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Abstract. Generalized symbolic trajectory evaluation (GSTE) is an ex-
tension of symbolic trajectory evaluation (STE). In GSTE, assertion
graphs are used to specify properties in a special form of regular au-
tomata with antecedent and consequent pairs. This paper presents a
new model characterization, called maximal models, for an assertion
graph with important properties. Besides their own theoretical signifi-
cance, maximal models are used to show the implication of two assertion
graphs in GSTE. We show that, contrary to the general belief, an asser-
tion graph may have more than one maximal model. We present a prov-
able algorithm to find all maximal models of a linear assertion graph.
We devise an algorithm for finding a maximal model for an arbitrary
assertion graph.

1 Introduction

Generalized symbolic trajectory evaluation (GSTE) [1, 2] is an extension of sym-
bolic trajectory evaluation (STE) [5]. STE can handle large, industrial design and
has been actively used in HP, IBM, and Motorola [9, 10, 11, 12]. The STE theory
consists of a simple specification language, a simulation-based model checking
algorithm, and a mapping of the algorithm to a coarse abstract domain. The
specification language of STE has the limited expressiveness where only proper-
ties over finite time intervals are allowed. GSTE was originally developed at Intel
and has successfully demonstrated its powerful capacity in formal verification of
digital systems [1, 2, 3, 4, 13, 14].

In GSTE, all Omega-regular properties can be expressed and verified with
the same space efficiency and comparable time efficiency. Assertion graphs are
introduced in GSTE as an extension of STE’s specification language. Assertion
graphs are the specification language in GSTE based on a special form of regular
automata with assertion letters (antecedent and consequent pairs) [2]. GSTE
specifications are expressed in the form of assertion graphs.

Many RTL designs are rather complicated, primarily because they model com-
plex functional behavior while accommodating tight performance constraints. If
we have already proved an assertion graph G1 against the RTL, a desirable us-
age is to use G1 to prove (imply) another assertion graph G2. Having such an
implication mechanism would enable us to achieve higher level abstractions and
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pursue assume-guarantee prove strategies. There is some work on the implication
[3, 4]. In this paper, we present a new concept: maximal model of an assertion
graph. Maximal models are used to show the implication of two assertion graphs
in GSTE.

This paper is organized as follows. In Section 2, we introduce the basic defi-
nitions in GSTE. In Section 3, we introduce some concepts, such as sub-model,
maximal model and related properties. In Section 4, we present a provable algo-
rithm to find all maximal models for a linear assertion graph. The application
of maximal models in the model-based implication is discussed. In Section 5, we
present an algorithm to find a maximal model of an arbitrary assertion graph.
We give a condition to determine if a model is a maximal model. In Section 6,
we conclude the paper.

2 Preliminaries

We introduce some basic definitions on GSTE [1, 2]. We assume a non-empty
set of finite states, denoted by S. A relation T ⊆ S × S is a transition relation if
∀s ∈ S, ∃s′ ∈ S, (s, s′) ∈ T , where S is a non-empty set of finite states. The model
M induced by the transition relation T is the pair (pre, post) where: (1) the pre-
image transformer pre : 2S → 2S is defined as: pre(Q) = {s|s′ ∈ Q, (s, s′) ∈ T }
for all Q ∈ 2S ; and (2) the post-image transformer post : 2S → 2S is defined as:
post(Q) = {s′|s ∈ Q, (s, s′) ∈ T } for all Q ∈ 2S .

In fact, a model M = (pre, post) is a directed graph M = (S, T ). We use pre
and post to represent two functions based on M . Note that pre(s) = pre(s),
post(s) = post(s), for all s ∈ S. If for all s ∈ S, post(s) is defined and nonempty,
then M is well-defined. Namely, if we first define post : S → 2S − {∅}, where ∅
is an empty set, then a transition relation T can be defined as T = {(s, s′)|s ∈
S, s′ ∈ post(s)}. A trace in M = (pre, post) is a state sequence such that σ[i+1] ∈
post(σ[i]), for all 1 ≤ i < |σ|, i.e., (σ[i], σ[i + 1]) ∈ T .

An assertion graph is a quintuple G = (V, v0, E, ant, cons) where V is a finite
set of vertices, v0 is the initial vertex, E ⊆ V × V is a set of edges, satisfying
∀u ∈ V, ∃v ∈ V , such that (u, v) ∈ E, ant is a mapping: E → 2S, cons is a
mapping: E → 2S . Let G = (V, v0, E, ant, cons) be an assertion graph, and let
M = (pre, post) be a model. We define an edge labeling γ as : E → 2S where γ
is either ant or cons. A trace in M satisfies a path ρ of the same length under γ ,
denoted by (M, σ) |=γ (G, σ), iff σ[i] ∈ γ(ρ[i]), 1 ≤ i ≤ |σ|. A trace satisfies a path,
denoted by (M, σ) |= (G, ρ), iff [(M, σ) |=ant (G, ρ)] ⇒ [(M, σ) |=cons (G, ρ)].

Let ban(e) = ant(e) − cons(e). For a trace σ and a path ρ with length k, if
the trace with the first k − 1 elements of σ ant satisfies the path with the first
k − 1 elements of ρ, then (M, σ) |= (G, ρ) if and only if σ[k] is not in ban(ρ[k]).
A model M strongly satisfies an assertion graph G, denoted by M |= G iff
(M, σ) |= (G, ρ) for all finite initial path ρ in G and all finite trace σ in M of the
same length. Given two assertion graphs G1 = (V, v0, E1, ant1, cons1) and G2 =
(U, u0, E2, ant2, cons2), G1 model-based implies G2, denoted by G1 ⇒model G2
(we simply denoted by G1 ⇒ G2), iff ∀M, M |= G1 ⇒ M |= G2.



686 G. Yang et al.

We impose two restrictions on an assertion graph:
Assumption 1: for all initial edge e (i.e., start(e) = v0), ban(e) = ∅, i.e.,

ant(e) = cons(e);
Assumption 2: for all e, ant(e) 
= ∅.
First, if there is an initial edge e such that ban(e) 
= ∅, then the one-length

trace s (s ∈ ban(e)) does not satisfy the path e, which means no model satisfies
this an assertion graph. Second, if ant(e) = ∅ for some edge e, then all successor
edges of e do not affect models.

3 Maximal Model

In this section, we define some concepts such as submodel and maximal model,
and give some properties on them.

Definition 1 (Submodel or Contained)

i) Given two models: M1 = (S1, T1), M2 = (S2, T2), where S1 ⊆ S, S2 ⊆ S, if
S1 ⊆ S2, and T1 ⊆ T2, then M1 is called a submodel of M2, or M1 is contained
by M2, denoted by M1 ≤ M2.

ii) If S1 ⊆ S2, and T1 ⊂ T2, then M1 is called a proper submodel of M2, or
M1 is properly contained by M2, denoted by M1 < M2.

Theorem 1. If M1 ≤ M2, and M2 |= G, then M1 |= G.

Definition 2 (Maximal Model). A Maximal-Model of an assertion graph G
is a model M = (S, T ) |= G and we can not find another model M1 = (S, T1) |= G
such that T ⊂ T1. Denoting M max G = {M |M is a maximal-model of G}.
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Fig. 1. A model Fig. 1(b). A model

Theorem 2. (G1 ⇒ G2) ⇔ (∀M, M ∈ M max G1 ⇒ M |= G2).

Example 1. Models in Fig.1 and 1(b) are both the maximal models of G in Fig.2.

Theorem 3. For any given model M = (S, T ), there exists an assertion graph
G such that M is the unique maximal model of G.
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Fig. 2. An assertion graph

The maximal-model of an assertion graph G is usually not unique (see Exam-
ple 1). Theorem 3 illustrates that only one maximal model of G1 satisfying G2
is not enough to derive G1 ⇒ G2 if G1 has at least two maximal models. From
Example 2 in Section 4, we can see how to use the maximal models to determine
G1 ⇒ G2.

4 Finding all Maximal Models

In this section, we consider the problem of finding all maximal models of a
linear assertion graph G. From Theorem 2, if we find all maximal models of an
assertion graph G1, then we can determine that G1 model-based implicates G2.
We present the following algorithm: Computing All Maximal Models (CAMM)
which can find all maximal models of G.

Definition 3 (Linear assertion graph). G = (V, v0, E, ant, cons): Every edge
has one and only one successor edge. In the following, without special announce-
ment, if an assertion graph G is a linear assertion graph, we always assume that
|E| = m, e[m] = (vm−1, vt), 0 ≤ t ≤ m − 1, e[m + 1] = e[t + 1], namely, from
m + 1, edges have a periodicity τ = m − t (Fig.3).

Algorithm: CAMM (G)
1. ∀s ∈ S, P1(s) = S, Q1 = S, A1 = ant(e1) ∩ Q1 = ant(e1);
2. for i from 1 to t − 1 do
3. If s ∈ Ai, then PPi+1(s) = Pi(s) − ban(ei+1);
4. else, PPi+1(s) = Pi(s);
5. QQi+1 = ∪s∈AiPPi+1(s);

v0 v1 vt
vm-1

e1 e2 et
em

Fig. 3. Linear assertion graph
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6. AAi+1 = ant(ei+1) ∩ QQi+1;
7. Ci+1 = subsetAAi+1;
8. If s ∈ AAi, then Pi+1(s) = Pi(s) − ban(ei+1) − Ci+1;
9. Qi+1 = ∪s∈AiPi+1(s);
10. Ai+1 = ant(ei+1) ∩ Qi+1;
11. End for;
12. k = t;
13. for j from 1 to τ − 1 do
14. i = k − 1 + j;
15. If s ∈ Ai, then PPi+1(s) = Pi(s) − ban(ei+1);
16. else, PPi+1(s) = Pi(s);
17. QQi+1 = ∪s∈AiPPi+1(s);
18. AAi+1 = ant(ei+1) ∩ QQi+1;
19. Ci+1 = subsetAAi+1;
20. If s ∈ AAi, then Pi+1(s) = Pi(s) − ban(ei+1) − Ci+1;
21. Qi+1 = ∪s∈AiPi+1(s);
22. Ai+1 = ant(ei+1) ∩ Qi+1;
23. End for;
24. If Pk+τ (s) = Pk(s) for all s ∈ S and Qk+τ = Qk, goto 26;
25. Else k = k + τ , goto 13;
26. Return P ∗(s) = Pk(s) for all s ∈ S.

Starting with a trivial model M0 : post(s) = S, for every state s, the algo-
rithm reduces the set of reachable states Pi(s) for each state s edge by edge
until it finds a fix-point P ∗(s). Let A1 = ant(e1) be the set of initial states
which are constrained by the second edge. For s ∈ A1, the set of reachable
states PP2(s) from s is limited by the second edge e2. Let QQ1 be the union
of PP2(s) for s ∈ A1. Let AA2 be the set of the states that are limited by
the 3rd edge. The set of states ban(e2) are removed from P1(s). Let C2 con-
tain the states that are forced to reduce from PP2(s). C2 is a subset of AA2.
Let P2(s) be the final set of reachable states of s after limitation by the 2nd
edge. Let A2 be the final set of states to be limited by the 3rd edge. Repeating
the same process, we continue the computation of Pi(s) until no states will be
removed from Pi(s). As a result, Pi(s) monotonically decreases to a fix-point
P ∗(s). We obtain a model M such that post(s) = P ∗(s). CAMM is devised
to attain the models including all the maximal models. Example 4.1 shows the
process.

Let M(subsetAA2, subsetAA3, . . . , subsetAAh) be an output model produced
by algorithm CAMM, where Cj = ∅, j > h.

Theorem 4. For any given maximal model M of G, there is a model

M(subsetAA2, subsetAA3, . . . , subsetAAl) = M .

Example 2. Given two assertion graphs G1 and G2, with a same directed graph:
two vertices: v0, v1, and two edges: e1 = (v0, v1), e2 = (v1, v1).
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G1 : ant2(e1) = cons2(e1) = {2}, ant2(e2) = {2, 3, 4, 5}, cons2(e2) = {2, 4, 5},
ban2(e2) = {3},

G2 : ant1(e1) = cons1(e1) = {2}, ant1(e2) = {3, 4, 5, 6, 7}, cons1(e2) =
{5, 6}, ban1(e2) = {3, 4, 7}.

Using CAMM, (S = {1, 2, 3, 4, 5, 6, 7}), we have four models:
M1 : P (2) = P (5) = P (6) = {1, 2, 5, 6}, P (1) = P (3) = P (4) = P (7) = S.
M2 : P (2) = P (5) = {1, 2, 5}, P (1) = P (3) = P (4) = P (6) = P (7) = S.
M3 : P (2) = P (6) = {1, 2, 6}, P (1) = P (3) = P (4) = P (5) = P (7) = S.
M4 : P (2) = {1, 2}, P (1) = P (3) = P (4) = P (5) = P (6) = P (7) = S.

Using SMC in [1, 2], we know that Mi |= G2 for i = 1, 2, 3, 4. There-
fore, G1 ⇒ G2. In fact, these four models are maximal models of G1 accord-
ing to Theorem 8. For the model-based implication, we know in [15] if two
assertion graphs G1 and G2 have the same graph structure and (ant2(e) ⊆
ant1(e)) ∧ (cons1(e) ∩ ant2(e) ⊆ cons2(e)), for all e ∈ E, namely, (ant1(e) ⊇
ant2(e))∧(ban1(e) ⊇ ban2(e)), for all e ∈ E, then we have G1 ⇒ G2. In example
2, ant1(e) ⊇ ant2(e) is not true, but G1 ⇒ G2, which means this sufficient con-
dition for model-based implication is not necessary. For linear assertion graphs,
[15] gave the sufficient and necessary conditions for language-based implication.
But for model-based implication, the problem is more complicated. Example 2
shows that these conditions are not either sufficient or necessary for model-based
implication.

5 Finding a Maximal Model of an Arbitrary Assertion
Graph

Let start(e) and end(e) denote the start and end vertices of a directed edge e,
respectively. Let start(v) and end(v) denote the directed edges in an assertion
graph G with the starting vertex v and the ending vertex v, respectively. We
define the following sets for an assertion graph G = (V, v0, E, ant, cons):

V0 = {v0}, E1 = {e|start(e) = v0},
V1 = {v|e ∈ E1, end(e) = v},
Ei = {e|start(e) ∈ Vi−1}, Vi = {v|e ∈ Ei, end(e) = v}, for i = 2, 3, . . ..

Lemma 1. There exist t and τ > 0 such that Vt = Vt+τ .

Let t and τ be the minimum numbers satisfying Vt = Vt+τ . We present an
algorithm, Computing Satisfied Model (CSM), to find a maximal model of an
arbitrary assertion graph. In the algorithm, we compute the set of reachable
states Pi(s) from state s after the restriction of the ith step for all s ∈ S.

The basic idea of the algorithm CSM is described as follows. We initialize
P1(s) = post M(s), for all s ∈ S. Initially, the set of reachable states from any
state s is the post function of s in an input model M . Along the path of the
assertion graph from the initial edges E1, we reduce the set of the states reach-
able from s. A1(v) = ∪e∈E1ant(e), v ∈ V1, is the initial states which will be
constrained by the edges E2. For s ∈ A1(v), the reachable states P2(s) from
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s will be limited by the edges of start(v). The states of ban(v) will be re-
moved from P1(s). Pi(s) is the set of the ith step reachable states from s via
Ei. Ai(v), v ∈ Vi, is the set of states which will be limited by the (i + 1)th

step edges Ei+1. For s ∈ Ai(v), ban(v) will be removed from Pi(s). We continue
our computation Pi(s) until no states are removable from Pi(s). As a result,
Pi(s) monotonically decreases to a fix-point P ∗(s). Thus, we obtain a model
M r, post M r(s) = P ∗(s).

Algorithm: CSM(M,G)
1. ∀s ∈ S, P1(s) = post M(s), Q1(v0) = S,
2. For i from 1 to t − 1 do
3. for v ∈ Vi,
4. Ai(v) = ∪e∈Ei∩end(v)[ant(e) ∩ Qi(start(e))];
5. ban(v) = ∪e∈start(v)ban(e);
6. If s ∈ Ai(v), then Pi+1(s) = Pi(s) − ban(v);
7. Else, Pi+1(s) = Pi(s);
8. Qi+1(v) = ∪s∈Ai(v)Pi+1(s);
9. End For.
10. k = t;
11. For j from 1 to τ − 1 do
12. i = k − 1 + j;
13. for v ∈ Vi,
14. Ai(v) = ∪e∈Ei∩end(v)[ant(e) ∩ Qi(start(e))];
15. ban(v) = ∪e∈start(v)ban(e);
16. If s ∈ Ai(v), then Pi+1(s) = Pi(s) − ban(v);
17. Else, Pi+1(s) = Pi(s);
18. Qi+1(v) = ∪s∈Ai(v)Pi+1(s);
19. End For.
20. If Pk+τ (s) = Pk(s) for all s ∈ S and Qk+τ (v) = Qk(v), for v ∈ Vk, goto

22;
21. Else k = k + τ ; goto 11;
22. Return a model M r, where post M r(s) = P ∗(s) = Pk(s) for all s ∈ S.

Lemma 2. The algorithm CSM stops in a finite number of steps.

Theorem 5. M r |= G.

We use CSM to find a maximal model of G. We start from a trivial model
M0 : post M0(s) = S for all s ∈ S. Using CSM, we get a satisfying model
M r = CSM(M0). But in some cases, M r may not be a maximal model. For
instance, when we calculate A2(v) to do the third edge’s limitation, A2(v) =
∪e∈E2∩end(v)[ant(e)∩ ∪s∈A1(start(e))P2(s)]. Because P2(s) ⊇ P ∗(s), it is possible
that A2(v) ⊃ ∪e∈E2∩end(v)[ant(e) ∩ ∪s∈A1(start(e))P2(s)]. As a result, there are
more states which are taken off from the set of reachable states set during the
third step. To avoid this, we have to start from a refined model M which is
smaller than M0 but no more than a maximal model. The following algorithm,
called Induced Model (IM), is used to find such an initial model.
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Algorithm: IM(M,G)
1. ∀s ∈ S, P1(s) = S, R1(v0) = S,
2. For i from 1 to t − 1 do
3. for v ∈ Vi,
4. Bi(v) = ∪e∈Ei∩end(v)[ant(e) ∩ Ri(start(e))];
5. ban(v) = ∪e∈start(v)ban(e);
6. If s ∈ Bi(v), then Pi+1(s) = Pi(s) − ban(v);
7. Else, Pi+1(s) = Pi(s);
8. Ri+1(v) = ∪s∈Bi(v)post M(s);
9. End For.
10. k = t;
11. For j from 1 to τ − 1 do
12. i = k − 1 + j;
13. for v ∈ Vi,
14. Bi(v) = ∪e∈Ei∩end(v)[ant(e) ∩ Ri(start(e))];
15. ban(v) = ∪e∈start(v)ban(e);
16. If s ∈ Bi(v), then Pi+1(s) = Pi(s) − ban(v);
17. Else, Pi+1(s) = Pi(s);
18. Ri+1(v) = ∪s∈Ai(v)post M(s);
19. End For.
20. If Rk+τ (v) = Rk(v), for v ∈ Vk, goto 22;
21. Else k = k + τ ; goto 11;
22. Return a model M r, where post M r(s) = P ∗(s) = Pk(s) for all s ∈ S.

Theorem 6. IfM |= G, then the output model in IM IM(M, G) ≥ M .

Theorem 7. If M1 ≥ M2, and M1 |= G, then IM(M2, G) ≥ IM(M1, G) ≥
M1 ≥ M2.

Theorem 8. If M |= G and IM(M, G) = M , then M is a maximal model
of G.

Algorithm: RCSM(G)
1. Flag1 = Flag2 = 0; k = 1;
2. M r[1] = CSM(M0, G);
3. While Flag1 = 0 do
4. Mk = IM(M r[k], G);
5. M r[k + 1] = CRM(Mk, G);
6. If M r[k + 1] > M r[k], then k = k + 1;
7. Else Flag1 = 1; If Mk = M r[k], then Flag2 = 1;
8. Return: M rr = M r[k], F lag2.

Theorem 9. (1) Algorithm RCSM will stop in finite steps.
(2) M rr |= G.
(3) If Flag2 = 1, then M rr is a maximal model of G.

It is still open if M r[k] monotonically increases. Therefore we cannot guar-
antee Mrr be a maximal model of G. But, anyway, even M rr is not a maximal
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model, there is a maximal model M between M rr and IM(M rr, G) according
to Theorem 7. The following example shows an application of RCSM to find a
maximal model of an assertion graph G.

Example 3. Given an assertion graph G as Fig.4.
According to the algorithm RCRM, we get M r[1] (Fig.5) as:

Post(1) = {2, 5, 7}, Post(2) = {2, 5, 7}, Post(3) = {2, 4, 5, 6, 7}, Post(4) =
{2, 5, 7}, Post(5) = {2, 4, 5, 6, 7}, Post(6) = {2, 5, 7}, Post(7) = {1, 2, 3, 4, 5, 6, 7}.

M r[2] (Fig.5(b)) is: Post(1) = {2, 5, 7}, Post(2) = {2, 5, 7}, Post(3) =
{1, 2, 3, 4, 5, 6, 7}, Post(4) = {2, 5, 7}, Post(5) = {2, 4, 5, 6, 7}, Post(6) = {2, 5, 7},
Post(7) = {1, 2, 3, 4, 5, 6, 7}. M r[3] = M [2], so stop. M2 = IM(M r[2], G) =
M r[2], so Flag2 = 1, thus M rr = M r[2] is a maximal model of G (Theorem
5.4). M r[2] > M r[1] (There are two more edges: (3,3), (3,1) in M r[2] than in
M r[1]).

6 Conclusions

We presented a new model characterization called maximal models for an asser-
tion graph with important properties. We showed that an assertion graph may
have more than one maximal model. We presented a provable algorithm to find
all maximal models of a linear assertion graph. We devised an algorithm for
finding a maximal model for an arbitrary assertion graph.
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