfies both
theBiichi constrainind theBPDS loop constrainBuichi constraint requires thatifis
infinitely long, it should have infinite many occurrences &fBS configurations from
the set{ ¢ | head(c) € F' }. Given that

5

— the projection ofr on B, denoted as?, is a sequence of state transitiond3pfand
— the projection ofr onP, denoted as”, is a path ofP,?

BPDS loop constraint requires thatif is infinite, both7? and «=* should also be
infinite. Since self-loop transitions are introducedtand” when constructing BPDS,
we define BPDS loop constraint as a fairness constraint toagtee that neitheB
nor P can self-loop infinitely on these self-loop transitionseTPDS pathr is also
referred to as a trace &P if ¢ is the initial configuration.

4 Model Checking Algorithms for BPDS

4.1 Model Checking Problem

Our goal is to verify LTL properties on BPDS. Given a BPB®, an LTL formulap,
and a labeling functiod.,, : Conf(BP) — 244#) that associates a BPDS configura-
tion to a set of propositions that are true ofdtt() is the set of atomic propositions in
), there exists a BB, = (241%), Q,, 5, g0, F,) that accepts the languagé—¢);
therefore we can synthesize a transition systff®, from 3P and3,,, where concep-
tually, B, monitors the state transitions BiP.

We construct3?P = (G x Q x Qq, I', Ap2p, {(90+ 905 ¢0), wo), Fp2p), where
GxQxQ, is the finite set of global states,is the stack alphabet} 525 is the finite set
of transition rules{(go, go, g,0), wo) is the initial configuration, andzzp = F’ x F,.
The transition relatiom\z: 5 is constructed such thét, q,) —p2p (¢, q,) € Agzp

iff c —pp ¢ € A, q, > q, €6,,ando C Ly(c). The set of all configurations is de-
noted as”on f(B*P) C G x Q x Q, x I'*. For the purpose of simplicity, we also write
B?*P = (P, I', Agzp, F2p), WhereP = G x @ x Q,. The head of a configuration
c= (p,y) (y € v € I'*)is (p,v) and denoted akead(c). Similarly the head of a
ruler = (p,v) —g2p (p’,w) is (p,v) and denoted alsead(r). The immediate succes-
sor relation and reachability relation are denoted respygtas =520 and=-5,,. A
path of B2P is written asco =g2p c1 =52p ..., Where the path is also referred to as
atrace ofB%P if ¢y is the initial configuration.

Definition 1. An accepting run o3P is an infinite tracer such that (1) has in-
finitely many occurrences of configurations from the{set head(c) € Fgzp }, i.€.,
the Buchi acceptance condition is satisfied; and (2) bathand 7 are infinite, i.e.,
the BPDS loop constraint is satisfied.

Definition 2. Given a BPD3P and an LTL formulap, the model checking problem
is to compute if thés?P model constructed fro8P and has an accepting run.
4.2 Model Checking Algorithm

We define a binary relation-};,, between two configurations &P as:c =, ¢/,
iff 3(p,~) € Fgep suchthat =5, (p,yv) =L ¢, Wherev € I'*. A head(p,)

2 78 and=” do not contain any self-loop transitions introduced whemstaicting the BPDS.

is repeatingif Jv € I'* such that(p,v) =%., (p,7v). The set of repeating heads is
denoted askep(B>P). We refer to the path that demonstrates a repeating head as a
repeating path

Proposition 1. Given the initial configuratioreg, B>P has an accepting run iff (1)
Jeg =5p ¢ suchthatead(c’) € Rep(B*P); and (2) a repeating path, of head(c’)
satisfies the condition th&t| # 0 and |77 | # 0. (see [11] for proof)

Our LTL model checking algorithm for BPDS has two phasesstfFgomputing a
special set of repeating headsC Rep(B*P), where the repeating paths of the heads
satisfy the BPDS loop constraint. Second, checking if tiesists a path of32P that
leads from the initial configuration to a configuratiosuch that.ead(c) € R.

In the first phase, we compute. We construct a head reachability gragh=
(P x I'), E), where the set of nodes are the head#&P, the set of edge® C
(PxI')x{0,1}3x (P xI") denotes the reachability relation between the heads. Given
ruler € Ag=p, we define three labeling functions: (B}:p () = 1if head(r) € Fpep
andFg2p(r) = 0 if otherwise; (2)Rz(r) = 1 if r is constructed using a BA transition
from § and Rg(r) = 0 if otherwise; and (3)R»(r) = 1 if r is constructed using an
LPDS rule fromA andRp(r) = 0 if otherwise. An edgé(p,), (b1, b2, b3), (p',7'))
belongs toF iff 3r = (p,v) —pep P, v17'v2) and3In = (p", v1) =5.p (P's€),
wherep, p’,p"” € P,v,7 € I',v1,v2 € I'*, ¢ denotes the empty string, and:

— by = 1,iff Fgap(r) =10r(p", v1) =5p (P 6)s
— by = 1,iff Rg(r) = 1or|7®| #0;
— by =1,iff Rp(r) = 1or|x”| #0;

This definition is based on the idea of backward reachakibityputation. Given the
head(p’, ¢) reachable fromp”,v), if there exits a rule to indicate th&p”, v1+’) is
reachable fronfp, v), then we know that the hedd’, v') (a.k.a.,(p’, 7)) is reachable
from the headp, ~). During such a computation process, we use the three labfifed
above to record the information whether a path between thdseontains a final state
in Fiz2p and satisfies the BPDS loop constraint.

The setR can be computed by exploiting the fact that a héady) is repeating
and the repeating path satisfies the BPDS loop constraift, iff) is part of a Strongly
Connected Component (SCC)®#nd this SCC has internal edges labeled by,),
(%,1,%), and(*, *, 1), wherex represent$ or 1. Algorithm REPHEADS takesB?P as
the input and computes the set REPHEADS first utilizes the backward reachability
analysis algorithm of [2], a.k.agre*, to compute the edgek of G. Given Ag2p,
pre* finds a set of rulesrans C Ag2p such thattrans has rules all in the form
of (p,7) —n2p (p',e), also written agp,~, p’) for simplicity. With the three labels
defined above, we can further write a ruleimns as(p, [y, b1, b2, bs], p’). Given such
a rule, the algorithm between line 7 and 19 computes the adxdlitly relation between
heads. Specifically, when we see a rigle, v1) —52p (p,7) atline 11 or line 13, we
know (p’, €) is reachable fronfp;, v1), S0 we add a new rule trans; when we see a
rule (p1,v1) —n2p (p,772) atline 15, we know(p’, v2) is reachable frongp;, 1), SO
we add a new rule ta\;,;¢;, Where a rule inA,;,;.; describes the reachability relation
between two heads through more than one transitions;dredores the processed rules
fromtrans. Meanwhile, we also use the labels to record the informatioether a final

REPHEADS(B2P = (P, I, Agp, F2p))

1: rel + 0, trans <+ 0, Ajaper < 0

2:

3: {First, compute the head reachability graph8P usingpre*}

4: forall r = (p,v) —p2p (p',€) € Agzp do

5: {Add the labeled rule (written in a simplified form) tarans}

6: trans + trans J{(p, [, Fg2p(r), Ra(r), Rp(r)],p’)}

7: while trans # () do

8: popt = (p,[v, b1, b2, bs],p") from trans;

9: ift ¢ relthen
10: rel < rel | J{t};
11: forall r = (p1,71) < g2p (p,y) € Ag2p do
12: trans « trans |J {(p1, [v1,b1 \V F2p(r), b2 \/ Ra(r),bs \/ Rp(r)],p")}
13: for all {p1,71) <l—>32p (p,7) € Ataver, Wherel = (b}, b5, b5) do
14: trans « trans |J {(p1, [y1,b1 \V/ b1, b2 \/ b5, b3 \/ b5],p")}
15: forall » = (p1,71) = p2p (p,772) € Ap2p dO
16: Ataber < Aravet UL (p1,m) “m2p (0, 72) }, where

L= (b1V Fp2p(r), b2\ Rs(r),b3 \/ Rp(r))

17: {Match the new rule with the rules that have been processed
18: forall (p', [y2,b], b5, b5],p") € rel do
19: trans < trans|\J{(p1, [y1,b1 Vb1V Fgzp (1),

b2 V05V Ri(r),bs Vb5V Rp ()], p")}
20 R+ 0, E+ 0

21: {Direct reachability between two heads, i.e., indicated byle of 3P}
22: forall r = (p,7v) —gep (P',7'v) € Ag2p, Wherev € I'* do

23 E < EU{((p,7), (Fs2p(r), Rs(r), Rp(r)), (P, 7))}
24: {Indirect reachability between two heads, i.e., computegrley}

25: forall (p,~) “gep (p',7') € Ataper dO

26: E<+ EU{((p.7), L))}

27:

28: {Second, fin®? in G}

29: Find strongly connected componerfi&;C,inG = (P x I'), E)

30: forall C' € SCC do

31: if C has edges labeled H§y, x, %), (x, 1, %), and(x, %, 1), wherex represent§ or 1 then

32: {C contains repeating heads whose repeating paths satisfgRES loop constrairjt
33: R <+ R|J{the heads irC'}
34: return R

state is found and the BPDS loop constraint is satisfied opadlie between two heads.
Second, the algorithm detects all the SCCgjiand checks if one of the SCCs con-
tains repeating heads (required by the laliek, <)) and satisfies the BPDS constraint
(required by the two labelg, 1, %) and(x, %, 1)).

Theorem 1. AlgorithmREPHEADS takesO(| P|?| Az p|) time andO(| P||Agzp|) space.
(see [11] for proof)

In the second phase, aftBris computed, we compuiest*({co}) () R, i.e., given
the initial configuratiorg, 3¢y =* ¢’ such thahead(c’) € R. The forward reachability
algorithms, a.k.apost*, for PDS-equivalent models have been well studied. We wese th

forward reachability algorithm [2] with a complexity 6f((|P|+|Agz»|)?). Therefore,
the LTL model checking of BPDS has the complexity®f(| P| + |Agzp|)?).

5 Reduction

We present how to utilize the concept of static partial omgeiuction in the LTL x

checking of BPDS. As illustrated in Figure 1, our reductisbased on the observation

that when5 and P transition asynchronously, one can run while the other @lfe s

loops. Figure 1(a) is a complete state transition graphtaee three types of transition

edges: (1) a horizontal edge represents a transition Wheamsitions and self-loops;
(2) a vertical edge represents
a transition wherP transitions

Coo Cio C20 Cmo Coo Cio C20 Cumo andB self-loops; and (3) a di-

@O—>e0—0 ... ° @O—>0e—r0 .. °

l\l\l i l l l i a_glonal edge represents a t.ran-
Cor® —> 8> 8- 8Cmi Coy ¢, Sition whenB and P transi-

Ci\i\llc C’I I I l tion together. If the graph sat-

ec,. isfies certain requirements (see
Do o . : : : below), we can reduce many
o e —re. e e e e e statetransitions while preserv-
Com Crn C2n Cinn Com Cla C2n Cnningthe LTL. y property to be
(a) Complete transition graph(b) Reduce hori./diag. edg%ﬁ]ecked as illustrated in Fig-
ure 1(b). The reduced BPDS
is denoted aP,., where only
the BPDS rules are reduced.

Fig. 1. An example of reducing state transition edges.

Definition 3. Given a BPDS
rule r, VisProp(r) denotes the set of propositional variables whose valuefétsd
byr. If VisProp(r) = 0, r is said to be invisible.

Definition 4. Given a labeling functiord., two infinite pathsr; = s — s; — ... and
Ty = qo — q1 — ... arestuttering equivalentenoted as; ~g 7o, if there are two
infinite sequences of positive integérs- ip < i1 < is < ...and0 = jy < j1 < j2 <

... such that for everyb >0, L(Szk) = L(Sik+1) =...= L(Sik+1—1) = L(q]k) =

L(gj+1) = ... = L(gj, 1) [6]-

Itis already known that any LTLx property is invariant under stuttering [6]; therefore,
given a tracer of BP, we want to guarantee that there always exists a tradg/f
stuttering equivalent ta.

Givent = ¢ % ¢ € d anda € 244%) foreveryr = ((g,q),7) —sp ((9,4'),7) €
A if VisProp(r) = a # 0, t is said to benorizontally visible Intuitively, horizontal
visibility describes the situation when propositionalightes are evaluated only based
on the states of BA. This can help reduce many visible BPD&srulithout affecting
the LTL_ x properties to be verified, since such a horizontal transitan be shifted on
a BPDS trace to construct another stuttering equivaleace tiGiven a BA transition
and an LPDS rule, Algorithm REDUCIBLERULES decides whether the corresponding
diagonal/horizontal BPDS rules are reducible candid&tesshould assume thaand

REDUCIBLE RULES(t € d,r € A)

Require: ¢t andr are independent.

1: ReduceDiag < FALSE, ReduceHori + FALSE

2. Lett=q—¢,r={(g,7) N (¢',w)

3 r1 = {(g,9),7) —sp {(9,¢),7) {Horizontal BPDS rules, see Figure 1fa)

re = {(g,9),7) —=npr (¢, q),w) {Vertical BPDS rules, see Figure 1fa)
rs = {(g,9),7) —=np {(¢,¢),w) {Diagonal BPDS rules, see Figure 1(a)
if VisProp(r1) =0andVisProp(ry) =0 and VisProp(rs) = () then
{If r1, ro, andrs are all invisiblg
ReduceDiag < TRUE, ReduceH ori <+ TRUE

else

10: if VisProp(ri) = VisProp(rs) or VisProp(r:) = VisProp(rs) or

VisProp(ri1) = 0 or VisProp(ry) = () then

11: ReduceDiag <+ TRUE

12: if ry isinvisibleor t is horizontally visiblethen

13: ReduceHori <+ TRUE

14: return (ReduceDiag, Reduce Hori)
r are independent; otherwise, sinBand P must transition together wherandr are
dependent, no BPDS rule can be reduced. In this algorithiime8, if there is no
visible BPDS rules, both the horizontal rule and the diagonal rule; are reducible
candidates; at line 1% is a reducible candidate if it is replaceable by horizontal a
vertical rules; at line 13;; is a reducible candidate if it is either invisible or consted
from a BA transition (i.e.t) that is horizontally visible.

© N O

Definition 5. We define three sets of headgnsitiveSet, VisibleSet, and LoopSet
onConf(P), as follows:

— SensitiveSet = { head((go,wo)) } U { head(d) | Fr =c <> ¢ € A, Ft €6, r
andt are dependent, where(go, wo) is the initial configuration of?;

— VisibleSet = { head({g’,w)) | Ir = ((g9,q),7) —8Pr {(¢,q),w) € A’ visible
to ¢; and r is irreducible according to AlgorithrREDUCIBLERULES };

— LoopSet = { h | for every SCQ” in Gp, pick a headh from C' }, whereGp is the
head reachability graph oP and there is no preference on hawis selected.

SensitiveSet is introduced to preserve the reachability [3]; the conoéptisibleSet

is similar to that ofSensitiveSet, i.e., preserving the reachability of BPDS paths right
after a visible transition that is not reduced accordirgpRBCIBLERULES; LoopSet,
similar to the concept of cycle closing condition [4], isroduced to satisfy the BPDS
loop constraint when a loop @ is involved in the accepting run.

Algorithm BPDSRILESVIASPOR applies the reduction following the idea illus-
trated in Figure 1(b), where the horizontal/diagonal edgeseduced. At line 6, since
the LPDS ruler and the BA transitiort are dependenf3 and” must transition to-
gether; at line 9, we construct a vertical rule to represkeatasynchronous situation
whenP transitions and self-loops. Since BPDSIR ESVIASPOR follows the reduc-
tion idea of Figure 1(b), all vertical BPDS rules are presehat line 10, we invoke
REDUCIBLERULES, to decide if the horizontal/diagonal BPDS rules are relleaian-
didates; at line 13, we construct a diagonal BPDS rule if sgaey; at line 16, we cons-

10

BPDSRULESVIASPOR(d x A)
1: Async — @, Avert — @, Ahori — @, Adiag — @

2: forall r = (g,7) < (¢',w) € Ado
3 forallt=q2 ¢ €dando C Lpap({g,7)) and T C Lp2p(q) do

4 if r andt are dependerihen

5 {B and’P must transition togethér

6: Asyne < Async U{{(9,9),7) —8Pr (9, d),w)}

7 else

8 {P transitions ands self-loopg

o: Avert <+ Avert U{((9,9),7) =8P (9", 0),w)}
10: (ReduceDiag, Reduce Hori) < REDUCIBLERULES(¢,7)
11: if ReduceDiag = FALSEthen
12: {B and P transition togethe}
13: Adiag + Adiag U{((9,9),7) =8P ((¢',d),w)}
14: if ReduceH ori = FALSEor

(g9,7) € SensitiveSet | VisibleSet|) LoopSet then

15: {B transitions andP self-loopg
16: Anori = Anori U{{(9,9),7) =87 ((9.4), 1)}

17: A;‘ — Async U Avm't U Ahori U Adiag

18: return AL

truct a horizontal BPDS rule if necessary. Note that evereibRcIBLERULES returns
TRUE for ReduceH ori, we still have to preserve this horizontal BPDS rulédfid(r)
belongs taSensitiveSet, VisibleSet, or LoopSet.

Theorem 2. AlgorithmBPDSRULESVIASPORpreserves all LTL x properties to be
verified onBP. (see [11] for proof.)

Complexity analysis.In BPDSRULESVIASPOR, letn,,,. be the number of BPDS
rules that are generated from dependent BA transitions &S rules (at line 6),
n, be the number of BPDS rules related to visible transitioesui.e., when R-
DUCIBLERULES returns FALSE forReduce Diag or ReduceHori), ng,; be the num-
ber of BPDS rules associated $ensitiveSet, VisibleSet, and LoopSet (at line 16
when Reduce Hori is TRUE). We haveA, ., |J Adiag| = 1w + nswr aNd|Agyne| =
nsyne- AS illustrated in Figure 1, asynchronous transitions carmiganized as triples
where each one includes a vertical transition, a horizangaisition, and a diagonal
transition, so we haveA,..:| = [0xAl=nsune The number of rules generated by
BPDSRILESVIASPOR is|A! | = ngyne + M# + Ny + Nsol = SNgyne +
“;X—:,,A' + 1y + nswr. The number of transition rules reducedds| — [A]| = 2[5 x A| —
TNy — %nsym — ngy- Therefore, our reduction is effective when the followirrgeria
have small sizes: (1) BPDS rules visibleip(2) dependent transitions fandP; and
(3) loopsinP.

6 Implementation

As a proof of concept, we have realized the LTL checking algor for BPDS as well
as the static partial order reduction algorithm in our cafigation tool, CoVer. The im-
plementation is based on the Moped model checker [2]. Wefgpbe LPDSP using

11

Boolean programs and the BA using Boolean programs with the semantic extension
of relative atomicity [3], i.e., hardware transitions aredeled as atomic to software.
In this section, we first present an example of a BPDS modelfspein Boolean pro-
grams. Second, we illustrate how we specify LTL propertiesoch a BPDS model.
Third, we elaborate on how CoVer generates a reduced BPD8lfwwdhe verification

of an LTL_ x formula.

6.1 Specification of the BAB and LPDS P

We specifyB andP using an approach similar to that described in [3], wheresthte
transitions of3 are described by atomic functions. Figure 2 demonstratdsauexam-
ple. The states df are represented by global variables. All the functionsghatabeled

void main() begin /l represent hardware registers __atomic book2> status()
declvO,viv2:=1,1,1; declcO,cl,c2,r,s; begin return s,r; end
reset(); _-atomic void increg()
/I wait for the reset to complete begin /I hardware instrumentation function
v1,v0 := status(); if ('c0) then c0 :=1; void HWInstr() begin
while('v1|v0) do v1,v0 := status(); od elsif (Ic1) then ¢1,c0 := 1,0; while(x) do HWModel(); od
/I wait for the counter to increase elsif (!c2) then end
v2,v1,v0 := rdreg(); c2,c1,c0:=1,0,0;fi
while('v2) do v2,v1,v0 :=rdreg(); od end /I asynchronous hardware model
/l'if the return value is valid __atomic void HWModel() begin
if (v1|vO0) then _-atomic void reset() if (r) then
error: skip; begin resecmd: r := 1; end resetact: ¢2,¢1,c0,r,s:=0,0,0,0,1;
fi elsif(s) then increg(); fi
exit: return; _-atomic book3> rd_reg() end
end begin return c2,c1,c0; end

Fig. 2. An example of3 andP both specified in Boolean programs.

by the keyword _atomic describe the state transitions®fSuch kind of functions are
also referred to as transaction functions. The funat@nn models the behavior @9,
wheremai n has three steps: (1) resets the stat8 bfy invoking the functiomr eset ;
(2) waits for the reset to complete; (3) waits for the counfd? to increase above 4, i.e.,
v2==1. When a transaction function, suchrasset orr d_r eg, is invoked fronP, it
represents a dependent (a.k.a., synchronous) transétarebni3 andP. On the other
hand, the transaction functitiWbdel representsindependent (a.k.a., asynchronous)
transitions of3 with respect tdP. In this example, since the dependent transitions of
andP are already specified as direct function calls, the resto€dwrtesian productis to
instrumentP with the independent transitions Bf i.e., add function call tbiW nst r
after each statement irai n.

6.2 Specification of LTL Properties

Without loss of generality, we specify LTL properties on sit@ement labels. For exam-
ple, we write an LTL formulaF exit, which asserts that the functiomi n always ter-
minates. This property is asserted on a very common scemdran software waits for
hardware to respond, the waiting thread should not hangfid#ion of this property

12

requires relatively accurate hardware models. As illisttén Figure 2, the transaction
functionHWVbdel describes a hardware model that responds to software reset-i
diately; thus, the first while-loop imai n will not loop for ever. Since the hardware
will start to increment its register after reset, the secaile-loop will also termi-
nate. Thereforeh exit holds. Note that the non-deterministic while-loopHd nst r
will repeatedly callHWVbdel , which is guaranteed by the BPDS loop constraint and
the fairness between hardware state transitions (i.@sitrans specified byMibdel
should not be starved by self-loop transitions introducdmconstructing a BPDS).
There may exist a hardware design that cannot guaranteediat@egesponses to
software reset commands. Therefore, delays should besenes in the hardware
model. Figure 3 illustrates a transaction functidgwvbdel SI ow which describes a
hardware design that cannot guarantee immediate respéosesset commands.
The propertyF exit fails on the BPDS model
that usedMibdel Sl owfor hardware, since

--e};czr;wi%void HWModelSlow() begin the hardware can delay the reset operation

if (r) then H H H H H

if () then resefct: ¢2.c1,00,1.s = 0,0,0,0,1: fi infinitely. In practice, design engineers may
elsif(s) then increg(); fi want to assume that: hardware can delay

end the reset operation; therefore, software should

Fig. 3. Hardware does not respond to resétait for reset completion; however hardware

immediately. should not delay the reset operation for ever.
CoVer accepts such assumptions as LTL for-
mulae. Under the assumpti@ (resetcmd—

(F resetact)), F exit will hold on the BPDS model. Such kind of assumptions are also

considered as the Biichi constraint specified on the hasdmwadel.

As another example, we write an LTL formul@d,!error, asserting that the labeled
statement imai n is not reachable. Verification @ !error fails on the BPDS model in
Figure 2. Since hardware is asynchronous with software wleeamenting the register,
it is impossible for software to control how fast the regissencremented. Therefore,
when software breaks from the second while-loop, the harelwegyister may have al-
ready been incremented to 5, i.ev,2==1) &&(v1==0) &&(v0==1).

6.3 Reduction during the Cartesian Product

In order to make the Cartesian product/®fand P, we need to add function call to
HW nst r after every software statement. As discussed in Sectiorfain BPDS
transitions are unnecessary to be generated for such aqiyady it is unnecessary to
callHW nst r after every software statement to verify an LT} property. We define
the concrete counterparts corresponding to the concefated®nCon f (P):

Software synchronization points [3].Corresponding t&ensitiveSet, software syn-

chronization points are defined as a set of program locatidrese the program state-
ments right before these locations may be dependent witle sdrthe hardware state
transitions. In general, there are three types of softwamelgonization points: (1) the
point where the program is initialized; (2) those pointditigfter software reads/writes
hardware interface registers; and (3) those points whezae interrupts may affect
the verification results. We may understand the third typguicth a way that the effect

13

of interrupts (by executing interrupt service routines)ynreluence certain program
statements, e.g., the statements that access globalleariab

Software visible points.Corresponding td isibleSet, we define software visible points
as a set of program locations right after the program stat&swehose labels are used
in the LTL property. For example, in Figure 2 the program tawaright after the state-
menterror can be a software visible point. However, the location rigfter the state-
mentresetactcannot be a software visible point, since this statementastiansaction
function forB.

Software loop points.Corresponding td.oopSet, we define software loop points as
a set of program locations involved in program loops. Theigeedetection of those
loops needs to explore the program’s state graph, whicheffigient. Therefore, we
try to identify a super setoopSet’ O LoopSet using heuristics. A program location is
included into the super set if it is at (1) the point right lrefthe first statement of a while
loop; (2) the point right before a backward goto statemen(3pthe entry of a recursive
function, which can be detected by analyzing the call gragitvben functions.

As for implementation, CoVer first automatically detects sloftware synchroniza-
tion points, visible points, and loop points in the Booleaogram of P and then inserts
the function calls taHW nst r only at those detected points. Note that some transi-
tions described byMihbdel (called viaHW nst r) may be visible when a statement

label inHWVbdel isused in the LTL
formula, e.g.F 'resetact However,
decl c0,c1,c2,r,9] hardware registers void leveki>() such BA transitions are horizontally

decl g;// software global variable begin . . .
void main() begin decl v0,v1,v2,v3,v4,V5; VISIble’ sincer eset —_a_Ct Is not a_f'
decl \S),vl,vz =11 v2,v1,V0 := rgregg; fected by any transition oP. This
reset(); v5,v4,v3 ;= rdreg(); . .
VLV0 = status(): V2LV = is why function calls toHW nstr

while(v1|v0) do v1,v0 := status(); od gecki>(v5,v4v3, can be reduced without affecting the

v2,v1,v0); .

/1 call the first level LTL _x properties even ifviWbdel

levek1>(); if*) thenreset(); fi describes visible transitions. Com-

V2,v1v0 = rdreg(); if(g) then pared to the trivial approach that in-

v]yl(wile‘(!VZ)) go v2,v1,v0k:= r?reg(); od g:=(v3=v0); sertsHW nst r after every software

if (v1|v0) then error: skip; fi <stmt>; . . P

exit: return: i statement, our reduction can signifi-
end end cantly reduce the complexity of the

verification model, since the num-
ber of the instrumentation points are
usually very small in common appli-

cations.

Fig. 4. The BPDS templatBPDS<N> for evaluation.

7 Evaluation

We have designed a synthetic BPDS tempB@B®OS<N> for N > 0 to evaluate our
algorithms. As illustrated in Figure 4, this template is g&&mto the BPDS in Figure 2.
The major difference is between the model®oBPDS<N> has two function templates
| evel <N> andgcd<N> for P, where each of the function templates Ma#nstances.
For0 < i < N, | evel <i > callsgcd<i > which is thei*” instance ofgcd<N> that
computes the greatest common divisor (implementatiogaaf<N> is omitted). For

14

Table 1.LTL checking ofBPDS<N>.

N (sec/MB)
LTL Property 500 [1000 [2000

No ReductiofiReductiorjNo ReductiofiReductiorfNo Reductiofi Reduction
F exit 177.9/49.1[55.6/27.9 606.8/98.1 [100.9/55.61951.5/196.3231.5/111.2
G(resetcmd— (F resetact))] 100.8/51.1 | 19.2/31.6 439.0/102.1| 37.2/63.2| 1742.1/204.3115.0/126.%
F levelN 165.3/49.1 [52.9/27.9 524.1/98.1] 99.8/55.6) 1934.1/196.3230.7/111.2

G llevelN 94.8/43.4 [10.7/25.00 404.0/86.2 [22.3/49.9[1728.9/172.5 84.5/99.9

G 'error 96.6/42.4 [10.1/24.4 402.6/84.8 | 21.2/49.2(1719.9/169.8 81.5/98.5

0 < j < N, the instance ofst nt > in the body of the functio evel <j > is re-
placed by a call td evel <j +1>. The instance ofst mt > in the body ofl evel <N>

is replaced byski p. The design oBPDS<N> mimics the common scenarios in co-
verification: since hardware and software are mostly agymajus, there are many soft-
ware statements independent with hardware transitions.

Our evaluation runs on a Lenovo ThinkPad notebook with DuwaeQ.66GHz CPU
and 4GB memory. Table 1 presents the statistics of veriffivey LTL formulae on
the BPDS models generated frdBPDS<N>, where some of the LTL formulae are
discussed in Section 6. The statistics suggests that ouctied algorithm can reduce
the verification cost bg0% in time usage and@5% in memory usage on average.

Table 2 presents the statistics for the verification of BPDf#lets generated from
BPDS_SI ow<N>, a template that differs froBPDS<N> only in the hardware model.
BPDS_S| ow<N> uses the hardware model illustrated in Figure 3. As discliss8ec-
tion 6, the verification of the propertdl or A2 will fail on the BPDS models gen-
erated fromBPDS_S| ow<N>, since the hardware cannot guarantee an immediate re-
sponse to the software reset command. However, by assudtinthe verification of
A1l should pass. Obviously, the verification of this propersnated aspy (including
both.41 and.42), costs more time and memory compared to other properiéesiuse
 is more complex than other properties. Nevertheless, wanéanfrom the two tables
that our reduction algorithm is very effective in reducihg werification cost. For ex-
ample, without the reduction, verification of the propestgets a spaceout failure for
N = 2000, i.e., CoVer fails to allocate more memory from the Opegafiystem.

Table 2.LTL checking ofBPDS_SI ow<N> using the hardware model of Figure 3.

N (sec/MB)
LTL Property 500 [1000 [2000
No Reductiof Reduction|No Reductioff Reduction|No Reductiofi Reduction
ALF exit 186.5/49.1| 38.1/27.8| 576.4/98.1| 98.5/55.6|1913.5/196.3 207.1/111.7

A2:G(resetcmd— (F resetact))| 143.1/61.0 | 28.3/35.5| 587.1/122.0] 64.3/71.0|1778.7/203.% 164.1/142.0
A1 using.A2 as the assumption1264.0/223.4255.8/109.53750.3/446.7565.6/218.9N/A/spaceout1 260.8/437.7
F levelN 181.9/49.1 | 42.2/27.8| 588.6/98.1| 90.8/55.6|1908.4/196.3 198.6/111.2
G llevelN 96.7/43.4 | 12.1/25.0| 414.6/86.2 | 26.9/49.9|1679.7/172.% 91.5/99.9
G lerror 95.0/42.5 | 11.5/24.8| 414.2/84.8| 25.3/49.2|1672.6/169.8 88.9/98.5

15

8 Conclusion and Future Work

We have developed an approach to LTL model checking of BPRiSdasigned a re-
duction algorithm to reduce the verification cost. As a prafo€oncept, we have im-
plemented our approach in our co-verification tool, CoVeN€r not only verifies LTL
properties on the BPDS models represented by Boolean pnsglaut also accepts as-
sumptions in LTL formulae. The evaluation demonstratesdlareduction algorithm
is very effective in reducing the verification cost.

Althoughillustrated using Boolean programs, our apprazehalso be applied with
other programming languages such as C. In other words, tharBlA PDS can be de-
scribed using the C language, and the Cartesian producteamade through instru-
menting the software LPDS model with the hardware BA model&ed in [3]). How-
ever, one challenge to this approach is to support the effiabstraction/refinement,
since most loops need to be fully unrolled in liveness priyparecking. There are two
options for future work: (1) implement an aggressive alasima/refinement algorithm
for loop computation in tools such as SLAM [7] (may be insuéfic when a ranking
function is required); or (2) utilize termination checkitapls such as Terminator [9]
which analyzes loops by checking termination argumergs fianking functions).

Acknowledgement. This research received financial support from National i8&e
Foundation of the United States (Grant #: 0916968).

References

1. Li, J., Xie, F., Ball, T., Levin, V., McGarvey, C.: An aut@ta-theoretic approach to hard-
ware/software co-verification. In: FASE. (2010)

2. Schwoon, S.: Model-Checking Pushdown Systems. PhDsth@sthnische Universitat
Minchen, Institut fir Informatik (2002)

3. Li, J., Xie, F., Ball, T., Levin, V.: Efficient Reachabiifnalysis of Buichi Pushdown Systems
for Hardware/Software Co-verification. In: CAV. (2010)

4. Kurshan, R.P., Levin, V., Minea, M., Peled, D., Yenigth; Static partial order reduction.
In: TACAS. (1998)

5. Kuznetsov, V., Chipounoy, V., Candea, G.: Testing clesaarce binary device drivers with
DDT. In: USENIX Annual Technical Conference. (2010)

6. Clarke, E.M., Grumberg, O., Peled, D.: Model checkingTN#ress (1999)

7. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenbeth, McGarvey, C., Ondrusek, B.,
Rajamani, S.K., Ustuner, A.: Thorough static analysis efcedrivers. In: EuroSys. (2006)

8. Bouajjani, A., Esparza, J., Maler, O.: Reachability gsial of pushdown automata: Appli-
cation to model-checking. In: CONCUR. (1997)

9. Cook, B., Podelski, A., Rybalchenko, A.: Terminationgfsfor systems code. In: PLDI.
(2006)

10. Kurshan, R.P.: Computer-Aided Verification of Coordiimg Processes: The Automata-
Theoretic Approach. Princeton University Press (1994)
11. Li, J.: An Automata-Theoretic Approach to Hardwaret@&afe Co-verification. PhD thesis,

Portland State University (2010)

