
Model Checking Büchi Pushdown Systems

Juncao Li1, Fei Xie1, Thomas Ball2, and Vladimir Levin2

1 Department of Computer Science, Portland State University
Portland, OR 97207, USA

{juncao, xie}@cs.pdx.edu
2 Microsoft Corporation

Redmond, WA 98052, USA
{tball, vladlev}@microsoft.com

Abstract. We develop an approach to model checking Linear Temporal Logic
(LTL) properties of Büchi Pushdown Systems (BPDS). Such BPDS models are
suitable for Hardware/Software (HW/SW) co-verification. Since a BPDS repre-
sents the asynchronous transitions between hardware and software, some tran-
sition orders are unnecessary to be explored in verification. We design an algo-
rithm to reduce BPDS transition rules, so that these transition orders will not be
explored by model checkers. Our reduction algorithm is applied at compile time;
therefore, it is also suitable to runtime techniques such asco-simulation. As a
proof of concept, we have implemented our approach in our co-verification tool,
CoVer. CoVer not only verifies LTL properties on the BPDS models represented
by Boolean programs, but also accepts assumptions in LTL formulae. The eval-
uation demonstrates that our reduction algorithm can reduce the verification cost
by 80% in time usage and35% in memory usage on average.

1 Introduction

Hardware/Software (HW/SW) co-verification, verifying hardware and software together,
is essential to establishing the correctness of complex computer systems. In previous
work, we proposed a Büchi Pushdown System (BPDS) as a formalrepresentation for
co-verification [1]: a Büchi Automaton (BA) represents a hardware device model and a
Labeled Pushdown System (LPDS) represents a model of the system software; the in-
teractions between hardware and software take place through the synchronization of the
BA and LPDS. This is different from a BPDS model used in software verification [2],
where BA only monitors the state transitions of the PushdownSystem (PDS) (see Re-
lated Work). We also designed an algorithm for checking safety properties of BPDS [1,
3]. However, besides the verification of safety properties,the verification of liveness
properties is also highly desirable. For example, a driver and its device should not hang
on an I/O operation; a reset command from a driver should eventually reset the device.

We present an approach to LTL model checking of BPDS and design a reduction
algorithm to reduce the verification cost. Given an LTL formula ϕ to be checked on
a BPDSBP, we constructed a BABϕ from ¬ϕ to monitor the state transitions of
BP. The model checking process computes ifBϕ has an accepting run onBP. Since
a BPDS has two asynchronous components, i.e., a BA and an LPDS, we design our

2

model checking algorithm in such a way that the fairness between them are guaranteed.
We also design an algorithm to reduce the BPDS transition rules based on the concept
of static partial order reduction [4]. Our reduction algorithm is applied at compile time
when constructing a BPDS model rather than during model checking; therefore, the
algorithm is also suitable to runtime techniques such as co-simulation [5]. Different
from other partial order reduction techniques [4, 6], our approach can reduce many
visible transitions without affecting the LTL−X properties1 to be verified, which is very
effective in reducing the co-verification cost.

As a proof of concept, we have implemented our approach in ourco-verification
tool, CoVer. CoVer not only verifies LTL properties on the BPDS models represented
by Boolean programs [7], but also accepts assumptions in LTLformulae. These assump-
tions are very helpful in practice to constrain the verification and rule out false positives.
We have also designed an evaluation template to generate BPDS models with various
complexities. The evaluation demonstrates that our reduction algorithm can reduce the
verification cost by80% in time usage and35% in memory usage on average.

The rest of this paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 introduces the background of this paper. Section 4 presents our LTL model
checking algorithm for BPDS. Section 5 elaborates on our reduction algorithm. Sec-
tion 6 presents the implementation details of CoVer and illustrates an example of BPDS
represented by Boolean programs. Section 7 presents the evaluation results. Section 8
concludes and discusses future work.

2 Related Work

Bouajjani, et al. [8] presented a procedure to compute backward reachability (a.k.a.,
pre∗) of PDS and apply this procedure to linear/branching-time property verification.
This approach was improved by Schwoon [2], which results in atool, Moped, for check-
ing LTL properties of PDS. An LTL formula is first negated and then represented as a
BA, which is combined with the PDS to monitor its state transitions; therefore, the
model checking problem is to compute if the BA has an accepting run. The goal of the
previous research was to verify software only; however, ourgoal is co-verification.

Cook, et al. [9] presented an approach to termination checking of system code
through proofs. The approach has two phases: first constructing the termination ar-
gument which is a set of ranking functions and then proving that one of the ranking
functions decreases between the pre- and post-states of allfinite transition sequences in
the program. When checking the termination of a device driver, its hardware behavior is
necessary to be modeled; otherwise, the verification may report a false positive or miss
a real bug (see examples in Section 6).

Device Driver Tester (DDT) [5] is a symbolic simulation engine for testing closed-
source binary device drivers against undesired behaviors,such as race conditions, mem-
ory errors, resource leaks, etc. Given driver’s binary code, it is first reverse-engineered
and then simulated with symbolic hardware, a shallow hardware model that mimics
simple device behaviors such as interrupts. When simulating the interactions between

1 LTL−X is the subset of the logic LTL without the next time operator.

3

device and driver, DDT employs a reduction method that allows interrupts only after
each kernel API call by the driver to operate the hardware device. While the reduction
method of DDT was not formally justified, such kind of reduction can be formalized as
the static partial reduction approach discussed in this paper.

Our previous work [3] of co-verification implemented an automatic reachability
analysis algorithm for BPDS models specified using the C language. The concept of
static partial order reduction is applied to reduce the complexity of the BPDS model
only for reachability analysis. However, no algorithm was designed for either co-verifi-
cation of liveness properties or its complexity reduction.

3 Background

3.1 Büchi Automaton (BA)

A BAB [10] is a non-deterministic finite state automaton accepting infinite input strings.
Formally,B = (Σ,Q, δ, q0, F), whereΣ is the input alphabet,Q is the finite set of
states,δ ⊆ (Q × Σ × Q) is the set of state transitions,q0 ∈ Q is the initial state, and
F ⊆ Q is the set of final states.B accepts an infinite input string if and only if (iff) it
has a run over the string that visits at least one of the final states infinitely often. A run
of B on an infinite strings is a sequence of states visited byB when takings as the
input. We useq

σ
→ q′ to denote a transition from stateq to q′ with the input symbolσ.

3.2 Labeled Pushdown System (LPDS)

An LPDSP [1] is a tuple(I,G, Γ,∆, 〈g0, ω0〉), whereI is the input alphabet,G is a
finite set of global states,Γ is a finite stack alphabet,∆ ⊆ (G × Γ) × I × (G × Γ ∗)
is a finite set of transition rules, and〈g0, ω0〉 is the initial configuration. An LPDS

transition rule is written as〈g, γ〉
τ
→֒ 〈g′, w〉 ∈ ∆, whereτ ∈ I. A configuration of

P is a pair〈g, ω〉 ∈ G × Γ ∗. The set of all configurations is denoted asConf(P).
The head of a configurationc = 〈g, γv〉 (γ ∈ Γ, v ∈ Γ ∗) is 〈g, γ〉 and denoted as

head(c). Similarly the head of a ruler = 〈g, γ〉
τ
→֒ 〈g′, ω〉 is 〈g, γ〉 and denoted as

head(r). Given the same ruler, for everyv ∈ Γ ∗, the immediate successor relation is
denoted as〈g, γv〉

τ
⇒ 〈g′, ωv〉, where we say this state transitionfollowsthe LPDS rule

r. The reachability relation,⇒∗, is the reflexive and transitive closure of the immediate
successor relation. A path ofP on an infinite input string,τ0τ1 . . . τi . . ., is written
as c0

τ0⇒ c1
τ1⇒ . . . ci

τi⇒ . . ., where the path is also referred to as a trace ofP if
c0 = 〈g0, ω0〉 is the initial configuration.

3.3 Büchi Pushdown System (BPDS)

A BPDSBP, as defined in [1], is the Cartesian product of a BAB and an LPDSP ,
where the input alphabet ofB is the power set of the set of propositions that may hold on
a configuration ofP ; the input alphabet ofP is the power set of the set of propositions
that may hold on a state ofB; and two labeling functions are defined as follows:

4

– LP2B : (G × Γ) → Σ, associates the head of an LPDS configuration with the
set of propositions that hold on it. Given a configurationc ∈ Conf(P), we write
LP2B(c) instead ofLP2B(head(c)) for simplicity.

– LB2P : Q→ I, associates a state ofB with the set of propositions that hold on it.

There are three definitions that help the presentation of BPDS:

Enabledness. A BA transitiont = q
σ
→ q′ ∈ δ is enabled by an LPDS configuration

c (resp. an LPDS ruler = c
τ
→֒ c′ ∈ ∆) iff σ ⊆ LP2B(c); otherwiset is disabled by

c (resp.r). The LPDS ruler is enabled by the BA stateq (resp. the BA transitiont) iff
τ ⊆ LB2P(q); otherwise,r is disabled byq (resp.t).

Indistinguishability . Given a BA transitiont = q
σ
→ q′ ∈ δ, an LPDS ruler = c

τ
→֒

c′ ∈ ∆ is indistinguishable tot iff σ ⊆ LP2B(c)∩LP2B(c
′), i.e.,t is enabled by bothc

andc′. On the other hand,t is indistinguishable tor iff τ ⊆ LB2P(q) ∩ LB2P(q
′), i.e.,

r is enabled by bothq andq′.

Independence. Given a BA transitiont and an LPDS ruler, if they are indistinguishable
to each other,t andr are independent; otherwise if eithert or r is not indistinguishable
to the other but they still enable each other,t andr are dependent. The independence
relation is symmetric.

A BPDSBP = ((G × Q), Γ,∆′, 〈(g0, q0), ω0〉, F ′) is constructed by taking the
Cartesian product ofB andP . A configuration ofBP is denoted as〈(g, q), ω〉 ∈ (G×
Q) × Γ ∗. The set of all configurations is denoted asConf(BP). 〈(g0, q0), ω0〉 is the
initial configuration. For allg ∈ G andγ ∈ Γ , 〈(g, q), γ〉 ∈ F ′ if q ∈ F . If we
strictly follow the idea of Cartesian product, a BPDS rule in∆′ is constructed from
a BA transition inδ and an LPDS rule in∆; therefore, both BA and LPDS have to
transition simultaneously so that BPDS can make a transition. In order to model the
asynchronous executions between BA and LPDS, we also need tointroduce self-loops
to BA and LPDS respectively. The set of BPDS rules,∆′, is constructed as follows:
given a BA transitiont = q

σ
→ q′ ∈ δ and an LPDS ruler = 〈g, γ〉

τ
→֒ 〈g′, ω〉 ∈ ∆ that

enable each other,

– if r and t are dependent, add〈(g, q), γ〉 →֒BP 〈(g′, q′), ω〉 to ∆′, i.e.,B andP
transition together.

– otherwise, add three rules to∆′: (1) B transitions andP self-loops, i.e.,〈(g, q), γ〉
→֒BP 〈(g, q′), γ〉; (2)P transitions andB self-loops, i.e.,〈(g, q), γ〉 →֒BP 〈(g′, q),
ω〉; and (3)B andP transition together, i.e.,〈(g, q), γ〉 →֒BP 〈(g

′, q′), ω〉.

The head of a configurationc = 〈(g, q), γv〉 (γ ∈ Γ, v ∈ Γ ∗) is 〈(g, q), γ〉 and denoted

ashead(c). Similarly the head of a ruler = 〈(g, q), γ〉
τ
→֒ 〈(g′, q′), ω〉 is 〈(g, q), γ〉 and

denoted ashead(r). Given the same ruler, for everyv ∈ Γ ∗, the immediate successor
relation in BPDS is denoted as〈(g, q), γv〉 ⇒BP 〈(g

′, q′), ωv〉, where we say this state
transitionfollowsthe BPDS ruler. The reachability relation,⇒∗

BP , is the reflexive and
transitive closure of the immediate successor relation. A path ofBP is a sequence of
BPDS configurations,π = c0 ⇒BP c1 . . . ⇒BP ci ⇒BP . . ., whereπ satisfies both
theBüchi constraintand theBPDS loop constraint. Büchi constraint requires that ifπ is
infinitely long, it should have infinite many occurrences of BPDS configurations from
the set{ c | head(c) ∈ F ′ }. Given that

5

– the projection ofπ onB, denoted asπB, is a sequence of state transitions ofB, and
– the projection ofπ onP , denoted asπP , is a path ofP ,2

BPDS loop constraint requires that ifπ is infinite, bothπB andπP should also be
infinite. Since self-loop transitions are introduced toB andP when constructing BPDS,
we define BPDS loop constraint as a fairness constraint to guarantee that neitherB
norP can self-loop infinitely on these self-loop transitions. The BPDS pathπ is also
referred to as a trace ofBP if c0 is the initial configuration.

4 Model Checking Algorithms for BPDS

4.1 Model Checking Problem

Our goal is to verify LTL properties on BPDS. Given a BPDSBP, an LTL formulaϕ,
and a labeling functionLϕ : Conf(BP) → 2At(ϕ) that associates a BPDS configura-
tion to a set of propositions that are true of it (At(ϕ) is the set of atomic propositions in
ϕ), there exists a BABϕ = (2At(ϕ), Qϕ, δϕ, qϕ0, Fϕ) that accepts the languageL(¬ϕ);
therefore we can synthesize a transition system,B2P , fromBP andBϕ, where concep-
tually,Bϕ monitors the state transitions ofBP.

We constructB2P = (G × Q × Qϕ, Γ , ∆B2P , 〈(g0, q0, qϕ0), ω0〉, FB2P), where
G×Q×Qϕ is the finite set of global states,Γ is the stack alphabet,∆B2P is the finite set
of transition rules,〈(g0, q0, qϕ0), ω0〉 is the initial configuration, andFB2P = F ′ × Fϕ.
The transition relation∆B2P is constructed such that(c, qϕ) →֒B2P (c′, q′ϕ) ∈ ∆B2P

iff c →֒BP c′ ∈ ∆′, qϕ
σ
→ q′ϕ ∈ δϕ, andσ ⊆ Lϕ(c). The set of all configurations is de-

noted asConf(B2P) ⊆ G×Q×Qϕ×Γ ∗. For the purpose of simplicity, we also write
B2P = (P, Γ,∆B2P , FB2P), whereP = G × Q × Qϕ. The head of a configuration
c = 〈p, γv〉 (γ ∈ Γ, v ∈ Γ ∗) is 〈p, γ〉 and denoted ashead(c). Similarly the head of a
ruler = 〈p, γ〉 →֒B2P 〈p

′, ω〉 is 〈p, γ〉 and denoted ashead(r). The immediate succes-
sor relation and reachability relation are denoted respectively as⇒B2P and⇒∗

B2P . A
path ofB2P is written asc0 ⇒B2P c1 ⇒B2P . . ., where the path is also referred to as
a trace ofB2P if c0 is the initial configuration.

Definition 1. An accepting run ofB2P is an infinite traceπ such that (1)π has in-
finitely many occurrences of configurations from the set{ c | head(c) ∈ FB2P }, i.e.,
the B̈uchi acceptance condition is satisfied; and (2) bothπB andπP are infinite, i.e.,
the BPDS loop constraint is satisfied.

Definition 2. Given a BPDSBP and an LTL formulaϕ, the model checking problem
is to compute if theB2P model constructed fromBP andϕ has an accepting run.

4.2 Model Checking Algorithm

We define a binary relation⇒r
B2P between two configurations ofB2P as:c ⇒r

B2P c′,
iff ∃〈p, γ〉 ∈ FB2P such thatc ⇒∗

B2P 〈p, γv〉 ⇒
+
B2P c′, wherev ∈ Γ ∗. A head〈p, γ〉

2 πB andπP do not contain any self-loop transitions introduced when constructing the BPDS.

6

is repeatingif ∃v ∈ Γ ∗ such that〈p, γ〉 ⇒r
B2P 〈p, γv〉. The set of repeating heads is

denoted asRep(B2P). We refer to the path that demonstrates a repeating head as a
repeating path.

Proposition 1. Given the initial configurationc0, B2P has an accepting run iff (1)
∃c0 ⇒∗

B2P c′ such thathead(c′) ∈ Rep(B2P); and (2) a repeating pathπs ofhead(c′)
satisfies the condition that|πB

s | 6= 0 and|πP
s | 6= 0. (see [11] for proof)

Our LTL model checking algorithm for BPDS has two phases. First, computing a
special set of repeating heads,R ⊆ Rep(B2P), where the repeating paths of the heads
satisfy the BPDS loop constraint. Second, checking if thereexists a path ofB2P that
leads from the initial configuration to a configurationc such thathead(c) ∈ R.

In the first phase, we computeR. We construct a head reachability graphG =
((P × Γ), E), where the set of nodes are the heads ofB2P , the set of edgesE ⊆
(P×Γ)×{0, 1}3×(P×Γ) denotes the reachability relation between the heads. Givena
ruler ∈ ∆B2P , we define three labeling functions: (1)FB2P(r) = 1 if head(r) ∈ FB2P

andFB2P(r) = 0 if otherwise; (2)RB(r) = 1 if r is constructed using a BA transition
from δ andRB(r) = 0 if otherwise; and (3)RP(r) = 1 if r is constructed using an
LPDS rule from∆ andRP(r) = 0 if otherwise. An edge(〈p, γ〉, (b1, b2, b3), 〈p′, γ′〉)
belongs toE iff ∃r = 〈p, γ〉 →֒B2P 〈p

′′, v1γ
′v2〉 and∃π = 〈p′′, v1〉 ⇒∗

B2P 〈p
′, ε〉,

wherep, p′, p′′ ∈ P , γ, γ′ ∈ Γ , v1, v2 ∈ Γ ∗, ε denotes the empty string, and:

– b1 = 1, iff FB2P(r) = 1 or 〈p′′, v1〉 ⇒r
B2P 〈p

′, ε〉;
– b2 = 1, iff RB(r) = 1 or |πB| 6= 0;
– b3 = 1, iff RP(r) = 1 or |πP | 6= 0;

This definition is based on the idea of backward reachabilitycomputation. Given the
head〈p′, ε〉 reachable from〈p′′, v1〉, if there exits a rule to indicate that〈p′′, v1γ′〉 is
reachable from〈p, γ〉, then we know that the head〈p′, γ′〉 (a.k.a.,〈p′, εγ′〉) is reachable
from the head〈p, γ〉. During such a computation process, we use the three labels defined
above to record the information whether a path between the heads contains a final state
in FB2P and satisfies the BPDS loop constraint.

The setR can be computed by exploiting the fact that a head〈p, γ〉 is repeating
and the repeating path satisfies the BPDS loop constraint iff〈p, γ〉 is part of a Strongly
Connected Component (SCC) ofG and this SCC has internal edges labeled by(1, ∗, ∗),
(∗, 1, ∗), and(∗, ∗, 1), where∗ represents0 or 1. Algorithm REPHEADS takesB2P as
the input and computes the setR. REPHEADS first utilizes the backward reachability
analysis algorithm of [2], a.k.a.,pre∗, to compute the edgesE of G. Given∆B2P ,
pre∗ finds a set of rulestrans ⊆ ∆B2P such thattrans has rules all in the form
of 〈p, γ〉 →֒B2P 〈p

′, ε〉, also written as(p, γ, p′) for simplicity. With the three labels
defined above, we can further write a rule intrans as(p, [γ, b1, b2, b3], p′). Given such
a rule, the algorithm between line 7 and 19 computes the reachability relation between
heads. Specifically, when we see a rule〈p1, γ1〉 →֒B2P 〈p, γ〉 at line 11 or line 13, we
know 〈p′, ε〉 is reachable from〈p1, γ1〉, so we add a new rule totrans; when we see a
rule 〈p1, γ1〉 →֒B2P 〈p, γγ2〉 at line 15, we know〈p′, γ2〉 is reachable from〈p1, γ1〉, so
we add a new rule to∆label, where a rule in∆label describes the reachability relation
between two heads through more than one transitions; andrel stores the processed rules
from trans. Meanwhile, we also use the labels to record the informationwhether a final

7

REPHEADS(B2P = (P, Γ,∆B2P , FB2P)B2P = (P, Γ,∆B2P , FB2P)B2P = (P, Γ,∆B2P , FB2P))
1: rel← ∅, trans← ∅, ∆label ← ∅
2:
3: {First, compute the head reachability graph ofB2P usingpre∗}
4: for all r = 〈p, γ〉 →֒B2P 〈p

′, ε〉 ∈ ∆B2P do
5: {Add the labeled ruler (written in a simplified form) totrans}
6: trans← trans

⋃
{(p, [γ, FB2P (r),RB(r), RP(r)], p

′)}
7: while trans 6= ∅ do
8: popt = (p, [γ, b1, b2, b3], p

′) from trans;
9: if t /∈ rel then

10: rel← rel
⋃
{t};

11: for all r = 〈p1, γ1〉 →֒B2P 〈p, γ〉 ∈ ∆B2P do
12: trans← trans

⋃
{(p1, [γ1, b1

∨
FB2P(r), b2

∨
RB(r), b3

∨
RP (r)], p′)}

13: for all 〈p1, γ1〉 ֒
l
−→B2P 〈p, γ〉 ∈ ∆label, wherel = (b′1, b

′
2, b

′
3) do

14: trans← trans
⋃
{(p1, [γ1, b1

∨
b′1, b2

∨
b′2, b3

∨
b′3], p

′)}
15: for all r = 〈p1, γ1〉 →֒B2P 〈p, γγ2〉 ∈ ∆B2P do

16: ∆label ← ∆label

⋃
{〈p1, γ1〉 ֒

l
−→B2P 〈p

′, γ2〉}, where
l = (b1

∨
FB2P(r), b2

∨
RB(r), b3

∨
RP(r))

17: {Match the new rule with the rules that have been processed}
18: for all (p′, [γ2, b′1, b

′
2, b

′
3], p

′′) ∈ rel do
19: trans← trans

⋃
{(p1, [γ1, b1

∨
b′1

∨
FB2P(r),

b2
∨

b′2
∨

RB(r), b3
∨

b′3
∨

RP(r)], p
′′)}

20: R← ∅, E ← ∅
21: {Direct reachability between two heads, i.e., indicated by arule ofB2P}
22: for all r = 〈p, γ〉 →֒B2P 〈p

′, γ′v〉 ∈ ∆B2P , wherev ∈ Γ ∗ do
23: E ← E

⋃
{(〈p, γ〉, (FB2P(r),RB(r), RP(r)), 〈p

′, γ′〉)}
24: {Indirect reachability between two heads, i.e., computed bypre∗}

25: for all 〈p, γ〉
l
→֒B2P 〈p

′, γ′〉 ∈ ∆label do
26: E ← E

⋃
{(〈p, γ〉, l, 〈p′, γ′〉)}

27:
28: {Second, findR in G}
29: Find strongly connected components,SCC, in G = ((P × Γ), E)
30: for all C ∈ SCC do
31: if C has edges labeled by(1, ∗, ∗), (∗, 1, ∗), and(∗, ∗, 1), where∗ represents0 or 1 then
32: {C contains repeating heads whose repeating paths satisfy theBPDS loop constraint}
33: R← R

⋃
{the heads inC}

34: return R

state is found and the BPDS loop constraint is satisfied on thepath between two heads.
Second, the algorithm detects all the SCCs inG and checks if one of the SCCs con-
tains repeating heads (required by the label(1, ∗, ∗)) and satisfies the BPDS constraint
(required by the two labels(∗, 1, ∗) and(∗, ∗, 1)).

Theorem 1. AlgorithmREPHEADS takesO(|P |2|∆B2P |) time andO(|P ||∆B2P |) space.
(see [11] for proof)

In the second phase, afterR is computed, we computepost∗({c0})
⋂
R, i.e., given

the initial configurationc0,∃c0 ⇒∗ c′ such thathead(c′) ∈ R. The forward reachability
algorithms, a.k.a.,post∗, for PDS-equivalent models have been well studied. We use the

8

forward reachability algorithm [2] with a complexity ofO((|P |+|∆B2P |)
3). Therefore,

the LTL model checking of BPDS has the complexity ofO((|P | + |∆B2P |)
3).

5 Reduction

We present how to utilize the concept of static partial orderreduction in the LTL−X

checking of BPDS. As illustrated in Figure 1, our reduction is based on the observation
that whenB andP transition asynchronously, one can run while the other one self-
loops. Figure 1(a) is a complete state transition graph. There are three types of transition
edges: (1) a horizontal edge represents a transition whenB transitions andP self-loops;

c0,0

cm,n

c1,0 c2,0 cm,0

cm,1

cm,2

c0,1

c0,2

c0,n c1,n c2,n

(a) Complete transition graph

c0,0

cm,n

c1,0 c2,0 cm,0

cm,1

cm,2

c0,1

c0,2

c0,n c1,n c2,n

(b) Reduce hori./diag. edges

Fig. 1. An example of reducing state transition edges.

(2) a vertical edge represents
a transition whenP transitions
andB self-loops; and (3) a di-
agonal edge represents a tran-
sition whenB and P transi-
tion together. If the graph sat-
isfies certain requirements (see
below), we can reduce many
state transitions while preserv-
ing the LTL−X property to be
checked as illustrated in Fig-
ure 1(b). The reduced BPDS
is denoted asBPr, where only
the BPDS rules are reduced.

Definition 3. Given a BPDS
rule r, V isProp(r) denotes the set of propositional variables whose value is affected
byr. If V isProp(r) = ∅, r is said to be invisible.

Definition 4. Given a labeling functionL, two infinite pathsπ1 = s0 → s1 → . . . and
π2 = q0 → q1 → . . . are stuttering equivalent, denoted asπ1 ∼st π2, if there are two
infinite sequences of positive integers0 = i0 < i1 < i2 < . . . and0 = j0 < j1 < j2 <

. . . such that for everyk ≥ 0, L(sik) = L(sik+1) = . . . = L(sik+1−1) = L(qjk) =
L(qjk+1) = . . . = L(qjk+1−1) [6].

It is already known that any LTL−X property is invariant under stuttering [6]; therefore,
given a traceπ of BP, we want to guarantee that there always exists a trace ofBPr

stuttering equivalent toπ.
Givent = q

σ
−→ q′ ∈ δ anda ∈ 2At(ϕ), for everyr = 〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉 ∈

∆′, if V isProp(r) = a 6= ∅, t is said to behorizontally visible. Intuitively, horizontal
visibility describes the situation when propositional variables are evaluated only based
on the states of BA. This can help reduce many visible BPDS rules without affecting
the LTL−X properties to be verified, since such a horizontal transition can be shifted on
a BPDS trace to construct another stuttering equivalence trace. Given a BA transitiont
and an LPDS ruler, Algorithm REDUCIBLERULES decides whether the corresponding
diagonal/horizontal BPDS rules are reducible candidates.We should assume thatt and

9

REDUCIBLE RULES(t ∈ δ, r ∈ ∆t ∈ δ, r ∈ ∆t ∈ δ, r ∈ ∆)
Require: t andr are independent.

1: ReduceDiag← FALSE,ReduceHori← FALSE
2: Let t = q → q′, r = 〈g, γ〉

τ
→֒ 〈g′, ω〉

3: r1 = 〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉 {Horizontal BPDS rules, see Figure 1(a)}
4: r2 = 〈(g, q), γ〉 →֒BP 〈(g′, q), ω〉 {Vertical BPDS rules, see Figure 1(a)}
5: r3 = 〈(g, q), γ〉 →֒BP 〈(g′, q′), ω〉 {Diagonal BPDS rules, see Figure 1(a)}
6: if V isProp(r1) = ∅ and V isProp(r2) = ∅ and V isProp(r3) = ∅ then
7: {If r1, r2, andr3 are all invisible}
8: ReduceDiag← TRUE,ReduceHori← TRUE
9: else

10: if V isProp(r1) = V isProp(r3) or V isProp(r2) = V isProp(r3) or
V isProp(r1) = ∅ or V isProp(r2) = ∅ then

11: ReduceDiag← TRUE
12: if r1 is invisibleor t is horizontally visiblethen
13: ReduceHori← TRUE
14: return (ReduceDiag,ReduceHori)

r are independent; otherwise, sinceB andP must transition together whent andr are
dependent, no BPDS rule can be reduced. In this algorithm, atline 8, if there is no
visible BPDS rules, both the horizontal ruler1 and the diagonal ruler3 are reducible
candidates; at line 11,r3 is a reducible candidate if it is replaceable by horizontal and
vertical rules; at line 13,r1 is a reducible candidate if it is either invisible or constructed
from a BA transition (i.e.,t) that is horizontally visible.

Definition 5. We define three sets of heads,SensitiveSet, V isibleSet, andLoopSet
onConf(P), as follows:

– SensitiveSet = { head(〈g0, ω0〉) }
⋃
{ head(c′) | ∃r = c

τ
→֒ c′ ∈ ∆, ∃t ∈ δ, r

andt are dependent}, where〈g0, ω0〉 is the initial configuration ofP ;
– V isibleSet = { head(〈g′, ω〉) | ∃r = 〈(g, q), γ〉 →֒BP 〈(g′, q′), ω〉 ∈ ∆′ visible

to ϕ; andr is irreducible according to AlgorithmREDUCIBLERULES };
– LoopSet = { h | for every SCCC in GP , pick a headh fromC }, whereGP is the

head reachability graph ofP and there is no preference on howh is selected.

SensitiveSet is introduced to preserve the reachability [3]; the conceptof V isibleSet

is similar to that ofSensitiveSet, i.e., preserving the reachability of BPDS paths right
after a visible transition that is not reduced according REDUCIBLERULES; LoopSet,
similar to the concept of cycle closing condition [4], is introduced to satisfy the BPDS
loop constraint when a loop ofP is involved in the accepting run.

Algorithm BPDSRULESV IA SPOR applies the reduction following the idea illus-
trated in Figure 1(b), where the horizontal/diagonal edgesare reduced. At line 6, since
the LPDS ruler and the BA transitiont are dependent,B andP must transition to-
gether; at line 9, we construct a vertical rule to represent the asynchronous situation
whenP transitions andB self-loops. Since BPDSRULESV IA SPOR follows the reduc-
tion idea of Figure 1(b), all vertical BPDS rules are preserved; at line 10, we invoke
REDUCIBLERULES, to decide if the horizontal/diagonal BPDS rules are reducible can-
didates; at line 13, we construct a diagonal BPDS rule if necessary; at line 16, we cons-

10

BPDSRULESV IA SPOR(δ ×∆δ ×∆δ ×∆)
1: ∆sync ← ∅, ∆vert ← ∅, ∆hori ← ∅, ∆diag ← ∅

2: for all r = 〈g, γ〉
τ
→֒ 〈g′, ω〉 ∈ ∆ do

3: for all t = q
σ
→ q′ ∈ δ and σ ⊆ LP2B(〈g, γ〉) and τ ⊆ LB2P (q) do

4: if r andt are dependentthen
5: {B andP must transition together}
6: ∆sync ← ∆sync

⋃
{〈(g, q), γ〉 →֒BP 〈(g

′, q′), ω〉}
7: else
8: {P transitions andB self-loops}
9: ∆vert ← ∆vert

⋃
{〈(g, q), γ〉 →֒BP 〈(g

′, q), ω〉}
10: (ReduceDiag,ReduceHori)← REDUCIBLERULES(t,r)
11: if ReduceDiag = FALSE then
12: {B andP transition together}
13: ∆diag ← ∆diag

⋃
{〈(g, q), γ〉 →֒BP 〈(g

′, q′), ω〉}
14: if ReduceHori = FALSEor

〈g, γ〉 ∈ SensitiveSet
⋃

V isibleSet
⋃

LoopSet then
15: {B transitions andP self-loops}
16: ∆hori ← ∆hori

⋃
{〈(g, q), γ〉 →֒BP 〈(g, q

′), γ〉}
17: ∆′

r ← ∆sync

⋃
∆vert

⋃
∆hori

⋃
∆diag

18: return ∆′
r

truct a horizontal BPDS rule if necessary. Note that even if REDUCIBLERULES returns
TRUE for ReduceHori, we still have to preserve this horizontal BPDS rule ifhead(r)
belongs toSensitiveSet, V isibleSet, orLoopSet.

Theorem 2. AlgorithmBPDSRULESV IA SPORpreserves all LTL−X properties to be
verified onBP. (see [11] for proof.)

Complexity analysis.In BPDSRULESV IA SPOR, letnsync be the number of BPDS
rules that are generated from dependent BA transitions and LPDS rules (at line 6),
nv be the number of BPDS rules related to visible transition rules (i.e., when RE-
DUCIBLERULES returns FALSE forReduceDiag or ReduceHori), nsvl be the num-
ber of BPDS rules associated toSensitiveSet, V isibleSet, andLoopSet (at line 16
whenReduceHori is TRUE). We have|∆hori

⋃
∆diag| = nv + nsvl and|∆sync| =

nsync. As illustrated in Figure 1, asynchronous transitions can be organized as triples
where each one includes a vertical transition, a horizontaltransition, and a diagonal
transition, so we have|∆vert| =

|δ×∆|−nsync

3 . The number of rules generated by

BPDSRULESV IA SPOR is|∆′
r
| = nsync +

|δ×∆|−nsync

3 + nv + nsvl = 2
3nsync +

|δ×∆|
3 +nv +nsvl. The number of transition rules reduced is|∆′|− |∆′

r | =
2
3 |δ×∆|−

nv −
2
3nsync − nsvl. Therefore, our reduction is effective when the following criteria

have small sizes: (1) BPDS rules visible toϕ; (2) dependent transitions ofB andP ; and
(3) loops inP .

6 Implementation

As a proof of concept, we have realized the LTL checking algorithm for BPDS as well
as the static partial order reduction algorithm in our co-verification tool, CoVer. The im-
plementation is based on the Moped model checker [2]. We specify the LPDSP using

11

Boolean programs and the BAB using Boolean programs with the semantic extension
of relative atomicity [3], i.e., hardware transitions are modeled as atomic to software.
In this section, we first present an example of a BPDS model specified in Boolean pro-
grams. Second, we illustrate how we specify LTL properties on such a BPDS model.
Third, we elaborate on how CoVer generates a reduced BPDS model for the verification
of an LTL−X formula.

6.1 Specification of the BAB and LPDSP

We specifyB andP using an approach similar to that described in [3], where thestate
transitions ofB are described by atomic functions. Figure 2 demonstrates such an exam-
ple. The states ofB are represented by global variables. All the functions thatare labeled

void main() begin
decl v0,v1,v2 := 1,1,1;
reset();
// wait for the reset to complete
v1,v0 := status();
while(!v1|v0) do v1,v0 := status(); od
// wait for the counter to increase
v2,v1,v0 := rdreg();
while(!v2) do v2,v1,v0 := rdreg(); od
// if the return value is valid
if (v1|v0) then

error: skip;
fi
exit: return;

end

// represent hardware registers
decl c0, c1, c2, r, s;

atomic void increg()
begin

if (!c0) then c0 := 1;
elsif (!c1) then c1,c0 := 1,0;
elsif (!c2) then

c2,c1,c0 := 1,0,0; fi
end

atomic void reset()
begin resetcmd: r := 1; end

atomic bool<3> rd reg()
begin return c2,c1,c0; end

atomic bool<2> status()
begin return s,r; end

// hardware instrumentation function
void HWInstr() begin

while(∗) do HWModel(); od
end

// asynchronous hardware model
atomic void HWModel() begin
if (r) then
resetact: c2,c1,c0,r,s := 0,0,0,0,1;

elsif(s) then increg(); fi
end

Fig. 2. An example ofB andP both specified in Boolean programs.

by the keyword atomic describe the state transitions ofB. Such kind of functions are
also referred to as transaction functions. The functionmain models the behavior ofP ,
wheremain has three steps: (1) resets the state ofB by invoking the functionreset;
(2) waits for the reset to complete; (3) waits for the counterofB to increase above 4, i.e.,
v2==1. When a transaction function, such asreset orrd reg, is invoked fromP , it
represents a dependent (a.k.a., synchronous) transition betweenB andP . On the other
hand, the transaction functionHWModel represents independent (a.k.a., asynchronous)
transitions ofB with respect toP . In this example, since the dependent transitions ofB
andP are already specified as direct function calls, the rest of the Cartesian product is to
instrumentP with the independent transitions ofB, i.e., add function call toHWInstr
after each statement inmain.

6.2 Specification of LTL Properties

Without loss of generality, we specify LTL properties on thestatement labels. For exam-
ple, we write an LTL formula,F exit, which asserts that the functionmain always ter-
minates. This property is asserted on a very common scenario: when software waits for
hardware to respond, the waiting thread should not hang. Verification of this property

12

requires relatively accurate hardware models. As illustrated in Figure 2, the transaction
functionHWModel describes a hardware model that responds to software reset imme-
diately; thus, the first while-loop inmain will not loop for ever. Since the hardware
will start to increment its register after reset, the secondwhile-loop will also termi-
nate. Therefore,F exit holds. Note that the non-deterministic while-loop inHWInstr
will repeatedly callHWModel, which is guaranteed by the BPDS loop constraint and
the fairness between hardware state transitions (i.e., transitions specified byHWModel
should not be starved by self-loop transitions introduced when constructing a BPDS).

There may exist a hardware design that cannot guarantee immediate responses to
software reset commands. Therefore, delays should be represented in the hardware
model. Figure 3 illustrates a transaction functionHWModelSlow which describes a
hardware design that cannot guarantee immediate responsesto reset commands.

atomic void HWModelSlow() begin
if (r) then

if (∗) then resetact: c2,c1,c0,r,s := 0,0,0,0,1; fi
elsif(s) then increg(); fi

end

Fig. 3. Hardware does not respond to reset
immediately.

The propertyF exit fails on the BPDS model
that usesHWModelSlow for hardware, since
the hardware can delay the reset operation
infinitely. In practice, design engineers may
want to assume that: hardware can delay
the reset operation; therefore, software should
wait for reset completion; however hardware
should not delay the reset operation for ever.
CoVer accepts such assumptions as LTL for-
mulae. Under the assumptionG (resetcmd→

(F resetact)), F exit will hold on the BPDS model. Such kind of assumptions are also
considered as the Büchi constraint specified on the hardware model.

As another example, we write an LTL formula,G !error, asserting that the labeled
statement inmain is not reachable. Verification ofG !error fails on the BPDS model in
Figure 2. Since hardware is asynchronous with software whenincrementing the register,
it is impossible for software to control how fast the register is incremented. Therefore,
when software breaks from the second while-loop, the hardware register may have al-
ready been incremented to 5, i.e.,(v2==1)&&(v1==0)&&(v0==1).

6.3 Reduction during the Cartesian Product

In order to make the Cartesian product ofB andP , we need to add function call to
HWInstr after every software statement. As discussed in Section 5, certain BPDS
transitions are unnecessary to be generated for such a product, i.e., it is unnecessary to
call HWInstr after every software statement to verify an LTL−X property. We define
the concrete counterparts corresponding to the concepts defined onConf(P):

Software synchronization points [3].Corresponding toSensitiveSet, software syn-
chronization points are defined as a set of program locationswhere the program state-
ments right before these locations may be dependent with some of the hardware state
transitions. In general, there are three types of software synchronization points: (1) the
point where the program is initialized; (2) those points right after software reads/writes
hardware interface registers; and (3) those points where hardware interrupts may affect
the verification results. We may understand the third type insuch a way that the effect

13

of interrupts (by executing interrupt service routines) may influence certain program
statements, e.g., the statements that access global variables.

Software visible points.Corresponding toV isibleSet, we define software visible points
as a set of program locations right after the program statements whose labels are used
in the LTL property. For example, in Figure 2 the program location right after the state-
menterror can be a software visible point. However, the location rightafter the state-
mentresetactcannot be a software visible point, since this statement is in a transaction
function forB.

Software loop points.Corresponding toLoopSet, we define software loop points as
a set of program locations involved in program loops. The precise detection of those
loops needs to explore the program’s state graph, which is inefficient. Therefore, we
try to identify a super setLoopSet′ ⊇ LoopSet using heuristics. A program location is
included into the super set if it is at (1) the point right before the first statement of a while
loop; (2) the point right before a backward goto statement; or (3) the entry of a recursive
function, which can be detected by analyzing the call graph between functions.

As for implementation, CoVer first automatically detects the software synchroniza-
tion points, visible points, and loop points in the Boolean program ofP and then inserts
the function calls toHWInstr only at those detected points. Note that some transi-
tions described byHWModel (called viaHWInstr) may be visible when a statement

decl c0,c1,c2,r,s;// hardware registers
decl g;// software global variable
void main() begin

decl v0,v1,v2 := 1,1,1;
reset();
v1,v0 := status();
while(!v1|v0) do v1,v0 := status(); od

// call the first level
level<1>();

v2,v1,v0 := rdreg();
while(!v2) do v2,v1,v0 := rdreg(); od
if (v1|v0) then error: skip; fi
exit: return;

end

void level<i>()
begin

decl v0,v1,v2,v3,v4,v5;
v2,v1,v0 := rdreg();
v5,v4,v3 := rdreg();
v2,v1,v0 :=
gcd<i>(v5,v4,v3,

v2,v1,v0);

if(*) then reset(); fi

if(g) then
g := (v3 != v0);
<stmt>;

fi
end

Fig. 4.The BPDS templateBPDS<N> for evaluation.

label inHWModel is used in the LTL
formula, e.g.,F !resetact. However,
such BA transitions are horizontally
visible, sincereset act is not af-
fected by any transition ofP . This
is why function calls toHWInstr
can be reduced without affecting the
LTL−X properties even ifHWModel
describes visible transitions. Com-
pared to the trivial approach that in-
sertsHWInstr after every software
statement, our reduction can signifi-
cantly reduce the complexity of the
verification model, since the num-
ber of the instrumentation points are
usually very small in common appli-
cations.

7 Evaluation

We have designed a synthetic BPDS templateBPDS<N> for N > 0 to evaluate our
algorithms. As illustrated in Figure 4, this template is similar to the BPDS in Figure 2.
The major difference is between the models ofP .BPDS<N> has two function templates
level<N> andgcd<N> for P , where each of the function templates hasN instances.
For 0 < i ≤ N , level<i> callsgcd<i> which is theith instance ofgcd<N> that
computes the greatest common divisor (implementation ofgcd<N> is omitted). For

14

Table 1.LTL checking ofBPDS<N>.

N (sec/MB)
LTL Property 500 1000 2000

No ReductionReductionNo ReductionReductionNo Reduction Reduction

F exit 177.9/49.1 55.6/27.8 606.8/98.1 100.9/55.61951.5/196.3231.5/111.2
G(resetcmd→ (F resetact)) 100.8/51.1 19.2/31.6 439.0/102.1 37.2/63.2 1742.1/204.3115.0/126.5

F level N 165.3/49.1 52.9/27.8 524.1/98.1 99.8/55.6 1934.1/196.3230.7/111.2
G !level N 94.8/43.4 10.7/25.0 404.0/86.2 22.3/49.9 1728.9/172.5 84.5/99.9
G !error 96.6/42.4 10.1/24.8 402.6/84.8 21.2/49.2 1719.9/169.8 81.5/98.5

0 < j < N , the instance of<stmt> in the body of the functionlevel<j> is re-
placed by a call tolevel<j+1>. The instance of<stmt> in the body oflevel<N>
is replaced byskip. The design ofBPDS<N> mimics the common scenarios in co-
verification: since hardware and software are mostly asynchronous, there are many soft-
ware statements independent with hardware transitions.

Our evaluation runs on a Lenovo ThinkPad notebook with Dual Core 2.66GHz CPU
and 4GB memory. Table 1 presents the statistics of verifyingfive LTL formulae on
the BPDS models generated fromBPDS<N>, where some of the LTL formulae are
discussed in Section 6. The statistics suggests that our reduction algorithm can reduce
the verification cost by80% in time usage and35% in memory usage on average.

Table 2 presents the statistics for the verification of BPDS models generated from
BPDS Slow<N>, a template that differs fromBPDS<N> only in the hardware model.
BPDS Slow<N> uses the hardware model illustrated in Figure 3. As discussed in Sec-
tion 6, the verification of the propertyA1 or A2 will fail on the BPDS models gen-
erated fromBPDS Slow<N>, since the hardware cannot guarantee an immediate re-
sponse to the software reset command. However, by assumingA2, the verification of
A1 should pass. Obviously, the verification of this property, denoted asϕ (including
bothA1 andA2), costs more time and memory compared to other properties, because
ϕ is more complex than other properties. Nevertheless, we caninfer from the two tables
that our reduction algorithm is very effective in reducing the verification cost. For ex-
ample, without the reduction, verification of the propertyϕ gets a spaceout failure for
N = 2000, i.e., CoVer fails to allocate more memory from the Operating System.

Table 2.LTL checking ofBPDS Slow<N> using the hardware model of Figure 3.

N (sec/MB)
LTL Property 500 1000 2000

No Reduction Reduction No Reduction Reduction No Reduction Reduction

A1:F exit 186.5/49.1 38.1/27.8 576.4/98.1 98.5/55.6 1913.5/196.3 207.1/111.2
A2:G(resetcmd→ (F resetact)) 143.1/61.0 28.3/35.5 587.1/122.0 64.3/71.0 1778.7/203.5 164.1/142.0
A1 usingA2 as the assumption1264.0/223.4255.8/109.53750.3/446.7565.6/218.9N/A/spaceout1260.8/437.7

F level N 181.9/49.1 42.2/27.8 588.6/98.1 90.8/55.6 1908.4/196.3 198.6/111.2
G !level N 96.7/43.4 12.1/25.0 414.6/86.2 26.9/49.9 1679.7/172.5 91.5/99.9
G !error 95.0/42.5 11.5/24.8 414.2/84.8 25.3/49.2 1672.6/169.8 88.9/98.5

15

8 Conclusion and Future Work

We have developed an approach to LTL model checking of BPDS and designed a re-
duction algorithm to reduce the verification cost. As a proofof concept, we have im-
plemented our approach in our co-verification tool, CoVer. CoVer not only verifies LTL
properties on the BPDS models represented by Boolean programs, but also accepts as-
sumptions in LTL formulae. The evaluation demonstrates that our reduction algorithm
is very effective in reducing the verification cost.

Although illustrated using Boolean programs, our approachcan also be applied with
other programming languages such as C. In other words, the BAand LPDS can be de-
scribed using the C language, and the Cartesian product can be made through instru-
menting the software LPDS model with the hardware BA model (as used in [3]). How-
ever, one challenge to this approach is to support the efficient abstraction/refinement,
since most loops need to be fully unrolled in liveness property checking. There are two
options for future work: (1) implement an aggressive abstraction/refinement algorithm
for loop computation in tools such as SLAM [7] (may be insufficient when a ranking
function is required); or (2) utilize termination checkingtools such as Terminator [9]
which analyzes loops by checking termination arguments (i.e., ranking functions).

Acknowledgement.This research received financial support from National Science
Foundation of the United States (Grant #: 0916968).

References

1. Li, J., Xie, F., Ball, T., Levin, V., McGarvey, C.: An automata-theoretic approach to hard-
ware/software co-verification. In: FASE. (2010)

2. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, Technische Universität
München, Institut für Informatik (2002)

3. Li, J., Xie, F., Ball, T., Levin, V.: Efficient Reachability Analysis of Büchi Pushdown Systems
for Hardware/Software Co-verification. In: CAV. (2010)

4. Kurshan, R.P., Levin, V., Minea, M., Peled, D., Yenigün,H.: Static partial order reduction.
In: TACAS. (1998)

5. Kuznetsov, V., Chipounov, V., Candea, G.: Testing closed-source binary device drivers with
DDT. In: USENIX Annual Technical Conference. (2010)

6. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (1999)
7. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., Ondrusek, B.,

Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers. In: EuroSys. (2006)
8. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Appli-

cation to model-checking. In: CONCUR. (1997)
9. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In: PLDI.

(2006)
10. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The Automata-

Theoretic Approach. Princeton University Press (1994)
11. Li, J.: An Automata-Theoretic Approach to Hardware/Software Co-verification. PhD thesis,

Portland State University (2010)

