
Handling Design and Implementation Optimizations in
Equivalence Checking for Behavioral Synthesis

Zhenkun Yang
Portland State University

zhenkun@cs.pdx.edu

Kecheng Hao
Portland State University

kecheng@cs.pdx.edu

Sandip Ray
University of Texas at Austin

sandip@cs.utexas.edu

Fei Xie
Portland State University

xie@cs.pdx.edu

ABSTRACT

Behavioral synthesis involves generating hardware design via
compilation of its Electronic System Level (ESL) descrip-
tion to an RTL implementation. Equivalence checking is
critical to ensure that the synthesized RTL conforms to its
ESL specification. Such equivalence checking must effec-
tively handle design and implementation optimizations. We
identify two key optimizations that complicate equivalence
checking for behavioral synthesis: (1) operation gating, and
(2) global variables. We develop a sequential equivalence
checking (SEC) framework to compare ESL designs with
RTL in the presence of these optimizations. Our approach
can handle designs with more than 32K LoC RTL synthe-
sized from practical ESL designs. Furthermore, our evalua-
tion found a bug in a commercial tool, underlining both the
importance of SEC and the effectiveness of our approach.

Categories and Subject Descriptors

B.6.3 [Design Aids]: Design Aids—Automatic synthesis,
Optimization, Verification

General Terms

Algorithms, Performance, Verification

Keywords

Equivalence checking, behavioral synthesis, optimization

1. INTRODUCTION
Electronic System Level (ESL) specifications provide a

promising approach to deal with the high complexity of
modern VLSI systems: design functionality is specified at
a high level of abstraction (e.g., with SystemC, C/C++,
or domain-specific language), and compiled by a behavioral
synthesis tool to RTL. Several behavioral synthesis tools are
commercially available [8, 3, 2, 4]. However, their adoption

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2013May 29 - June 07, 2013, Austin, Texas, USA
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

critically depends on our ability to certify the result of syn-
thesis, i.e., ensure that the synthesized RTL conforms to
the ESL specification. This task is challenging because of
the large difference in abstraction between the two.

In previous work [19, 11], we have developed a sequential
equivalence checking (SEC) framework for behavioral syn-
thesis. The key ingredients of the framework were (1) the
use of a formal structure, Clocked Control/Data Flow Graph
(CCDFG) as a uniform design abstraction, (2) a certified se-
quence of high-level transformations to reduce the abstrac-
tion gap, (3) an SEC algorithm based on dual-rail symbolic
simulation between CCDFG and RTL, and (4) optimizations
that enable compositional application of SEC exploiting in-
ternal cutpoints and modular structures. Experimental re-
sults reported successful certification of synthesized designs
with tens of thousands of lines of RTL for ESL specifications
of a number of cryptographic algorithms.

Unfortunately, the above approach cannot directly han-
dle certification of designs from other domains that involve
considerably less structure. In particular, one key require-
ment to achieve compositionality in SEC is the availability
of equivalent internal operations or modules between the ab-
stract CCDFG and the corresponding RTL, which are then
used as cutpoints. However, we found that for many syn-
thesized ESL designs, there are very few internal operations
that preserve such equivalence in the presence of design and
implementation optimizations, thus undermining composi-
tionality and hence scalability.

In this paper, we present techniques for SEC between ESL
designs and synthesized RTL, in the presence of optimiza-
tions that violate local equivalences of internal signals. Our
framework can handle large synthesized designs from diverse
domains, e.g., we could successfully certify all designs in the
CHStone benchmark [12] synthesized by a commercial syn-
thesis tool. CHStone is a publicly available C-based ESL
benchmark suite containing designs from four different cate-
gories; some designs have over 1600 lines of C, and generate
over 32K lines of RTL when synthesized. We are not aware
of any other SEC framework for behavioral synthesis that
can handle synthesized designs of such diversity and scale.
As a point of comparison, the framework described in pre-
vious work [11] (including all the SEC optimizations but
without the techniques presented here) can certify only one
of the twelve designs in the benchmark suite.

Our key observation is that there are two key sources of
local inequivalence between CCDFG and RTL:

Operation Gating: Behavioral synthesis tools often opti-

mize the RTL by introducing control structures or “guards”
to ensure that certain operations are executed only when
their results are relevant to downstream computation, and
turned off otherwise. Such gated operations are functionally
equivalent to the behavioral specification only under these
guards. This makes such an operation difficult to identify;
more problematically, it precludes the naive approach of us-
ing it as a cutpoint by verifying it in isolation and replacing
it with an uninterpreted function in the CCDFG and RTL.

Global Variables: Global variables are used commonly in
ESL as a design optimization: the user can then define some
design functionalities as implicit side effects of other design
modules, reducing the lines-of-code in ESL description and
thus improving compactness. Unfortunately, global vari-
ables break the compositional approach of verifying mod-
ules compositionally, since the side effects on these variables
must be accounted for during SEC.

Our key contributions are algorithms that enable compo-
sitional SEC for behavioral synthesis in the presence of the
above optimizations.

1. We develop an algorithm for relaxed SEC that includes
identification and compositional use of gated variables.
The approach tolerates local,“irrelevant”inequivalences
between gated variables and their RTL counterparts,
as long as the inequivalences are resolved during sym-
bolic simulation of downstream computation.

2. We develop an approach to modeling the side effects of
global variables explicitly and show how the approach
can then be used with modular analysis.

The algorithms, albeit not individually complex, have been
carefully developed to (1) exploit the constraints and invari-
ants available from the behavioral synthesis process, and
(2) reinforce the available SEC optimizations, facilitating
smooth integration. Finally, we found a subtle bug in an
optimization of the behavioral synthesis tool itself, demon-
strating both the need for certification of behaviorally syn-
thesized designs and the importance of SEC in general and
our framework in particular to achieve such certification.

2. BACKGROUND

2.1 Behavioral Synthesis
A behavioral synthesis tool takes a high-level behavioral

description of a design and a library of hardware resources,
and generates an RTL implementation. Similar to a generic
compiler, it first performs lexical, syntax and semantic anal-
ysis, and builds an intermediate representation (IR) of the
high-level description. A series of transformations is then
applied to the IR, which can be categorized in three phases:

Compiler transformations form the first level. This in-
cludes transformations such as dead code elimination, con-
stant propagation, loop unrolling, etc.

Scheduling transformations entail computing for each
operation the clock cycle for its execution. The clock cycle
must account for constraints in hardware resources as well
as control and data flow. These transformations include
pipelining loop iterations, grouping independent operations
for concurrent execution, etc.

Resource binding and control synthesis maps a hard-
ware resource to each operation, allocates registers for vari-
ables used across clock cycles, and generates a finite state
machine (FSM) to implement the schedule.

After these transformations, the design can be expressed
in RTL. Often manual tweaks are added to optimize for dif-
ferent parameters (e.g., performance, power, etc.).

2.2 A Certification Framework
In previous work [19, 11], we proposed an SEC framework

for certifying behaviorally synthesized RTL. A key idea was
to apply SEC to compare the RTL with the design rep-
resentation after high-level transformations have been ap-
plied to the ESL description. The framework introduced a
formalization called CCDFG as a design abstraction. The
CCDFG semantics entail (1) state-based semantics for in-
dividual operations, and (2) interpretation of control and
data flows and scheduling constructs. The operations sup-
ported are those in the LLVM assembly language [17]. High-
level transformations are certified by theorem proving. The
transformed CCDFG is compared with RTL through SEC
via dual-rail symbolic simulation. Three key optimizations
were used to improve SEC performance by exploiting com-
positionality. Cutpoints reduce lengths of symbolic expres-
sions by replacing verified sub-circuits with new symbolic
values. Cut-loop partitions SEC for a loop into three checks
to avoid expensive fix-point computation. Modular analysis
optimizes SEC by replacing verified sub-modules by unin-
terpreted functions.

Unfortunately, as we described above, the compositional
approaches require equivalence of internal operations or mod-
ules between CCDFG and RTL, which is broken in practice
by design and implementation optimizations such as global
variables and operation gating. Indeed, our attempts to
apply the framework on diverse examples showed this was
a blocking problem; the SEC optimizations were unusable,
and hence the framework did not scale. This motivates de-
veloping an SEC approach to robustly handle design and
implementation optimizations.

3. CHALLENGES FROM OPTIMIZATION

3.1 Operation Gating
The idea of operation gating is to add controlling predi-

cates so that an operation is not executed when the value
computed is irrelevant to downstream computation. Behav-
ioral synthesis tools generate optimized RTL with operation
gating to facilitate power-friendly hardware systems [7]. The
transformation itself is complex, and its details are not ger-
mane to this paper. The characteristic of operation gating
that is relevant to equivalence checking is that some op-
erations have explicitly generated gating predicates in the
synthesized RTL, when no such predicate appears in the
CCDFG. The effects of the operation on the CCDFG and
the RTL are then equivalent only when the gating predicate
holds.

Consider synthesizing the code fragment shown in Fig. 1(a).
According to the semantics of C, the multiplication opera-
tion in Line 3 (and the assignment of the result to c) must be
executed regardless of the value of b. However, the result of
multiplication is only relevant to the eventual return value
f when the value of b is 1. In the RTL shown in Fig. 1(c),

1 int foo(int a) {
2 bool b = a > 0;
3 int c = a * 3;
4 int d = a / 3;
5 int e = b ? c : d;
6 int f = e + a;
7 return f;
8 }

(a)

!

D

"

 �F G

H �

E

I

(b)

Mux

a¶

0

3

3

d¶

b¶

e¶

f¶

Mul

CE

Div

CE

Add
>

c¶

(c)

Figure 1: Operation gating example. (a) C code. (b) Data
flow graph. (c) Schematic of generated RTL

the multiplication operation is therefore gated by condition
b′ so it is only executed when b′ has the value 1.
Unfortunately, operation gating breaks compositionality.

Recall from Section 2.2 that a key optimization involved in
scaling up SEC for behavioral synthesis is the utilization
of cutpoints. Cutpoints entail pre-verification of equivalence
between corresponding internal variables in the CCDFG and
the RTL, which are then replaced by (equivalent) symbolic
variables. However, since the output of a gated operation
is only equivalent when the gating condition is satisfied, its
use as a cutpoint will cause the pre-verification to report
inequivalence, breaking the compositional SEC flow.
To address this issue, we develop a relaxed checking algo-

rithm for compositional SEC between a CCDFG G and a
circuit M that tolerates local, “irrelevant” inequivalences for
individual variables. The key idea is to continue dual-rail
symbolic simulation even when a local inequivalence is en-
countered, but keep track of these inequivalences so that we
can check if they are irrelevant during subsequent symbolic
simulation. Algorithm 1 provides a high-level presentation
of our approach. Here tk denotes the scheduling step in clock
cycle k, EMap maps an operation op in CCDFG to combi-
national node in M , and xk, sk, ik denote CCDFG state,
circuit state, and inputs in clock cycle k respectively. At any
point, the algorithm maintains a set, called InEqSet, of cur-
rently encountered variable inequivalences. For our example,
in Fig. 1, InEqSet will record the inequivalent pairs 〈c, c′〉
and 〈d, d′〉 between the CCDFG and the RTL when simulat-
ing Lines 3 and 4 respectively. During subsequent symbolic
simulation, whenever an equivalence is discovered between
variables in G and M , we check if that makes any of the in-
equivalences currently in InEqSet irrelevant. For instance,
when simulating Line 5 we find that e and e′ are equivalent
irrespective of the inequivalences between 〈c, c′〉 and 〈d, d′〉,
making these two inequivalences irrelevant. When symbolic

simulation terminates, one of two outcomes is possible.

• InEqSet is empty, meaning all inequivalences encoun-
tered have been resolved (i.e., found irrelevant). The
algorithm then reports G and M to be equivalent.

• InEqSet still contains some inequivalences. This means
that some operations found inequivalent during sym-
bolic simulation remain relevant even after fix-point
is reached. Thus the algorithm returns G and M to
be inequivalent (and outputs the unresolved inequiva-
lences).

Algorithm 1: Relaxed-Checking(G,M)

1 k ← 0 ⊲ Set clock cycle to 0
2 InEqSet← ∅ ⊲ Empty inequivalence set
3 GInfo ← Find-Gating-Info(G)
4 while not (checking bound or fix-point reached) do

5 xk+1 ← Sim-CCDFG(G, tk, xk, ik)
6 sk+1 ← Sim-RTL(M, sk, EMap(ik))
7 foreach opg ∈ tk do

8 opm ← EMap(opg) ⊲ find the op in circuit M
9 if not Is-Equal(opg, opm) then ⊲ SMT query

10 InEqSet← InEqSet ∪ {〈opg, opm〉}
11 else

12 Resolve-InEq(InEqSet,GInfo, opg, opm)

13 k ← k + 1

14 if |InEqSet| = 0 then ⊲ All inequivalences resolved
15 return true

16 else

17 print InEqSet ⊲ Report all inequivalences
18 return false

Algorithm 1 makes use of two key subroutines, Find-
Gating-Info and Resolve-InEq to do the analysis of ir-
relevance of local inequivalences. To describe these subrou-
tines we first need a key definition below. For this definition,
recall that a Data Flow Graph (DFG) is a directed graph
GD = (V,E), where each v ∈ V is a variable in the program,
each edge (x, y) ∈ E represents a data dependency, meaning
the value of variable y depends on the value of variable x.
Furthermore, we will assume that each node in GD is labeled
with an operation (e.g., add, mul, etc.).1

Definition 1 (Post Dominance). Let GD be a Data
Flow Graph for a design, and u and v be two variables. We
say that u is post-dominated by v in GD iff u 6= v and any
path that starts from u goes through v.

Remark 1. Post-dominance is a common concept in com-
piler literature [9], although it is typically defined with respect
to the Control Flow Graph instead of the DFG as above.
The definition extends to a CCDFG G by taking GD to be
the DFG component of G. Given a variable mapping EMap,
we can also extend the notion to the circuit M : a variable u′

in the circuit is post-dominated by v′ if and only if (1) there
are variables u and v in G that are mapped to u′ and v′ re-
spectively, and (2) u is post-dominated by v. Thus we will
often call 〈u, u′〉 to be post-dominated by 〈v, v′〉.
1This assumption is valid in our case since the instructions
in a CCDFG are in static single assignment (SSA) form; thus
each variable can be uniquely associated with one operation.

The definition of post dominance guarantees that every
path from u in GD must go through v, e.g., in the example
in Fig. 1(b), the variables c and d are post-dominated by e.
Let 〈u, u′〉 be post-dominated by variables 〈v, v′〉 in G and
M respectively. Then if v and v′ are equivalent, it follows
that from the perspective of any pair of corresponding vari-
ables 〈x, x′〉 that are descendants of 〈v, v′〉, the equivalence
or inequivalence of 〈u, u′〉 does not matter. For instance, in
Fig. 1, if e and e′ are equivalent, then the inequivalence of
c and c′ is irrelevant. This observation leads to the theorem
below that is an easy consequence of data flow.

Theorem 1. Suppose G is a CCDFG and M is a cir-
cuit such that the following hold: (1) variables 〈v, v′〉 are
equivalent in G and M , and (2) 〈u, u′〉 are post-dominated
by 〈v, v′〉 respectively. Let 〈x, x′〉 be arbitrary corresponding
descendants of 〈v, v′〉. Then the equivalence between u and
u′ is irrelevant to the equivalence of x and x′.

We now discuss the two subroutines.

Find-Gating-Info. This subroutine finds the potential gat-
ing information for a CCDFG G. A potential gating infor-
mation is a list of pairs 〈v, U〉 where v is a variable and U

is a set of variables such that each variable u ∈ U is post-
dominated by v. Theorem 1 guarantees that if v is equiva-
lent to v′ in G and M then the inequivalences of variables
in U are irrelevant. Our implementation exploits the under-
lying LLVM constructs and information from the synthesis
to efficiently determine relevant post dominance informa-
tion. In particular, LLVM has a special select instruction
of the form y = select cond x1 x2; the synthesis tool typ-
ically targets the condition variable of select instructions
for operation gating.2 Function Find-Gating-Info crawls
over the data flow graph of CCDFG G, first identifying each
select instruction; for each y it then finds all variables that
are post-dominated by y recursively.

Resolve-InEq. This function tries to resolve inequivalences
in InEqSet using the gating information found by Find-
Gating-Info. Let 〈v, v′〉 be determined to be equivalent
during symbolic simulation. Then we find the set U such
that 〈v, U〉 is a pair computed by Find-Gating-Info. From
the above discussion, inequivalences involving variables in U

are irrelevant, therefore dropped from InEqSet.

3.2 Global Variables
Modular design provides several advantages by breaking

the design into modules. One key optimization presented in
previous work [11] is modular analysis. The basic idea is to
check each module individually in a bottom up manner.

• For each module M , check the equivalence of CCDFG
and RTL.

• When checking module M ′ that calls M , replace the
invocation of M in both CCDFG and RTL by equiva-
lent uninterpreted functions.

However, global variable usages break this modular view,
and one must account for side effects on these variables

2U need not be the complete set of variables post-dominated
by v. This permits us to merely consider conditions in the
LLVM select instruction as potential gating information.
This runs the risk of possible spurious SEC failures. How-
ever, in our experience, this check has been sufficient.

while performing modular analysis. Note that while the side
effects are implicit for high-level design descriptions (and
hence CCDFGs), they are explicit on the synthesized RTL
since the synthesis tool usually places the global variable on
the interface when generating RTL.

Our solution is to compute an extended signature for a
module that accounts for globals explicitly. Algorithm 2
shows how to compute the extended signature of a mod-
ule. The key idea is to analyze the module to determine the
globals used in the module. The parameters of the module
are then extended to include read-only and read-write glob-
als among the inputs and write-only and read-write globals
among the outputs.3

Algorithm 2: Get-Extended-Signature(f)

1 I ← Parameters(f)
2 O ← Outputs(f)
3 VG ← Find-All-Globals(f)
4 foreach v ∈ VG do

5 switch Usage-Type(v) do
6 case R : I ← I ∪ {v} ; ⊲ read-only
7 case W : O ← O ∪ {v} ; ⊲ write-only
8 case RW : ⊲ read-and-write
9 I ← I ∪ {v}

10 O ← O ∪ {v};

11 return 〈I,O〉

1 char A; // global variable
2 int B; // global variable
3 int C[2]; // global variable
4 void top() {
5 int i = 10;
6 bar(i);
7 }
8 void bar(int x) {
9 B = A + x; // side effect

10 C[1] = C[0] + x; // side effect
11 }

Figure 2: Global variable usage example

Fig. 2 shows an example of the computation. Module top
includes bar as a sub-module which updates the global array
C. Based on the parameters, the signature of bar is: bar ::

int -> void. However, accounting for globals, the extended
signature of bar by using Algorithm 2 is the following,

bar :: int->char->int[2] -> (int, int[2])

meaning that bar is represented as a function of three inputs
(of the specified types), generating a pair of outputs.

Extended signatures account for global variables during
modular analysis. Suppose that bar has been certified; when
certifying top we replace bar with an uninterpreted function
(say BAR) of three arguments, and the effect of the invocation
of bar on the globals is given by (B, C) = BAR(i, A, C).

3The algorithm assumes that local variables within a module
have been standardized apart via renaming to avoid name
conflicts with the globals and consequent variable capture.
In our case capture avoidance is trivial since LLVM adopts
different naming conventions for local and global variables.

Table 1: Summary of Evaluation on CHStone Benchmark

App. Domain Design
Lines of code C

Functions
RTL
Modules

Operation
Gating

Global Variablesa Time
(s)

Mem.
(MB)C RTL R W RW

Arithmetic DFADD 526 3722 17 5 Yes 4 0 1 174.9 169.34
DFDIV 436 5192 19 4 Yes 4 0 1 6946.1 594.87
DFMUL 376 3115 16 2 Yes 4 0 1 63.5 75.31
DFSIN 755 11224 31 8 Yes 6 0 1 7151.3 603.50

Microprocessor MIPS 232 2944 1 1 No 1 0 0 250.4 125.21
Media Processing ADPCM 541 14935 15 5 No 15 19 63 68.2 105.45

GSM 393 5598 12 4 Yes 4 0 0 49.6 83.07
JPEG 1692 32846 30 17 Yes 30 14 17 2187.3 375.90
MOTION 583 6168 13 5 Yes 9 0 4 1515.1 408.77

Security AES 716 11869 11 7 Yes 4 0 5 170.7 106.59
BLOWFISH 1406 17420 6 4 No 3 0 4 44.9 91.89
SHA 1284 18819 8 4 No 3 0 4 6.0 89.04

aR means read-only, W means write-only, and RW means read-and-write.

4. EXPERIMENTAL RESULTS

4.1 Performance Evaluation
We have applied our framework to certify synthesized RTL

for all the ESL designs in the CHStone benchmark. CHStone
is a publicly available benchmark suite for behavioral syn-
thesis, that includes twelve designs selected from different
application domains. We used a commercial behavioral syn-
thesis tool to synthesize the RTL. The most complex design
in the benchmark is JPEG which has more than 32K lines of
RTL code. For our experiments we have used the benchmark
designs as is with one modification: two designs, JPEG and
MOTION, used double pointers to represent two-dimensional
arrays; these were modified to eliminate the double-pointer
and represent the arrays explicitly. The reason has to do
with the quirks of the synthesis tool used in this experiment.
The synthesis tool inlines functions that have double point-
ers, thus flattening the module structure in the synthesized
RTL. In addition to generating significantly larger RTL, this
also destroys the module structure in the synthesized design.
Since scalability of modular analysis (in the presence of de-
sign optimizations) is the key target of the experiments, we
found the original designs unsuitable as targets for evalu-
ation. The experiments were conducted on a workstation
with 3GHz Intel Xeon processor and 8GB memory. For each
design, we checked the equivalence between its CCDFG and
RTL via dual-rail symbolic simulation, which symbolically
simulates the CCDFG and RTL clock cycle by clock cycle.
After each clock cycle, we checked the equality of mapped
variables in the CCDFG and RTL by the MathSAT SMT
solver [6]. We also applied cutpoints, cut-loop, and modular
analysis optimizations when checking each design.
Table 1 shows the results of the experiments. The JPEG

design takes about 36 minutes with 375.9 MB memory us-
age. The maximum certification time is required for DFSIN,
which takes around 119 minutes with 603.5 MB memory us-
age. The experiment results demonstrate that independent
of application domain our framework scales up to designs
of practical complexity. No other SEC framework to our
knowledge can handle behaviorally synthesized designs at
this scale. Furthermore, only MIPS can be certified without
handling operation gating and global variable optimizations.

4.2 A Behavioral Synthesis Bug

Our experiments found a bug in the synthesis tool dur-
ing the certification of the MOTION design, which is a C
implementation of a motion vector decoding algorithm for
MPEG-2. Fig. 3(a) shows the source code fragment that
triggers the bug. Here ld_Bfr is a global variable. In func-
tion Get_Bits, the return value Val is computed by right-
shifting ld_Bfr. After Val is computed, ld_Bfr is updated
in the subroutine Flush_Buffer. The update performed by

1 unsigned int ld_Bfr; // global ld Bfr
2 void Flush_Buffer(int N) {
3 // modify the global variable
4 ld_Bfr = update(N, ld_Bfr);
5 }
6 unsigned int Get_Bits(int N){
7 unsigned int Val;
8 Val = ld_Bfr >> (32 - N);
9 Flush_Buffer(N);

10 return Val;
11 }

(a)

Flush_Buffer

FSM

>>

REG

ld_Bfr

Get_Bits

Output

(b)

REG

Flush_Buffer

FSM

>>
REG Output

ld_Bfr

Get_Bits

Missed

logic

(c)

Figure 3: Bug found in MOTION example. (a) C source
code (b) Wrong RTL (c) Correct RTL

Flush_Buffer does not affect the return value. Fig. 3(b)
shows the RTL implementation synthesized by the behav-
ioral synthesis tool. The global variable ld_Bfr is synthe-
sized to a register outside of module Get_Bits. The output
of Get_Bits is thus a combinational circuit with ld_Bfr as
input. Therefore, when sub-module Flush_Buffer produces
a new data for ld_Bfr, the new data is propagated to the
output in the same clock cycle, leading to a wrong output.
The bug is caused because behavioral synthesis applies

aggressive transformations to minimize resource usage. As
can be seen by comparing Figs. 3(b) and 3(c), the synthe-
sis tool in this case eliminates a register without correctly
taking into account the side effect on the global variable.
Such subtleties reinforce the need for SEC for certification
of synthesized RTL designs. The bug has been confirmed by
developers of the synthesis tool and fixed in a new release.

5. RELATEDWORK
Koebl et al. [15] provides a good overview of research in

SEC between high-level and RTL designs. Recently increas-
ing sophistication of behavioral synthesis has resulted in sev-
eral SEC optimizations to scale up certification of synthe-
sized RTL [13, 16, 14, 11, 10]. For instance, Vasudevan et
al. [20] introduce sequential compare points as a set of ob-
servable signals to be compared between high-level designs
and RTL. There are commercial tools [1, 14] that can ap-
ply SEC between RTL and high-level (C/C++/SystemC)
models. However, we have found no published results on
approaches to handle design and implementation optimiza-
tions in any certification framework for behavioral synthesis.
There has however been research on handling such opti-

mizations in SEC comparing RTL and netlist designs. Baum-
gartner et al. [5] discuss an approach for invariant genera-
tion to address the conditional equivalence checking problem
for optimizations including clock gating and power gating.
Moon et al. [18] propose equivalence checking techniques
that exploit well-partitioned circuit structures.

6. CONCLUSION AND FUTUREWORK
We have presented a SEC framework to compare an ESL

design with its behaviorally synthesized RTL implementa-
tion in the presence of design and implementation optimiza-
tions, e.g., operation gating and global design variables. The
framework scales to practical designs: it can handle all de-
signs of the CHStone benchmark, some of which have more
than 32K LoC synthesized RTL. We do not know of any
other tool that can handle diverse designs at this scale, and
the algorithms presented here are crucial to this scalability.
In addition, certification found a bug in a commercial syn-
thesis tool, underlining the importance of SEC for behavioral
synthesis and the effectiveness of our framework. In future
work, we plan to develop techniques for handling more so-
phisticated designs, including concurrent ESL specifications
and complex, synthesized module interfaces.

7. ACKNOWLEDGMENTS
This research was partially supported by National Science

Foundation Grants #CCF-0916772 and #CCF-0917188 and
by a research grant from Intel Corporation. We thank Disha
Puri, Naren Narasimhan, and Jin Yang for advice and help.

8. REFERENCES
[1] Sequential Equivalence Checking: A new approach to

functional verification of datapath and control logic
changes, 2007.

[2] C-to-Silicon Compiler User Guide, 11.10, 2011.

[3] Catapult C Reference Manual, 2011.

[4] Cynthesizer Reference Guide, 4.1, 2011.

[5] J. Baumgartner, H. Mony, M. L. Case, J. Sawada, and
K. Yorav. Scalable conditional equivalence checking:
An automated invariant-generation based approach. In
FMCAD, 2009.

[6] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio,
and R. Sebastiani. The MathSAT 4 SMT solver. In
CAV, 2008.

[7] J. Cong, B. Liu, R. Majumdar, and Z. Zhang.
Behavior-level observability analysis for operation
gating in low-power behavioral synthesis. ACM Trans.
Des. Autom. Electron. Syst., 16(1), 2010.

[8] J. Cong, B. Liu, S. Neuendorffer, J. Noguera,
K. Vissers, and Z. Zhang. High-level synthesis for
FPGAs: from prototyping to deployment.
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 30(4):473–491, April
2011.

[9] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimization.
ACM Trans. Program. Lang. Syst., 9(3), July 1987.

[10] K. Hao, S. Ray, and F. Xie. Equivalence checking for
behaviorally synthesized pipelines. In DAC, 2012.

[11] K. Hao, F. Xie, S. Ray, and J. Yang. Optimizing
equivalence checking for behavioral synthesis. In
DATE, 2010.

[12] Y. Hara, H. Tomiyama, S. Honda, and H. Takada.
Proposal and quantitative analysis of the CHStone
benchmark program suite for practical C-based
high-level synthesis. Journal of Information
Processing, 17, 2009.

[13] A. J. Hu. High-level vs. RTL combinational
equivalence: An introduction. In International
Conference on Computer Design. IEEE, 2006.

[14] A. Koelbl, R. Jacoby, H. Jain, and C. Pixley. Solver
technology for system-level to RTL equivalence
checking. In DATE, 2009.

[15] A. Koelbl, Y. Lu, and A. Mathur. Embedded tutorial:
formal equivalence checking between system-level
models and RTL. In ICCAD, 2005.

[16] S. Kundu, S. Lerner, and R. Gupta. Validating
high-level synthesis. In CAV, 2008.

[17] The LLVM Compiler Infrastructure. LLVM Language
Reference Manual (Version 2.7), 2010.

[18] I.-H. Moon, P. Bjesse, and C. Pixley. A compositional
approach to the combination of combinational and
sequential equivalence checking of circuits without
known reset states. In DATE, 2007.

[19] S. Ray, K. Hao, F. Xie, and J. Yang. Formal
verification for high-assurance behavioral synthesis. In
ATVA, 2009.

[20] S. Vasudevan, J. Abraham, V. Viswanath, and J. Tu.
Automatic decomposition for sequential equivalence
checking of system level and RTL descriptions. In
MEMOCODE, 2006.

